
Nicolas Sklavos · Ricardo Chaves
Giorgio Di Natale · Francesco Regazzoni
 Editors

Hardware
Security
and Trust
Design and Deployment of Integrated
Circuits in a Threatened Environment

Hardware Security and Trust

Nicolas Sklavos • Ricardo Chaves
Giorgio Di Natale • Francesco Regazzoni
Editors

Hardware Security and Trust
Design and Deployment of Integrated
Circuits in a Threatened Environment

123

Editors
Nicolas Sklavos
Computer Engineering and Informatics
Department

University of Patras
Patra
Greece

Ricardo Chaves
INESC-ID, IST
University of Lisbon
Lisbon
Portugal

Giorgio Di Natale
LIRMM—CNRS, UMR 5506-CC 477
University of Montpellier
Montpellier
France

Francesco Regazzoni
ALaRI Institute
University of Lugano
Lugano
Switzerland

ISBN 978-3-319-44316-4 ISBN 978-3-319-44318-8 (eBook)
DOI 10.1007/978-3-319-44318-8

Library of Congress Control Number: 2016948108

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Hardware security is becoming increasingly more important for many embedded
systems applications ranging from small RFID tag to satellites orbiting the earth. Its
relevance is expected to increase in the coming decades as secure applications such
as public services, communication, control and healthcare keep growing.

Concerning all the possible security threats, the vulnerability of electronic
devices that implement cryptography functions (including smart cards) has become
the Achille’s heel in the last decade. Indeed, even though recent crypto-algorithms
have been proven resistant to cryptanalysis, certain fraudulent manipulations on the
hardware implementing such algorithms can allow extracting confidential infor-
mation. The so-called side-channel attacks have been the first type of attacks that
target the physical device. They are based on information gathered from the
physical implementation of a cryptosystem. For instance, by correlating the power
consumed and the data manipulated by the device, it is possible to discover the
secret encryption key.

New threats have menaced secure devices and the security of the manufacturing
process. The first issue is the trustworthiness of the manufacturing process. From
one side, the test procedures, which increase controllability and observability of
inner points of the circuit, is antinomic with respect to the security. Another threat is
related to the possibility for an untrusted manufacturer to do malicious alterations to
the design (for instance to bypass or to disable the security fence of the system).
The threat brought by so-called hardware Trojans begins to materialize. A second
issue is the hazard of faults that can appear during the circuit’s lifetime and that may
affect the circuit behavior by way of soft errors or deliberate manipulations, called
fault attacks.

In 2012, a new COST Action, called TRUDEVICE (“Trustworthy
Manufacturing and Utilization of Secure Devices”) started in order to cover the
above-mentioned topics. COST is an intergovernmental framework for European
Cooperation in Science and Technology, allowing the coordination of nationally
funded research on a European level. COST increases the mobility of researchers
across Europe and fosters the establishment of scientific excellence. COST does not

v

fund research itself but provides a platform for European scientists to cooperate on a
particular project and exchange expertise.

In the context of the TRUDEVICE COST Action, we organized in July 2014 a
training school in Lisbon, Portugal. This training school aimed at providing theo-
retical and practical lectures on topics related to hardware security.

The school started with an introductory session on the fundamental primitives
for security, from both hardware and software perspectives. This is followed by an
introduction on the implementation of attacks and countermeasures, presenting an
overview of physical attacks, both passive and active, and some existing counter-
measures. Included in this introduction was the description of the evolution of
computer technology and cryptography from the ancient past to current days.

Given this introduction, trustworthy manufacturing of integrated circuits was
discussed ranging from the implementation of cryptographic primitives to the
manufacturing test of secure devices. The fight against theft, cloning and coun-
terfeiting of integrated circuits was also discussed considering both ASICs and
FPGAs. Continuing with the trustworthiness of secure devices, lectures on the
various forms of attacks were presented, considering fault attacks and differential
power analysis and existing countermeasures.

This training school also included a practical session on performing differential
power analysis and on how to test random number generation. As a boost to Ph.D.
students an extra session to foster the discussion between students also took place.

The editors would like to thank all the contributing authors for their patience in
meeting our deadlines and requirements. Moreover, we would like to express a
heartfelt appreciation to all the speakers that made possible the training school.
Thanks to their great enthusiasm and work that we could have made the
TRUDEVICE training school a grand success.

TRUDEVICE training school speakers: Lejla Batina (Radboud University
Nijmegen, The Netherlands), Lilian Bossuet (University of Saint-Etienne, France),
Jiri Bucek (Czech Technical University in Prague, Czech Republic), Ricardo
Chaves (University of Lisbon, Portugal), Amine Dehbaoui (SERMA Technologies,
France), Milos Drutarovsky (Technical University of Kosice, Slovakia), Viktor
Fischer (Jean Monnet University Saint-Etienne, France), Julien Francq (AIRBUS
Defense and Space, France), Ilya Kizhvatov (RISCURE, The Netherlands), Patrick
Haddad (STMicroelectronics and Jean Monnet University Saint-Etienne, France),
Vincent van der Leest (Intrinsic-ID, The Netherlands), Victor Lomné (ANSSI,
France), Nele Mentens (KU Leuven, Belgium), Giorgio Di Natale (LIRMM,
France), Martin Novotny (Czech Technical University in Prague, Czech Republic),
Paul-Henri Pugliesi-Conti (NXP Semiconductors, France), Francesco Regazzoni
(ALaRI Institute of University of Lugano, Switzerland), Nicolas Sklavos
(University of Patras, Greece).

This book follows the same structure of the training school in Lisbon. We start
with a brief survey hardware implementations of the Advanced Encryption
Standard, which is the cryptographic algorithm that we is used as a reference in the
forthcoming chapters. The book is then divided into four main sections. The first
section covers the implementation attacks, starting from an introduction on fault

vi Preface

attacks and side-channel attacks, followed by a practical description of the differ-
ential power analysis. The section is completed by some countermeasures against
fault- and power-based attacks.

The second section covers the issues of the manufacturing testing of hardware
devices implementing cryptographic algorithms. The first chapter is dedicated to the
classical manufacturing testing and how it can be exploited in order to retrieve
secret data. The second chapter contains a survey of the academic and industrial
countermeasures.

The third section is dedicated to hardware trust. The first chapter analyzes
trustworthiness of mobile devices, including both hardware and software compo-
nents. The second chapter focuses on Hardware Trojan detection, particularly
critical given the common outsourcing of ASIC manufacture.

The last section covers many aspects of Physically Unclonable Functions
(PUFs). The first chapter introduces the topic and presents a survey of existing
solutions. The next two chapters covers PUFs implemented on FPGAs using delay
elements and ring oscillators.

Patra, Greece Nicolas Sklavos
Lisbon, Portugal Ricardo Chaves
Montpellier, France Giorgio Di Natale
Lugano, Switzerland Francesco Regazzoni

Preface vii

Contents

1 AES Datapaths on FPGAs: A State of the Art Analysis. 1
João Carlos Resende and Ricardo Chaves

2 Fault Attacks, Injection Techniques and Tools for Simulation 27
Roberta Piscitelli, Shivam Bhasin and Francesco Regazzoni

3 Recent Developments in Side-Channel Analysis on Elliptic
Curve Cryptography Implementations . 49
Louiza Papachristodoulou, Lejla Batina and Nele Mentens

4 Practical Session: Differential Power Analysis for Beginners 77
Jiří Buček, Martin Novotný and Filip Štěpánek

5 Fault and Power Analysis Attack Protection Techniques
for Standardized Public Key Cryptosystems 93
Apostolos P. Fournaris

6 Scan Design: Basics, Advancements, and Vulnerabilities 107
Samah Mohamed Saeed, Sk Subidh Ali and Ozgur Sinanoglu

7 Manufacturing Testing and Security Countermeasures 127
Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre
and Paul-Henri Pugliesi-Conti

8 Malware Threats and Solutions for Trustworthy Mobile
Systems Design . 149
Jelena Milosevic, Francesco Regazzoni and Miroslaw Malek

9 Ring Oscillators and Hardware Trojan Detection. 169
Paris Kitsos, Nicolas Sklavos and Artemios G. Voyiatzis

10 Notions on Silicon Physically Unclonable Functions 189
Mario Barbareschi

11 Implementation of Delay-Based PUFs on Altera FPGAs 211
Linus Feiten, Matthias Sauer and Bernd Becker

ix

12 Implementation and Analysis of Ring Oscillator
Circuits on Xilinx FPGAs . 237
Mario Barbareschi, Giorgio Di Natale and Lionel Torres

Index. 253

x Contents

Chapter 1
AES Datapaths on FPGAs:
A State of the Art Analysis

João Carlos Resende and Ricardo Chaves

1.1 Introduction

The Advanced Encryption Standard (AES) has been the preferred block cipher algo-
rithm for data security since its 2001 approval by the North American National Insti-
tute of Standards and Technology (NIST) [19]. In the field of Field-Programmable
Gate Arrays (FPGA) technology, prototyping, easy-deployment, and experimenta-
tion has become less time consuming, increasing the amount of available options for
a custom-made AES implementation. Options in the chosen datapath width, SBox
implementation, round (un)rolling, pipelining, etc., result in different trade-offs in
terms of throughput, resource usage, and overall efficiency. The main goal for this
chapter is to provide the reader with an overall review of the updated state of the art
techniques and architectures for AES implementations on FPGA.

This chapter is organized as follows: Sect. 1.2 provides an introduction to the AES
algorithm. Section1.3 insights the most common solutions for the implementation of
each AES operation on FPGAs, while Sect. 1.4 explores some architectural choices
when implementing the complete AES cipher. Section1.5 presents a performance
comparison of the most updated state of the art, and Sect. 1.6 concludes with some
final remarks.

J.C. Resende · R. Chaves (B)
Instituto Superior Técnico, Universidade de Lisboa/INESC-ID,
Rua Alves Redol 9, 1000-029 Lisbon, Portugal
e-mail: ricardo.chaves@inesc-id.pt

J.C. Resende
e-mail: joaocresende@tecnico.ulisboa.pt

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_1

1

2 J.C. Resende and R. Chaves

1.2 The AES Algorithm

In the early 1970s, IBM and the NSA (North American National Security Agency)
collaborated on designing the Data Encryption Standard (DES), a symmetric block
cipher that would become a Federal Information Processing Standard (FIPS) in 1977.
It became one the most predominant digital ciphers at the time and the extended
scrutiny it was subjected to influenced modern cryptography.

In the 1990s, the exponential increase of computational power rendered DES
unsafe has brute force attacks were able to break the cipher in feasible time. This led
the USA’s National Institute of Standards and Technology (NIST) to open a compe-
tition for a new symmetrical encryption algorithm. Several proposals were submitted
and discussed, including the Rijndael algorithm [7]. This algorithm allowed several
sizes of data and cipher keys, while maintaining a balanced performance between
security, resources and computation efficiency, in both hardware and software. In
2001, a subset of the Rijndael algorithm became the Advanced Encryption Stan-
dard (AES) [19].

The AES algorithm is a 128-bit block cipher, accepting key lengths of 128, 192,
and 256 bits, processed over N rounds, with N equal to 10, 12, or 14 rounds, respec-
tively, as depicted in Fig. 1.1. Each 128-bit (16 bytes) block of plain text is organized
column wise, in a 4× 4 byte matrix (named State).

After the initial key addition, in which the plain text is XORed with the first
128 bits of the expanded key, the State goes through the several operations. These
round operations are: SubBytes, where each byte is replaced by another one, which
can be implemented by a Look Up Table (SBox); ShiftRows, where the rows of
the State are left-round shifted; MixColumns, where each column of the State is
multiplied by a matrix; and AddRoundKey, where the entire State is XORed with
the corresponding 128-bit Round Key. The decryption process of the AES cipher is
performed identically to the encryption, but with the inverse operations. Note that
the last round is slightly different since no (Inv)MixColumns operation is performed.

AddRoundKey(State, ekey)
for round= 1, round<N, round++ do
SubBytes(State)
ShiftRows(State)
MixColumns(State)
AddRoundKey(State, ekey[round])

end for
SubBytes(State)
ShiftRows(State)
AddRoundKey(State, ekey[N])

AddRoundKey(State, dkey)
for round= 1, round<N, round++ do
InvSubBytes(State)
InvShiftRows(State)
InvMixColumns(State)
AddRoundKey(State, dkey[round])

end for
InvSubBytes(State)
InvShiftRows(State)
AddRoundKey(State, dkey[N])

Fig. 1.1 AES encryption/decryption operations

1 AES Datapaths on FPGAs: A State of the Art Analysis 3

1.2.1 SubBytes Operation

The SubBytes operation is a nonlinear functionwhich replaces one byte by a different
predefined byte, given

b′ = SubBytes(b) ⇔
⇔ b′

i = b−1
i ⊕ b−1

(i+4)mod8
⊕ b−1

(i+5)mod8
⊕ b−1

(i+6)mod8
⊕ b−1

(i+7)mod8
⊕ ci

(1.1)

0 ≤ i < 8 ; c = {01100011}
{b• b−1}mod{M} = 1 ; M = {100011011}

where b−1
i is the i-th bit of the multiplicative inverse of the input byte b [19]. For

efficiency purposes, the SubBytes function is often replaced by an equivalent 256-
byte lookup table, designated as SBox. Alternatives to the implementation of this
byte substitution considering composite fields also exist [3, 24, 26].

1.2.2 ShiftRows Operation

The ShiftRows operation, as the name implies, is a permutation of the 2nd, 3rd and
4th rows of the State matrix, 1, 2, and 3 positions to the left, respectively. The inverse
operation used in decryption, InvShiftRows, is the direct undoing of the former
shifting, with the permutations of the same rows 1, 2, and 3 positions to the right.
The 1st row of the State matrix does not suffer any changes in either one of these
operations. Both operations are depicted in Fig. 1.2.

⎡
⎢⎣

00 04 08 0C
01 05 09 0D
02 06 0A 0E
03 07 0B 0F

⎤
⎥⎦ => ShiftRows =>

⎡
⎢⎣

00 04 08 0C
05 09 0D 01
0A 0E 02 06
0F 03 07 0B

⎤
⎥⎦

⎡
⎢⎣

00 04 08 0C
01 05 09 0D
02 06 0A 0E
03 07 0B 0F

⎤
⎥⎦ => InvShiftRows =>

⎡
⎢⎣

00 04 08 0C
0D 01 05 09
0A 0E 02 06
07 0B 0F 03

⎤
⎥⎦

Fig. 1.2 AES ShiftRows and InvShiftRows operations

4 J.C. Resende and R. Chaves

Table 1.1 Byte-by-byte GF(28) multiplication

2n multiplication Non 2n multiplication

01× B = (B � 0)mod(0x11B) 03× B = 02× B ⊕ 01×B

02× B = (B � 1)mod(0x11B) 05× B = 04× B ⊕ 01× B

04× B = (B � 2)mod(0x11B) 07× B = 04× B ⊕ 02× B ⊕ 01× B

08× B = (B � 3)mod(0x11B) 0F × B =
08× B ⊕ 04× B ⊕ 02× B ⊕ 01× B

...

1.2.3 MixColumns Operation

In the (Inv)MixColumns operation, each individual column of the State matrix is
replaced by its multiplication, in a GF(28),1 through one of the matrices depicted in
Eq. (1.2). In order to easily understand the GF(28) multiplication used in the AES
(Inv)MixColumns, the approach presented in Table1.1 can be used, namely: when
multiplying a byte with a 2n coefficient, the byte is simply shifted n bits to the
left, as depicted in Table1.1, e.g., 02× B = (B � 1); multiplying with any other
coefficient (not a power of 2) requires a compositeXORof the smaller 2n coefficients,
as also depicted in Table1.1, e.g., 03× B = 02× B ⊕ 01× B. When an overflow
occurs on the 8th bit during shifting, the result must be subtracted (by XORing)
with the value “0x11B”, i.e., reducing it to the irreducible polynomial associated:
x8 + x4 + x3 + x + 1 [19].

MixColumns matri x I nvMixColumns matri x⎡
⎢⎢⎣
r0i
r1i
r2i
r3i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a0i
a1i
a2i
a3i

⎤
⎥⎥⎦

⎡
⎢⎢⎣
r0i
r1i
r2i
r3i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a0i
a1i
a2i
a3i

⎤
⎥⎥⎦

(1.2)

1.2.4 Key Scheduling

The Key Scheduling, also known as Key Expansion, is an inherent subroutine of the
AES algorithm. The Key Scheduling is responsible for converting the 128, 192 or
256 bits long cipher key into all the necessary round keys (11, 13 or 15 round keys).

Similar to the AES ciphering procedures, the Key Scheduling is also an iterative
process, as shown in Fig. 1.3. It uses the same SubBytes operation as the ciphering
process, alongside the specificRotByte and AddConstant operations. RotByte per-
forms a byte-wise left rotation of a 32-bit word. AddConstant is the bitwise XOR

1Galois Field, or finite field, of order 28 [19].

1 AES Datapaths on FPGAs: A State of the Art Analysis 5

KeySchedule(CipherKey){

for i= 1, i< 4, i++ do
W [i]32b = CipherKey[i]32b

end for
for i= 4, i< (4 ∗ 10 + 4), i++ do

temp32b = W [i − 1]32b
if mod(i, 4)=0 then

RotByte(temp)
SubBytes(temp)
AddConstant(temp, Const[i/4])

end if
W [i]32b = W [i − 4]32b ⊕ temp32b

end for
ekey[0: ... :10]=W[{0:3}: ... :{40:43}]
}

(a) Key Schedule for Encryption

InvKeySchedule(CipherKey){

ekey=KeySchedule(CipherKey)
dkey[0]128b=ekey[N]128b
dkey[N]128b=ekey[0]128b
for round= 1, round<N, round++ do

KeyState128b=ekey[round]128b
InvMixColumns(KeyState)
dkey[N-round]=KeyState

end for
}

(b) Key Schedule for Decryption

Fig. 1.3 AES Encryption/Decryption KeySchedule operation for 128-bit keys.

between a 32-bit word and one equally sized constant vector {‘Cte’; 0; 0; 0} [19]. The
InvMixColumns operation is also used to calculate the round keys for decryption.

At the end of each round of the AES encryption, a Round Key is required. As
long as each key is available in its proper time, the Key Scheduling can either be
pre-computed or processed in parallel alongside the data encryption. This is not pos-
sible during decryption since the process starts with the last calculated round key (as
shown in the right side of Fig. 1.3).

Note that the Key Expansion only needs to be performed once for a given cipher
key, since it does not depend on the input data. Given that one cipher key is typically
used to cipher a large amount of data, the Key Expansion computation does not need
to be recomputed often. Different approaches to implement the Key Scheduling are
further discussed in Sect. 1.3.8.

1.3 FPGA Techniques for the AES Operations

Most operations of the AES rounds have a mathematical definition behind them,
such as the SubBytes, being a nonlinear function, and the MixColumns, being a
matrix multiplication in GF(28) [7]. Some implementations even change the original
mathematical definition for different purposes: speed, resource usage, side-channel
protection, etc.; but, regardless of any change, the AES input-output pair has to
be maintained [3, 17, 18, 26]. It is also possible to avoid the use of logic in the
implementation of the mathematical definition, and simply replace it by equivalent
input-output lookup tables [19]. In hardware, this led to two tendencies in imple-
menting the AES operations: through a logical defined function or by addressable
memory-based lookup tables.

6 J.C. Resende and R. Chaves

Logic-based implementations, more common is ASIC designs, use a set of logic
gates, placed and routed, to implement themathematical function that defines a given
operation. Typically, logic-based implementations require less resources, but result
in slower designs.

Memory-based implementations store the pre-computed result of an operation
into a memory-mapped lookup table. These results are then outputted depending
on the input value. This type of implementation requires the existence of memory
elements, typically resulting in faster designs. This approach is common in software-
based implementations [1] but also on FPGAs that have embedded memory blocks
[4, 5, 9, 20, 23].

In this section, an overview of the existing state of the art solutions focused on
FPGA is presented. The following describes these solutions regarding the imple-
mentation of the ShiftRows, SubBytes, MixColumns operations and their respective
inverses, for both logic and memory-based approaches. Given the simplicity of the
AddRoundKey operation, and of its implementation, it will only be occasionally
mentioned when particularly relevant for the resulting structure.

1.3.1 Datapath Width

One of the first decisions when considering the hardware implementation of an AES
design, is the datapath bit-width. This dictates howmuch of the State data is processed
at a time: 8, 32, or the full 128 bits per clock cycle iteration. Implementations with 16
and 64-bit datapath designs can also be considered, but are practically nonexistent.

8-bit datapaths [6, 13, 25] require less resources, but also the highest number
of iterations (160 or more cycles), and consequently the lowest throughput. Imple-
mentations with 128-bit datapaths [2, 4, 10] can process more data in a single cycle
(with one ormore cycles/round), thus allowing for higher throughputs. Consequently,
given the replication of the computation units operating in parallel, higher resource
usage is also imposed.

32-bit datapath structures [5, 20, 23] are often consider as the more balanced
compromise between performance and resource usage, originating higher efficiency
results (throughput/resources).

1.3.2 (Inv)ShiftRows Implementations: Routing,
Multiplexing, and Memory Based

As explained in Sect. 1.2.2, the ShiftRows operation requires the shifting of the sec-
ond to fourth rows of the State matrix. From an implementation point of view, this
simply requires that each of the 16 bytes are properly routed to their respective
positions. On FPGAs, signal routing is performed by dedicated routing switches,

1 AES Datapaths on FPGAs: A State of the Art Analysis 7

Fig. 1.4 The SRL16 (previous Xilinx FPGAs) and SRL32 (current Xilinx FPGAs) LUT modes

typically not requiring any additional functional logic components. This specific
routing is performed when mapping, placing, and routing the structure onto the
FPGA. However, ShiftRows and InvShiftRows (used on encryption and decryption,
respectively) have opposite shifting directions. Thus the routing path of each opera-
tion cannot be shared.

Performing the (Inv)ShiftRows operation through routing is often the preferred
choice in several proposed 128-bit datapaths such as Bulens et al. [2] and Liu et al.
[17]. However, this implies that a particular implementation can only handle one
ciphering mode. With this approach, two AES cores need to be deployed when
supporting encryption and decryption, as used in HELION Standard and HELION
Fast AES cores [13]. In order to support both encryption and decryption on a single
AES design, both routing options need to coexist. If properly designed, and given
the similarity of the remaining computations, only minimum multiplexing logic is
needed, as presented in Chaves et al. [4].

In smaller datapaths of 32 and 8-bit widths, performing the (Inv)ShiftRows
through routing is not viable, since the 16 bytes of the State are not available at
the same time. The predominant state of the art solution for the (Inv)ShiftRows in
compact FPGA structures is using addressable memory, as introduced in Chodowiec
andGaj [5]. These authors showhowaRAMmemory can be used to temporarily store
the State matrix between rounds, and perform either the ShiftRows or InvShiftRows
by properly addressing the writing and reading operations of the consecutive 32-bit
columns, or 8-bit cells, of the State [8, 11]. The authors further optimize this byte
shift operation by eliminating the need to specify the writing address. This approach
is optimized onXilinx FPGAs using particular LUTs.On these devices, several LUTs
have an operational mode called SRL32 (SRL16 in older versions). Thismode allows
for a single LUT to work as a 32-bit deep shift register with an addressable reading
port, resulting in improved resource usage efficiency, as depicted in Fig. 1.4. This
approach can be found in 32-bit [5, 20, 23] and 8-bit [6, 25] AES designs.

8 J.C. Resende and R. Chaves

1.3.3 (Inv)SubBytes Implementations: Logic Versus Memory

Another major implementation differentiation in the state of the art is in the byte
substitution operation. These vary from a fine-grained implementation of the byte
substitution (Logic-based) [6, 14, 26], to more coarse grained ones using lookup
table (Memory-based) approaches [2, 17].

Logic-based structures implement the byte substitution operations by hard-wiring
their actual mathematical definition (Sect. 1.2.1) through logic components. If one
recalls Eq. (1.1), the SubBytes substitution requires five XOR operations for each bit,
but first the multiplicative inverse of the input byte, in the GF(28) finite field, needs
to be calculated. The problem with the multiplicative inverse is that there is no direct
function to calculate it. It is possible to calculate themultiplicative inverse through the
Extended Euclidean Algorithm, but this solution is better suited for software rather
than hardware [7]. Another approach to compute this multiplicative inverse, more
oriented to hardware implementations, is to use Composite Fields [24, 26]. Within
logic-based SubBytes implementations, different subsets of Composite Fields can
be considered faster, or more compact, or allow for additional security features,
than other subsets [3, 18, 22, 26]. The logic-based solution for the InvSubBytes
computation is similar to SubBytes, but modifications are still needed.

Overall, logic-based SubBytes implementations are themost area efficient but also
the slowest approaches, when compared to memory-based solutions. In a memory-
based SubBytes, byte substitution is implemented using a 256-byte lookup SBox
table [5, 7, 19]. On FPGAs this can be implemented through the use of multiple
FPGA LUTs [2, 17], or even BRAMs [5, 10]. Memory-based approaches can lead
to faster circuits at the cost of memory blocks.

On ASIC technology, the decision of using either logic-based or memory-based
SubBytes should be carefully analyzed [15]. However, on FPGAs, the use of logic-
based implementations has been losing relevancy in comparison to thememory-based
counterpart, mainly due to technology improvements. On older or more economical
FPGAs, one FPGA LUT can only be configured as a 4-input arbitrary function, with
two LUTs per FPGA Slice. On more high end FPGAs, such as the Xilinx Virtex 5
and onwards technologies, each Slice contains four 6-input LUTs that can be easily
combined into a single 8-input lookup table (the exact specification of theAESSBox)
with a relatively low latency. If both SubBytes and InvSubBytes operations need to
be deployed, either a 9-bit lookup table needs to be considered, or two 8-bit lookup
tables multiplexed.

Another easily accessible solution is the use of embedded dual-port memory
blocks, BRAMs, that exist within the FPGA. These memory blocks easily allow to
store the 2k bits needed for each byte substitution operation.

Implementations that only allow for one ciphering mode often consider the use of
LUT-based SBoxes, for shorter clock latency (512 LUTs for 128-bit datapaths [2, 17]
and 32 LUTs for 8-bit datapaths [25]). Architectures that allow for both ciphering
modes often incorporate pipelined BRAM-based implementations, since they can

1 AES Datapaths on FPGAs: A State of the Art Analysis 9

easily store all tables in their larger memories (8 BRAMs for 128-bit datapaths [10]
and two BRAMs for 32-bit datapaths [5]).

1.3.4 Implementing the MixColumns: Logic

After the SubBytes and ShiftRows operations, in the encryption mode, the Mix-
Columns operation is computed by performing a matrix multiplication in GF(28). In
this operation each 32-bit State column is multiplied by the left matrix of Eq. (1.2),
depicting the multiplication coefficients. Similarly to the SubBytes operation, the
MixColumns can also be implemented using logic or lookup tables.

In the MixColumns operation each byte is multiplied by a set of four constants
({03}, {02}, {01}, and {01} in the case of encryption). As described in Sect. 1.2.3,
the multiplication by 2, in GF(28), can be computed by shifting the input value once
to the left. If the resulting 9th bit is ‘1’, the entire result has to be bitwise XORed
(subtraction in GF(28)) by ‘0x11B’, in order to perform the modular reduction. The
multiplication by 3 can be achieved by adding themultiplications by 1 (the input value
itself) and by 2 (with the addition in GF(28) being performed by a bitwise XOR).

To conclude the MixColumns matrix multiplication, the multiplied values are
added in GF(28) by a XOR tree, as

r0i =
r1i =
r2i =
r3i =

02× a0i ⊕ 03× a1i ⊕ 01× a2i ⊕ 01× a3i
01× a0i ⊕ 02× a1i ⊕ 03× a2i ⊕ 01× a3i
01× a0i ⊕ 01× a1i ⊕ 02× a2i ⊕ 03× a3i
03× a0i ⊕ 01× a1i ⊕ 01× a2i ⊕ 02× a3i

(1.3)

Overall, in a logic-based MixColumns operation, the matrix coefficient multipli-
cations are relatively simple: it requires, for each byte, one 1-bit shift, one 8-bit con-
ditional XORwith the constant ‘0x1B’ to perform themodular reduction (computing
×02), and one 8-bit wide XOR to compute the addition (e.g., ×03 = ×02 ⊕ ×01).
Figure1.5 illustrates the multiplication of the four coefficients, given one input byte.

Fig. 1.5 Circuit example for the GF(28) encryption multiplication

10 J.C. Resende and R. Chaves

On a 128-bit datapath, theMixColumns requires a total of 128 7-input functions, or
256 6-input FPGA LUTs. On FPGAs this operation can be performed with relatively
low latency, in comparison with the SubBytes stage, as suggested by [2, 5, 10, 17].

On 8-bit datapaths, a single State byte is provided in each clock cycle. As such,
the resulting bytes cannot be completed on a single cycle, since each byte result-
ing from the MixColumns operation depends on four State bytes. Given this, for
8-bit datapaths, registered accumulation can be used. One such approach was first
introduced by Hämäläinen et al. [12] for ASIC technology, and later adapted for
FPGA by Chu and Benaissa [6]. The resulting structure is depicted in Fig. 1.6.

In this design, the input byte is shifted and XORed in order to obtain the 4 coeffi-
cient multiplications ({03; 01; 01; 02}). The resulting values are then XORed by zero
in the first iteration and temporarily stored in four 8-bit registers. In the following
cycles, a new input byte suffers the same transformations but is XORed with the
previously stored 4-bytes. After 4+1 cycles, one matrix multiplication for one State
column is performed. After 16+1 cycles, the entirety of the MixColumns operation
can be completed. The issue with this approach [6, 12], is the fact that it requires a
32-bit parallel-to-serial converter, given the 8-bit datapath, as depicted at the bottom
of Fig. 1.6.

Instead of performing the 4 coefficient multiplications in parallel, Sasdrich and
Güneysu [25] proposed an 8-bit-only accumulative implementation that performs
one coefficient multiplication per iteration, as illustrated in Fig. 1.7.

With this approach, a significant area reduction can be achieved by further folding
the matrix multiplication and by not needing the parallel-to-serial converter. Addi-
tional resources can be saved by preloading a Round Key byte into the register, thus

Fig. 1.6 Chu and Benaissa [6] Accumulative MixColumns 8-by-32-by-8 bits

1 AES Datapaths on FPGAs: A State of the Art Analysis 11

Fig. 1.7 Sasdrich and Güneysu [25] 8-bit Accumulative MixColumns

intrinsically performing the AddRoundKey operation. However, this area compres-
sion implies a significant throughput reduction, since it requires 96 clock cycles to
complete the MixColumns and AddRoundKey operations. It should be noted that
none of these solutions [6, 12, 25] addresses the InvMixColumns operation, which
is more complex given the used coefficients ({0B; 0D; 09; 0E}).

1.3.5 Implementing the InvMixColumns: Logic

The InvMixColumns operation is identical to the MixColumns, but with the coeffi-
cients {0B; 0D; 09; 0E}, resulting in a more complex datapath. The required three
modular shifts (×08;×04;×02) and respective XORs (see Table1.1 and Eq. (1.2))
create a dependency of up to 23 input signals for each bit of the 32-bit matrix
multiplication result, as depicted in Fig. 1.8. Because of this complexity, only two
state-of-the-art proposals have presented results for architectures with logic-based
InvMixColumns [2, 5].

In the single-mode structure presented by Bulens et al. [2], the authors implement
the extra required logic for the InvMixColumns (+150Slices). Chodowiec andGaj [5]
on the other hand, presented a 32-bit datapath that can operate in either encryption or
decryption mode. This approach allows to share resources between the two matrices
multiplications.

Chodowiec and Gaj [5] realized that, by applying a different, slightly simpler,
matrix multiplication over the MixColumns operation, one can compute both the
MixColumns and InvMixColumns by sharing resources. Being c(x) and d(x) the
polynomials defining theMixColumns and InvMixColumns operations, respectively,
and given that

c(x)•d(x) = 01 ⇔ c(x)•d2(x) = d(x) (1.4)

12 J.C. Resende and R. Chaves

Fig. 1.8 A circuit example for the GF(28) decryption multiplication

d2(x) = 04x2 + 05 (1.5)

the InvMixColumns operation can be computed by:

⎡
⎢⎢⎣
r0i
r1i
r2i
r3i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05

⎤
⎥⎥⎦

⎡
⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a0i
a1i
a2i
a3i

⎤
⎥⎥⎦ (1.6)

Given this, and by reusing the hardware structure computing the MixColumns,
the InvMixColumns operation only requires the additional computational structure
computing d2(x) depicted in Fig. 1.9.

1.3.6 Implementing the (Inv)MixColumns: Memory

Another alternative to implement the multiplication of the coefficients is to map the
result into a lookup table. With this option, the multiplication of the input a ji by the
coefficients {03; 01; 01; 02} or {0B; 0D; 09; 0E} are stored into a memory with a
32-bit output. The resulting outputs can then be added (in GF(28)) by a tree of XOR

1 AES Datapaths on FPGAs: A State of the Art Analysis 13

Fig. 1.9 d2(x) matrix coefficient multiplications of Chodowiec and Gaj [5]

TBox(aji) =

⎡
⎢⎣

03×SBox(aji)
01×SBox(aji)
01×SBox(aji)
02×SBox(aji)

⎤
⎥⎦ ; InvTBox(cji) =

⎡
⎢⎣

0E×InvSBox(cji)
09×InvSBox(cji)
0D×InvSBox(cji)
0B×InvSBox(cji)

⎤
⎥⎦

Fig. 1.10 The TBox computation

gates. The mapping of the multiplication coefficients requires 28 × 32 = 8k bits of
memory for encryption and another 8k bits for decryption.

However, if memory is to be used for the matrix multiplication, the mapped
values can belong to SBox(a ji) rather than just a ji , i.e., this lookup table can also
compute the SubBytes operation. This new table, mapping the byte substitution and
the multiplication by the MixColumns coefficients is called TBox, as depicted in
Fig. 1.10.

Note that, between the SubBytes and MixColumns operations, the ShiftRows
operation should be performed. However, since the byte substitution is the same,
independently of the byte position, the ShiftRows can be performed before the TBox
computation.

Particularly on FPGAs, the TBox approach is quite recurrent, since it can be
easily implemented with embedded memory Blocks (BRAMs on Xilinx FPGAs)
acting as 1-byte-by-4-bytes lookup table, as depicted in Fig. 1.10. A single TBox
can be stored in any BRAM with at least 8k bits of space and when dual-port access
is available in the technology, two substitutions can be performed within the same
memory component.

Note that the TBox only provides the GF(28) multiplications required for the
MixColumns. It does not complete a full matrix multiplication (Eq.1.2). Only after
the input bytes (a0i ; a1i ; a2i ; a3i) have been replaced by TBoxes (resulting in 16
byte parcels) can all the byte outputs be properly “aligned” and XORed to complete
the GF(28) additions (Eq.1.3). Proper alignment refers to the different column-wise

14 J.C. Resende and R. Chaves

coefficient sequences found in Eq. (1.3), for each input byte. This can be achieved
by having only one type of TBox and afterwards shifting; or by having four different
TBoxes, each with a different coefficient rotation ({02; 01; 01; 03}; {03; 02; 01; 01};
{01; 03; 02; 01} and {01; 01; 03; 02}).

When considering the implementation of both TBox and the InvTBox on a single
memory block, 9 address bits are used: 8 bits for the input byte and 1 bit for the
selection between encryption (TBox) and decryption (InvTBox).

It is also possible to create a LUT-basedTBox solution, but doing so is not advised.
As Sect. 1.3.3 showed, 32 LUTs per SBox are required, whichmeans 96 to 128 LUTs
would be required for each TBox/InvTBox, subsequently surpassing the logic-based
solution requirements for large datapaths.

1.3.7 Last AES Round

The lastAES roundhas the particularity of not computing the (Inv)MixColumnsoper-
ation. Implementations that separate the SubBytes operation from the MixColumns,
usually logic-based ones, simply bypass the latter in the last round. However, other
implementations, such as the TBox based ones, have the MixColumns operation
inherently performed every time. The way the MixColumns operation is bypassed
or canceled, in these situations, depends on the details of how the datapath is imple-
mented, as discussed in the following.

The easiest solution is to map into the BRAMs a second set of tables exclusively
performing the SBox lookup substitution. This solution is used by Drimer et al. [9]
and Resende and Chaves [20], although with slightly different mappings.

In [9], the State bytes are shifted column wise, and each column is fed, one byte
at a time, to a specific BRAM port. This means, that in order to properly process all
4 bytes of a column, each 8-bit path needs to be able to access all four rotations of a
TBox (plus 4 of the last round TBox), in order to obtain the coefficient alignments
of Eq. (1.3). To do this, each of the BRAM’s space is occupied with two different
rotated tables (+2 last rounds). Logic resources are used afterwards to optionally
rotate the 32-bit replaced values, which allows all four rotation types to be obtained,
as depicted in Fig. 1.11.

In [20], the memory mappings were improved. The State bytes are shifted line
wise, and a full column is fed at each time throughout the four BRAMports available.
This means that every byte that enters in one BRAM port will always need the same
TBox (or last roundTBox) rotation, halving thememory space required and replacing
any extra logic by simple routing, as depicted in Fig. 1.12.

The previous solutions are simple, but still impose additional memory resources,
which are not always available. To minimize the memory impact, Rouvroy et al. [23]
explores the redundancy of the unitary {01} coefficient in the TBox. ABRAM-based
TBox solution is implemented with both TBox and InvTBox tables mapped into
memory, as illustrated in Fig. 1.13. For the last encryption round, the final substitution
is directly obtained from the first unitary MixColumns coefficient 01 × SBox().

1 AES Datapaths on FPGAs: A State of the Art Analysis 15

Fig. 1.11 Drimer et al. [9] BRAM-based TBoxes

Fig. 1.12 Resende and Chaves [20] BRAM-based TBoxes

The memory space that would be reserved to the second unitary coefficient (01)
is modified to contain the value of I nvSBox(). With this, the InvTBox space is
addressed during the decryptionmid-rounds, while on the last round the TBox space
is addressed instead, in order to obtain the I nvSBox() value. Any data conflicts are
resolved by routing and multiplexing the substitution results. This solution was one
of the first in the state of the art considering TBoxes, and is particularly useful when
merging the datapath with a Key Scheduling circuit, as proposed in [23]. However,
the additional multiplexing logic, placed after the BRAMs, impacts the critical path
and consequently the overall performance of the design.

Chaves et al. [4] designed a more elegant solution to cancel the (Inv)MixColumns
at the last round. The authors add all the four different matrix coefficients among
themselves, using aXOR tree.With this the unitary value can be obtained, as depicted
in Eq. (1.7) and Fig. 1.14.

16 J.C. Resende and R. Chaves

Fig. 1.13 Rouvroy et al. [23] BRAM-based TBoxes

Fig. 1.14 Chaves et al. [4] BRAM-based TBoxes

01× bi = 03×bi ⊕ 01× bi ⊕ 01× bi ⊕ 02× bi

01× di = 0B×di ⊕ 0D × di ⊕ 09× di ⊕ 0E × di
(1.7)

This means that a regular TBox substitution can still be performed on the last
round, and then canceled by XORing each matrix coefficient multiplication. This
solution is easily implemented and its resources are scalable with the datapath width.
Moreover, these extra XOR trees can be efficiently separated from the critical path,
not impacting the circuit performance [21].

1 AES Datapaths on FPGAs: A State of the Art Analysis 17

1.3.8 Types of Key Scheduling

When encrypting/decrypting data through AES, several round keys need to be added
to the State matrix. If one includes the initial whitening key, a total of 11, 13 or 15,
128-bit round keys are required for the 10, 12, or 14 rounds of AES. As shown in
Sect. 1.2.4, the round keys are extracted from the original 128, 192, or 256-bit cipher
key defined by the user.

Every time the cipher key is changed, the Key Scheduling must be performed.
However, when cipheringmultiple data streams, key changes are quite sporadic. This
low frequency in which the cipher key and derived round keys need to be updated has
led to different approaches to the key scheduling in the state of the art, namely key
expansion in parallel with data encryption (On-the-fly) or pre-computed (Off-the-
fly); inclusion of dedicated key scheduling logic (On-Chip) or external computation
of the key scheduling for higher resource efficiency (Off-Chip). The following briefly
analyses these Key Scheduling approaches:

A. On-the-fly versus Off-the-fly: Since data encryption and the expansion of
its respective cipher key are both iterative processes, previous works have suggested
implementing both to execute in parallel, or at least alternately (On-the-fly). The On-
the-fly method has the benefit of requiring very little memory components to store
the expanded round keys, since only the most recent one is necessary. On the other
hand, since for each encrypted block the round keys always need to be recomputed,
either more cycles or more hardware resources are required [6, 10, 17, 25].

Since the cipher key is often maintained throughout the encryption of several data
blocks, and if memory components are available, the entire key scheduling can be
processed before starting any actual ciphering. In the Off-the-fly approach, all round
keys need to be computed and stored, but only once for a given cipher key. At the cost
of additional memory, it allows for better throughputs than the On-the-fly solution
[2, 5, 23].

As explained in Sect. 1.2.4, the decryption process requires all encrypting round
keys to be processed and stored, followed by a post-processing through the InvMix-
Columns operation, as depicted in Fig. 1.3. This makes the On-the-fly solution inad-
equate for decryption, making Off-the-fly Key Schedule the preferred solution when
supporting both encryption and decryption.

Good and Benaissa [11] seem to be the only authors to propose a Key Scheduling
circuit that can work in both On-the-fly and Off-the-fly modes, operating in the first
mode for the first input of the cipher key, and switching to the second mode for as
long as the key remains unchanged.

B. On-Chip versus Off-Chip: Given the similarities between the ciphering
process and the key scheduling (namely in the SubBytes and the InvMixColumns
operations), several implementations have proposed to compactly merge the cipher-
ing process with the key expansion [2, 23]. These solutions, performing the Key
Scheduling on the cryptographic engine itself (On-chip), allow to minimize the
required resources. However, additional logic is always required [27]. Another option
is to perform the Key Scheduling on an external processor (Off-chip) and then

18 J.C. Resende and R. Chaves

load the round keys into a memory component, in the cryptographic engine itself
[4, 21, 27].

In the end, the Off-Chip Key Scheduler is preferable when: the cryptographic
core is not necessarily autonomous and simply acts as an auxiliary processor and/or;
a single cipher key can be kept for large quantities of processable data. The off-
chip computation of the key expansion and loading to an auxiliary memory typically
yields in more compact and efficient designs [27].

1.4 FPGA Architectures for AES

While the previous section elaborates on the multiple state of the art techniques
to improve the implementation of the several AES operations, this section details
the architectural options regarding the scheduling of the operations. At this level,
the designed decisions are mostly focused on the rolling or unrolling of the loop
computation, and in the location and the amount of pipeline stages employed.

1.4.1 Rolled Versus Unrolled Rounds

One of the most direct ways to obtain a trade-off between area and throughput is
with round rolling/unrolling.

When unrolling the round computation, multiple rounds of the algorithm are
executed in parallel. As such, independent pipeline stages are assigned to each cipher
round, as depicted in Fig. 1.15. For this computation to be efficient, data has to be
streamed into the pipeline, and the more pipeline stages are placed the faster the
overall circuit should run, as described bellow. These approaches are known for
imposing higher area demands but, on the other hand, allow for higher throughputs.
However, given the data dependency between AES rounds, these approaches can
only provide good results if multiple, independent, data blocks are ciphered at the

Fig. 1.15 A pipelined unrolled round AES structure

1 AES Datapaths on FPGAs: A State of the Art Analysis 19

same time. When ciphering in feedback modes (such as CBC) with dependencies
between blocks, the throughput improvements cannot be achieved.

Järvinen et al. [16] proposed a fully unrolled pipelined architecture targeting a
Xilinx Virtex-II 2000. This solution considers a logic-based implementation requir-
ing four clock cycles to complete each round-stage. Later on, Hodjat and Ver-
bauwhede [14] also designed a four cycles-per-round pipeline structure, logic-based,
for the Xilinx Virtex-II Pro. However, these authors also presented a second design
that uses a memory-based implementation for the first five rounds (two cycles
per stage), and a logic-based implementation for the remaining ones (four cycles
per stage).

Regardless of pipeline placement choices, the average throughput across the
encryption of a data stream is not directly affected by the increase of pipeline regis-
ters in the structure, but by the clock frequency increasing with it. An example of this
are two unrolled structures presented by Chaves et al. [4] on the Xilinx Virtex-II Pro.
As briefly mentioned in Sect. 1.3.7, both of them use a BRAM-based TBox imple-
mentation for all rounds. One structure takes one clock cycle per round, while the
second one, with a deeper pipeline, takes three cycles per round. The latter achieves
higher clock frequency and throughput values.

The structure presented by Liu et al. [17] updated the AES unrolled structure to
the more modern Xilinx Virtex 5, 6, and 7 series. The technological upgrade allowed
the authors to use a LUT-based SBOX solution and reduce the pipeline to two cycles
per round, while also increasing the clock frequency.

When rolling the architecture, lower hardware requirements are imposed, since
only the logic for one round is required. This round structure will process all rounds
recursively, taking one or more cycles for each round. Actually, in 32 and 8-bit
datapaths, the deployed logic is only able to compute part of the round on each clock
cycle. Such datapaths typically allow for relatively small structures, at a cost of lower
throughputs [11].

1.4.2 Intra Versus Inter-Pipeline

The clock frequency of a circuit is inversely proportional to the longest propagation
delay between two registers of that same circuit. Consequently, themore complex the
logic between each pipeline stage, the longer the propagation delay and the lower the
clock frequency of the system. As such, the more pipelined the design is, the faster
the hardware structure will operate, but more clock cycles will be required to finish
a given computation.

In round-based algorithms, such as AES, inter-pipeline refers to the registers that,
every clock cycle, store the processed value of one round, and then feed that data
to the next round. In rolled round architectures, only one pipeline register is placed
between each round logic. The location of these registers can be at the end of the
round logic or in between it, such as on the BRAMs computing the TBoxes.

20 J.C. Resende and R. Chaves

Intra-pipeline refers to the implementation of additional registers between theAES
round operations, in order to reduce the critical path and increase clock frequency.
Intra-pipeline can exist in either unrolled and rolled round structures.

Strongly unrolled round architectures should always aim to have as much pipeline
registers as possible to achieve the highest clock frequency, as their throughput
performances are not affected while streaming independent data blocks [14, 17].
For rolled architectures, however, a trade-off between number of cycles and their
latency needs to be considered when planning an AES pipelined structure.

In rolled structures, several implementations with 1, 4, or 8 cycles per round have
been presented [4, 5, 9, 20, 23], with lower to higher clock frequencies, respectively.

1.5 State of the Art Metrics

The previous sections depict the several design options, proposed in the state of the
art, regarding the implementation of the AES on FPGAs.

In this section, a comparative study of themost relevant state of the art structures is
presented.Note that not all structuresmentioned above are compared, as their original
results are somewhat outdated, such as [5, 14, 23] and the unrolled datapaths of [4].

An overview of the architectural features and performances of these structures is
depicted in Table1.2, with their designs grouped by the datapath width.

Regarding the achieved throughput, the presented values define the average
rhythm at which each circuit processes the input blocks. In deeper pipelined struc-
tures higher throughputs can be achieved, but only if multiple blocks are processed
simultaneously. When considering a single data stream in feedback modes, such as
CBC, these structures cannot be efficiently used due to the data dependency between
blocks. In Table1.2 the throughput values are depicted as presented by their authors,
often considering independent data blocks.

Efficiency wise, we consider the use of the throughput per Slice metric (Through-
put/Slice). This metric can be contested as a biased measurement, since it does not
take into account other FPGA modules such as BRAMs or DSPs. However, given
the difficulty in extracting equivalency values, this is herein used as the efficiency
comparison metric.

Regarding the key expansion, Table1.2 differentiates On-chip (Y) and Off-chip
(N) Key Scheduling circuits.

Most of the state of the art proposes architectures capable of performing only
AES encryption, and often neglect details regarding the decryption operation. There
are two main reasons for this. The first reason is detailed in Sect. 1.2.3 regarding the
added complexity of the InvMixColumns operation on logic-based solutions. The
second reason regards the structures that include On-the-fly Key Scheduling logic,
as introduced in Sect. 1.3.8, since it is extremely inefficient for decryption, given
the inverted order in which the round keys are supplied. Note that several ciphering
modes only require the existence of encryption, such as Counter and CCM modes.

1 AES Datapaths on FPGAs: A State of the Art Analysis 21

Ta
bl

e
1.

2
Pe
rf
or
m
an
ce

co
m
pa
ri
so
n

R
es
ou

rc
es

D
at
ap
at
h

O
pe
ra
tio

na
K
ey
Sc

h.
D
ev
ic
e

Sl
ic
es

B
R
A
M

Fr
eq
ue
nc
y

(M
H
z)

T
hr
ou
gh
pu
t

(G
bp
s)

E
ffi
ci
en
cy

(M
bp

s/
Sl
ic
e)

8-
bi
t

C
hu

[6
]

E
Y

xc
3s
50
-5

18
4

0
45
.6

0.
03
6

0.
20

xc
6s
lx
4

80
72
.6

0.
05
8

0.
72

Sa
sd
ri
ch

[2
5]

E
Y

xc
6s
lx
4

21
0

10
5

0.
00
9

0.
09

H
el
io
n
[1
3]

E
+
D

Y
xc
6s
.-
3

90
0

n.
a.

>
0.
04
4

>
0.
49

T
in
y

xc
5v
.-
3

94
>
0.
07
7

>
0.
82

32
-b
it

D
ri
m
er

[9
]b

E
N

xc
5v
sx
50
t-
3

10
7

2+
1

55
0

1.
76

16
.4
5

21
2

8.
30

R
es
en
de

[2
0]

E
N

xc
3s
40
00
-5

14
2

2+
1

17
9.
5

0.
57
5

4.
05

xc
5v
lx
30
t-
3

70
53
0

1.
69
6

24
.2

2
xc
6v
lx
75
t-
3

51
48
6

1.
55
5

30
.4

9
de

la
Pi
ed
ra

[8
]b

E
Y

xc
7a
20
0t

80
11

91
.5

0.
19
5

2.
44

H
el
io
n
[1
3]

E
Y

xc
5v
.-
3

15
5

0
n.
a.

>
0.
84

>
5.
42

St
an
da
rd

xc
6v
.-
3

12
9

>
0.
95

>
7.
36

12
8-
bi
t

C
ha
ve
s
[4
]

E
+
D

N
xc
5v
lx
30
-3

40
7

8+
2

18
9.
5

2.
42
7

5.
96

E
lM

ar
ag
hy

[1
0]

E
Y

xc
5v
lx
50

30
3

8+
2

42
5

1.
32
7

4.
38

B
ul
en
s
[2
]

E
Y

xc
5v

40
0

0
35
0

4.
16

7
10
.4
1

D
55
0

7.
57

L
iu

[1
7]

E
Y

xc
5v
lx
85

35
79

0
36
0

46
.0

93
12
.8
8

xc
6v
lx
24
0t

31
21

50
1

64
.1

28
20
.5
5

xc
7v
x6
90
t

34
36

51
6.
8

66
.1

0
19
.2
0

a
E
nc
ry
pt
io
n
an
d/
or

D
ec
ry
pt
io
n

b
Im

pl
em

en
ta
tio

ns
us
in
g
D
SP

bl
oc
ks

22 J.C. Resende and R. Chaves

The depicted HELION AES cores [13] are commercial intellectual properties,
which specific details are not publicly known, and are used here for comparison as
market products.

Datapaths with only 8-bit widths are relatively uncommon since their throughputs
are normally below 100 Mbps, with wider structures easily surpassing the 1 Gbps
mark. This also affects their efficiency. They have, however, a better potential to
require less resources.

In 8-bit Datapaths, the work in [6] only requires 80 Slices on a Xilinx Virtex
6, working at 72 MHz, achieving throughputs of 58 Mbps and an efficiency metric
of 72 Kbps/Slice. The MixColumns is performed by a 32-bit parallel module and
the SubBytes operation is logic based. The design proposed in [25] considerably
reduces the amount of resources by using a single 32 LUT-based SBox proposed
in [2], while also folding the MixColumns logic for 8 bits only. It is the smallest
AES structure presently conceived, with only 21 Slices and a clock frequency of 105
MHz. Throughput and efficiency are inevitably dropped, as expected from an 8-bit
datapath, to 9 Mbps and 90 Kbps/Slice.

Although slightly wider than their 8-bit counterparts, the 32-bit datapaths can
still offer extremely compact solutions at much higher performances. This is due to
the fact that 32-bit widths can take better advantage of several FPGA technology
features, such as BRAMs [9, 20] and DSPs [9].

The 32-bit compact structure proposed in [9], allows for a throughput up to 1.76
Gbps at a cost of 107 Slices. This is a TBox-based structure using BRAMs and 4
DSP blocks. The DSP blocks are used to implement the XOR operations, instead
of regular Slices. This approach allows for an efficiency of 16.45 Throughput/Slice,
achieved for two parallel block streams. Note that DSPs are Xilinx FPGA dedicated
arithmetic components and are not accounted for the efficiency metric herein con-
sidered. Without the use of DSPs, 212 Slices are needed instead, resulting in an
efficiency of 8.30 Mbps/Slice.

Thework of de la Piedra et al. [8] extends the use of DSPs. Since DSPs are capable
of performingXORoperationswith constants, the authors decided to implement them
on a logic-based MixColumns. SBox lookup operations and temporary State storage
is performed exclusively by BRAMs. This leads to the small amount of needed Slices
(80), mostly used in the Key Schedule and Control Unit. However, 11 BRAMs and
16 DSPs are required as a consequence. With this type of resources it is hard to
compare the 2.44 Mbps/Slice efficiency value with the remaining state of the art, but
remains as a viable alternative, if FPGA Slices are required for other operations.

The work presented in [20] improves upon the two block stream computation of
[9]. This design does not use DSPs, allowing for a simple scheduling, and uses the
SRL32 LUT-based shifter [5], instead of the large shift register used in [9]. This leads
to the best Throughput/Slice efficiency value in the state of the art, 24 Mbps/Slice
on a Virtex 5, with a cost of 70 Slices and 3 BRAMs [20], and a throughput of 1.7
Gbps.

Increasing the datapathwidth allows for better throughputs, but the extra resources
impact the area efficiency. The 128-bit rolled datapath structure presented in [4]

1 AES Datapaths on FPGAs: A State of the Art Analysis 23

computes a round on a single clock cycle, achieving a throughput of 2.4 Gbps with
an efficiency of 5.96 at a cost of a higher BRAM usage (10 BRAMs).

Bulens et al. [2] designed a 128-bit datapath with LUT-based SBoxes, off-the-fly
Key Scheduling and four pipeline stages. This allows to process with a 4.1 Gbps
throughput and a 10.4 Mbps/Slice efficiency mark, but only if four different data
blocks are being processed in parallel. The datapath presented by El Maraghy et al.
[10] has similarities with [2], but the SBoxes are BRAM-based, and the on-the-fly
Key Schedule only allows for 1 single 128-bit block to be processed at a time at 1.3
Gbps, with an overall 4.38 Mbps/Slice area efficiency.

Finally, the fully unrolled AES architectures can achieve the highest speed per-
formances for non-feedback streams. The specific solutions for each AES round
operation are very similar to the ones presented in the 128-bit rolled round struc-
tures: Routed ShiftRows, LUT-based SBox, and logic-based MixColumns, but their
inter-pipeline feature suits them for a complete different area of applications. Liu
et al. [17] has presented what may be the AES implementation with the highest
throughput on the FPGA state of the art, including results for the Virtex 7 FPGAs.
With two clock cycles per round, it can reach throughputs from 46 Gbps up to 66
Gbps, and from 12 Mbps/Slice up to 20 Mbps/Slice in efficiency values, depending
on the technology. However, the high resources cost, 3121 to 3579 Slices, makes this
architecture unsuitable for small embedded devices. Flexibility is also disregarded, as
their throughput and efficiency performances can drop by a factor of∼20 if feedback
ciphering modes are required.

In the works presented in [9, 20], the authors discussed the difficulty in obtaining
high clock frequencies. As explained in Sect. 1.2, the ShiftRows data dependency
dictates that 128, 32 and 8-bit datapaths need to complete each AES round in one
[4], four [5, 23], and eight cycles, respectively, in order to prevent empty cycles with
no computations. However, due to the technology limitations, the minimal amount
of cycles per round cannot be reached without affecting the clock frequency. Drimer
et al. [9] and Resende and Chaves [20] have stated that the best way to achieve high
clock frequency in 32-bit rolled AES datapaths is to create an eight-cycle pipeline
for two independent data blocks.

1.6 Conclusion

Since the introduction of the AES, several optimization features have been proposed
towards improving the implementation of this algorithm, exploiting the particularities
of the FPGA technology. These optimizations consider the several AES operations
and the overall computational flow. This chapter provides the readerwith an overview
of the state of the art techniques used in the implementation of AES on FPGAs.

Datapath widths are herein discussed, ranging from the 8-bit rolled structure
proposed by Sasdrich and Güneysu [25] trading speed for compactness, being the
smallest architecture with only 21 Slices; the 128-bit unrolled pipeline, proposed
by Liu et al. [17], achieving the best streamed throughput of 66 Gbps; and the

24 J.C. Resende and R. Chaves

structure with the highest Throughput/Slice efficiency on a more balanced 32-bit
rolled architecture by Resende and Chaves [20], achieving an efficiency metric of
30 Mbps/Slice. Particular FPGA optimizations are also analyzed such as the LUT-
based addressable shift register solution for the ShiftRows operation, from its first
introduction by Chodowiec and Gaj [5], to its most recent usage in [6, 20, 25]. Logic
versus memory-based solutions are also compared, regarding the implementation of
both theSubBytes and theMixColumns,withmemory lookup tables (such asBRAM-
based TBoxes), particularly in structures where both encryption and decryption are
necessary.

Additional insights, such as the last round exception or pipeline distribution, are
also herein discussed, presenting the most significant contributions in the implemen-
tation of the Advanced Encryption Standard on Field-Programmable Gate Arrays.

Acknowledgements This work was partially supported by the ARTEMIS Joint Undertaking under
grant agreement no 621429, the TRUDEVICE COST action (ref. IC1204) and by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

References

1. Bos JW, Osvik DA, Stefan D. Fast Implementations of AES on various platforms. IACR
Cryptology ePrint Archive, 2009. p. 501.

2. Bulens P, Standaert FX, Quisquater JJ, Pellegrin P, RouvroyG. Implementation of the AES-128
on virtex-5 FPGAs. In: Progress in cryptology–AFRICACRYPT. Springer; 2008. p. 16–26.

3. Canright D. A very compact S-box for AES. Springer; 2005
4. Chaves R, Kuzmanov G, Vassiliadis S, Sousa L. Reconfigurable memory based AES co-

processor. In: 20th international parallel and distributed processing symposium IPDPS, IEEE;
2006. p. 8.

5. Chodowiec P, Gaj K. Very compact FPGA implementation of the AES algorithm. In: Crypto-
graphic hardware and embedded systems-CHES. Springer; 2003. p. 319–33.

6. Chu J, Benaissa M. Low area memory-free FPGA implementation of the AES algorithm.
In: 2012 22nd international conference on, field programmable logic and applications (FPL),
IEEE; 2012. p. 623–6.

7. Daemen J, Rijmen V. AES proposal: Rijndael, 1999.
8. De La Piedra A, Touhafi A, Braeken A. Compact implementation of CCM and GCMmodes of

AES using DSP blocks. In: 2013 23rd international conference on, field programmable logic
and applications (FPL). IEEE; 2013. p. 1–4.

9. Drimer S, Güneysu T, Paar C. DSPs, BRAMs, and a pinch of logic: extended recipes for AES
on FPGAs. ACM Trans Reconfig Technol Syst. 2010;3(1):3.

10. El Maraghy M, Hesham S, Abd El Ghany MA. Real-time efficient FPGA implementation
of aes algorithm. In: 2013 IEEE 26th international, SOC conference (SOCC). IEEE; 2013.
p. 203–8.

11. GoodT,BenaissaM.AESonFPGA from the fastest to the smallest. In: Cryptographic hardware
and embedded systems—CHES. Springer; 2005. p. 427–40.

12. Hämäläinen P, Alho T, Hännikäinen M, Hämäläinen TD. Design and implementation of low-
area and low-power AES encryption hardware core. In: 9th EUROMICRO conference on,
digital system design: architectures, methods and tools, DSD 2006. IEEE; 2006. p. 577–83.

13. Helion. AES CORES. http://www.heliontech.com/aes.htm.

http://www.heliontech.com/aes.htm

1 AES Datapaths on FPGAs: A State of the Art Analysis 25

14. Hodjat A, Verbauwhede I. A 21.54 Gbits/s fully pipelined AES processor on FPGA. In: 12th
annual IEEE symposium on, field-programmable custom computing machines, 2004. FCCM,
IEEE; 2004. p. 308–9.

15. Hodjat A, Verbauwhede I. Area-throughput trade-offs for fully pipelined 30 to 70 Gbits/s AES
processors. IEEE Trans Comput. 2006;55(4):366–72.

16. Järvinen KU, Tommiska MT, Skyttä JO. A fully pipelined memoryless 17.8 Gbps AES-128
encryptor. In: Proceedings of the 2003ACM/SIGDA eleventh international symposium on field
programmable gate arrays. ACM; 2003. p. 207–15.

17. Liu Q, Xu Z, Yuan Y. A 66.1 Gbps single-pipeline AES on FPGA. In: 2013 international
conference on, field-programmable technology (FPT). IEEE; 2013, p. 378–81.

18. Mentens N, Batina L, Preneel B, Verbauwhede I. A systematic evaluation of compact hardware
implementations for the Rijndael S-box. In: Topics in cryptology—CT-RSA 2005. Springer;
2005. p. 323–33.

19. NIST: FIPS 197. Advanced encryption standard (AES). Fed Inf Process Stand Pub. 2001;
197:441–311.

20. Resende JC, Chaves R. Compact dual block AES core on FPGA for CCM protocol. In: 25th
international conference, field-programmable logic and applications, FPL 2015 London, Sep-
tember 2–4. IEEE; 2015.

21. Resende JC, Chaves R. Dual CLEFIA/AES cipher core on FPGA. In: SanoK, Soudris D, Hbner
M, Diniz PC, editors. Applied reconfigurable computing, lecture notes in computer science,
vol. 9040. Springer International Publishing; 2015. p. 229–40.

22. Rijmen V. Efficient implementation of the rijndael S-box. Dept. ESAT. Belgium: Katholieke
Universiteit Leuven; 2000.

23. Rouvroy G, Standaert FX, Quisquater JJ, Legat J. Compact and efficient encryption/decryption
module for FPGA implementation of the AES Rijndael very well suited for small embedded
applications. In: Proceedings of ITCC 2004, international conference on, information technol-
ogy: coding and computing, vol. 2. IEEE; 2004. p. 583–7.

24. Rudra A, Dubey PK, Jutla CS, Kumar V, Rao JR, Rohatgi P. Efficient rijndael encryption
implementation with composite field arithmetic. In: Cryptographic hardware and embedded
systems CHES. Springer; 2001. p. 171–84.

25. Sasdrich P, Güneysu T. Pushing the limits: ultra-lightweight AES on reconfigurable hardware.
In: Workshop on trustworthy manufacturing and utilization of secure devices. TRUDEVICE;
2015.

26. Satoh A, Morioka S, Takano K, Munetoh S. A compact rijndael hardware architecture with
S-box optimization. In: Boyd C, editor. Advances in cryptology ASIACRYPT 2001, vol. 2248.,
Lecture notes in computer science. Berlin, Heidelberg: Springer; 2001. p. 239–54.

27. Sklavos N, Koufopavlou O. Architectures and VLSI implementations of the AES-proposal
Rijndael. IEEE Trans Comput. 2002;51(12):1454–9.

Chapter 2
Fault Attacks, Injection Techniques
and Tools for Simulation

Roberta Piscitelli, Shivam Bhasin and Francesco Regazzoni

2.1 Introduction

Embedded systems pervaded our live since few years. The applications where they
are used are often safety critical, such as public transports or smart grids control, or
handle private and sensitive data, such has medical records or biometrics information
for access control. This trend is expected to even increase in the near future, when
a large amount of embedded devices will be connected to the so called Internet of
Things (IoT). If, on one side, the level of interoperability and connectivity which will
be reached by the objects in the IoT will allow to offer a large variety of services,
to increase the efficiency and to reduce the costs, on the other side, the envisioned
applications require the device to include security functionality to guarantee the
confidentiality of the processed data and the security of the overall infrastructure.

Designers anticipated these needs by augmenting several devices with state of the
art cryptographic primitives: embedded processors included instructions to quickly
encrypt and decrypt data and a number of low-cost accelerators were designed to
boost the performance of secure protocols implemented in wireless sensor nodes.
However, robust and mathematically secure cryptographic primitives are not suf-
ficient to guarantee the security of embedded devices. In the past, cryptographics
algorithm have been conceived to be robust only against mathematical attacks: their
structure is realized to resist, among other, to linear and differential cryptanalysis,
they were requested to resist brute force attacks, also considering the progress of the

R. Piscitelli (B)
EGI.eu, Science Park 140, Amsterdam, The Netherlands
e-mail: roberta.piscitelli@egi.eu; roberta.piscitelli83@gmail.com

S. Bhasin
Temasek Labs@NTU, 21 Nanyang Link, Singapore 637371, Singapore
e-mail: sbhasin@ntu.edu.sg

F. Regazzoni
ALaRI-USI, via Buffi, 13, 6900 Lugano, Switzerland
e-mail: regazzoni@alari.ch

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_2

27

28 R. Piscitelli et al.

technology, and the hardness of the computational problem involved should have
been capable of guaranteeing long-term security.

The situation changed in the last to decades, with the advent, the rise and the
develop of a novel form of attacks, called physical attacks. These attacks, instead
of addressing the mathematical structure of the algorithm, try to extract information
about the secret key exploiting the weaknesses of the implementation of the algo-
rithm itself. To recover the secret data, the adversary can exploit either an additional
information leaked by the device during the computation (for instance the power
consumed by the device) or can actively induce an anomalous behavior capable of
leaking secret information.

Physical attacks are particularly dangerous for embedded systems, as they are,
potentially, “in the hand” of the adversary, which thus has the whole control over
them. Physical attacks are usually divided into two classes: passive attacks and
active attacks. Among the first ones, the most notable one is power analysis [1], in
which the adversary measures the power consumed by certain number of encryptions
computed using a known plaintext, makes an hypothesis on a small portion of the
secret key, and used the previously collected power traces to verify the correctness
of the hypothesis. Nevertheless, the time [2] needed to complete an encryption, the
electromagnetic emission [3] of a device or even the photons emitted by transistors
[4] were successfully used to recover secret data.

During active attacks, the adversary does not limit himself to the observation of
information leakage but actively tampers with the target device. The most common
form of active attack is fault injection. In this attack, the adversary forces the device to
perform erroneous operations and he exploits the relation between the correct results
and the incorrect ones to infer the secret key (or to significantly reduce the possible
key space). Fault injection consists of two parts: the first is the injection of the fault
into the device, in which the target device is induced into an anomalous behavior,
the second is the attack itself, in which the erroneous output is used to extract secret
information.

Fault injection attacks are extremely dangerous because they require a limited
amount of time to be carried out and because they were proven to be effective even
when performed with an extremely inexpensive equipment. Barenghi et al. [5], for
instance, showed how, by underpowering an ARM9 embedded processor, it was
possible to induce a number of errors sufficient to successfully attacks software
implementations of the AES and the RSA algorithms. A similar approach was used
also to attack an ASIC implementation of the AES algorithm.

Robustness against fault attacks is usually evaluated in laboratories, where a man-
ufactured device is tested by mounting a number of known attacks. However, this is
not the best solution for designers which needs to timely apply the proper counter-
measure against these attacks. Even if the final prove of resistance can be obtained
only with the direct evaluation of the manufactured device, it would be more effec-
tive to have an initial exploration of the resistance against fault attacks at design
time. This, however, requires to have tools capable of simulating the behavior of a
device under attack, at the needed resolution, and to have a methodology to compare
different countermeasures.

2 Fault Attacks, Injection Techniques and Tools for Simulation 29

This paper addresses the problem of fault attacks. First, we survey the most com-
mon methods used to inject the faults, highlighting the potentialities of the method
and its cost. Then we summarize the type of fault attacks previously presented in
literature, finally we introduce the design tools which can be used for simulating fault
attacks and we discuss to which extend they are suitable for evaluating the sensitivity
of a device against fault attacks.

2.2 Fault Injection Techniques

Fault attacks are active attacks, which need an adversary to induce errors into the
target device, using some tampering means. This tampering can be accomplished
in several ways, as extensively discussed in literature and illustrated in Fig. 2.1. In
general tampering means or fault injection techniques are classified in two broad
categories, i.e., global and local. Global fault injection are, in general, low-cost
techniques which create disturbances on global parameters like voltage, clock, etc.
The resultant faults are more or less random in nature and the adversary might need
several injection, to find required faults. On the other hand, local techniques are more
precise in terms of fault location andmodel. However, this precision needs expensive
equipment.

The kind of fault injected can be defined as fault model. The fault model has
two important parameters, i.e., location and impact. Location means the spatial and

Fig. 2.1 An illustration of fault injection techniques

30 R. Piscitelli et al.

temporal location of fault injection during the execution of target algorithm. Depend-
ing on the type and precision of the technique, location can be at the level of bit,
variable or random. Coming to the impact of fault, it is the affect on the target data.
Commonly known fault injection impacts on target data can cause stuck-at, bit-flip,
random-byte, or uniformly distributed random value. In the rest of the section, we
summarize the most common techniques for injecting faults, highlighting for each of
them, the main characteristics, the complexity, the cost, and the erroneous behavior
introduced in the target device.

2.2.1 Fault Injection Through Power Supply

Embedded systems are often either battery operated or connected with an external
power supply (latter, for instance, the case of smart cards). In this context, a natural
and very inexpensive way to induce a malfunctioning is to alter the power supply
coming from an external source. This alteration or disturbance can be performed
in two different ways: underfeeding or voltage glitch. The typical effects caused by
alteration of power supply are setup-time violation: flip-flops are triggered before
the input signals reach a stable and correct value. Such fault techniques can be used
to skip the execution of an instruction in the microprocessor code. The temporal
precision of the fault injection depends on the accuracy of the voltage drop in duration
and its synchronization with the target device. By underfeeding the target for a
prolonged period, the adversary is able to insert transient faults with single-bit faults
appearing first and increasing inmultiplicity as the feeding voltage is further lowered.
This requires only basic skill and can be easily achieved in practice without leaving
evidence of tampering on the device. Alterations of power supply was exploited
by Barenghi et al. [5] to attack software implementations of the AES and the RSA
algorithms. The authors demonstrated that an embedded processor, in that case an
ARM9, can be successfully attacked using very inexpensive equipment. Several other
works demonstrated the feasibility of attacking the AES algorithmwith fault induced
by underfeeding. A possible example is the work of Selmane et al. [6]. The drawback
of this technique is the time precision: the adversary can not control the exact time
in which the fault happens. As a results, he must be capable of selecting the right
faults and discard the ones which cannot be used during attacks.

2.2.2 Fault Injection Through Clock

Fault induced with clock are similar to fault induced with power supply. The typical
target of these attacks are devices, such as smartcards, which use an external clock
signal. The adversary can supply these devices with an altered clock signal, which
contains, for instance, a clock pulse which is much shorter than what is expected in
the normal clock. Pulses generated in this way are called clock glitches, are much

2 Fault Attacks, Injection Techniques and Tools for Simulation 31

shorter than the deviations normally tolerated by the smart cards [7, 8], and they can
cause a setup-time violation or the skipping of instructions during the execution of
a program [9]. The errors are transient and the device does not incur any damage;
thus it is possible to induce faults at will without leaving any evidence of tampering.
Overclocking the target for a prolonged period can also be used to inject transient
faults. Much like underfeeding, overclocking leads to single-bit flips initially and
higher multiplicity of faults at higher frequencies. This type of attack can be carried
out with relatively low cost equipment.

2.2.3 Fault Injection Through Temperature

Electronic circuit are manufactured to work only on specific operating conditions
identified by an upper and a lower temperature thresholds. Outside this range, there
is no guarantee that the circuit continues to work as expected. Possible effects can be
the randommodification of the content of the memory cells or a limited functionality
of the device. An adversary can induce faults into the device by exposing it to
temperatures outside this range or by stressing it in order to increase its temperature.
An example of this approach is the one proposed by Govindavajhala and Appel [10],
where the chip was heated by executing a large number of load and store operations.
The authors report a thermal fault induction attack against the DRAMmemory chips
of a common desktop PC. Using a 50W light bulb and controlling its distance from
the target, the authors reported around ten flipped bits per 32-bit word at 100 ◦C.
Since the precision of the heating element is coarse grain, the controllability of faults
is limited and impact is global. Moreover, excessive heating can cause permanent
damage to the target.

2.2.4 Fault Injection Through Light

Optical attacks are a semi-invasive fault injection attack because they require the
decapsulation of the target device, which is then hit with a light pulse or high-
intensity laser. The light pulse or laser can be directed to the front or to the back side
of the chip, depending on the type of the attack and the difficulty involved in each
approach. In fact, with modern technologies, it can be difficult to reach the target
cell from the front side of the chip, due to several metal layers of the chip itself. In
order to obtain very precisely focused light pulses, the light emitted from a camera
flash is concentrated with the aid of a precision optical microscope by applying it
to the eyepiece after the device under attack has been carefully placed on the slide
holder. In order to avoid over-irradiation of the device, whichmight lead to permanent
damage to the circuit, care must be taken in selecting an appropriate magnification
level for the microscope lens. The accuracy with light pulse is limited as the pulse
gets scattered. Laser provides higher accuracy. It can also be used to attack through

32 R. Piscitelli et al.

the back-substrate of the chip using near-infrared wavelengths. Optically induced
fault require expensive equipment to be carried out. High-energy radiations like UV
lamps can also create permanent faults. Nevertheless, they can be very precise both in
the target, as it was demonstrated by Skorobogatov [11], and in time. This precision
allow to change values at the granularity of a single RAM cell or even at of a register
[12]. Light-based faults need medium to high expertise depending on the equipment.
Laser is also capable of damaging the chip with over-radiation. The faults can be
precise in time and space and also multiple faults can be injected using laser.

2.2.5 Fault Injection Through Electromagnetic Fields

Electromagnetic pulses can cause the change in the memory content or the malfunc-
tioning of the device. This is due to the so called Eddy currents, which are created
using an active coil [13]. Electromagnetic pulses can induce a faultwhich is extremely
localized and precise (up to the level of a single bit), while the equipment needed to
carry out this attack can be relatively cheap. Furthermore, the attack can be carried
out without depackaging the chip. However, the adversary is required to know the
details of the layout of the chip in order to identify the precise point of attack. The
EM pulse can either be injected over the power trail of the chip, uniformly affecting
the whole attacked device, or a smaller EM coil can be used to induct an additional
current on a specific part of the circuit. The idea of this type of fault injection has
been introduced by Quisquater and Samyde [13]. The authors demonstrated that it
is possible to alter the computations of a cryptographic algorithm using an Electro-
magnetic probe and a camera flash (used to induce high voltage into the coil of the
probe). This technique does not work efficiently with chips that employ grounded
metal packaging (usually for heat sinking purposes), that also act as an EM shield,
which needs the adversary to perform decapsulation (Table 2.1).

2.2.6 Fault Injection Through Focused Ion Beams

Focused Ion Beams (FIB) are a very expensive way to inject fault into the device,
however they allows the attacker to arbitrarily modify the structure of a circuit. The
adversary can cut existing wires, add connections, and operated through different
layers. The capability of these tools are demonstrated in Torrance et al. [14], where
the authors showed the reconstruction of a bus without damaging the contents of
the memory. FIB equipment is expensive and needs high technical expertise, but the
precision is extremely high. Current FIBs are able to operate with precision up to
2.5nm, i.e., less than a tenth of the gate width of the smallest transistor that can
currently be etched.

2 Fault Attacks, Injection Techniques and Tools for Simulation 33

Ta
bl
e
2.
1

C
om

pa
ri
so
n
of

fa
ul
ti
nj
ec
tio

n
te
ch
ni
qu
es

Te
ch
ni
qu
e

Ty
pe

Ta
rg
et

Pr
ec
is
io
n

E
qu
ip
m
en
t

E
xp

er
tis
e

D
ec
ap
su
la
tio

n
In
va
si
ve

D
es
ig
n
de
ta
ils

T
im

e
Sp

ac
e

C
os
ts

C
lo
ck

gl
itc

h
G
lo
ba
l

N
o

N
on
-i
nv
as
iv
e

R
eq
ui
re
d

H
ig
h

L
ow

L
ow

M
od
er
at
e

V
ol
ta
ge

gl
itc

h
G
lo
ba
l

N
o

N
on
-i
nv
as
iv
e

Pa
rt
ia
ln

ee
de
d

M
od
er
at
e

L
ow

L
ow

M
od
er
at
e

U
nd
er
fe
ed
in
g

G
lo
ba
l

N
o

N
on
-i
nv
as
iv
e

N
o

N
on
e

H
ig
h

L
ow

L
ow

O
ve
rc
lo
ck
in
g

G
lo
ba
l

N
o

N
on
-i
nv
as
iv
e

N
o

N
on
e

H
ig
h

L
ow

L
ow

Te
m
pe
ra
tu
re

G
lo
ba
l

N
o

Se
m
i-
in
va
si
ve

R
eq
ui
re
d

N
on
e

L
ow

L
ow

L
ow

G
lo
ba
lE

M
pu
ls
e

G
lo
ba
l

N
o

Se
m
i-
in
va
si
ve

Pa
rt
ia
ln

ee
de
d

M
od
er
at
e

L
ow

L
ow

M
od
er
at
e

L
oc
al
E
M

pu
ls
e

L
oc
al

So
m
et
im

es
Se

m
i-
in
va
si
ve

R
eq
ui
re
d

M
od
er
at
e

M
od
er
at
e

M
od
er
at
e

M
od
er
at
e

L
ig
ht

pu
ls
e

L
oc
al

Y
es

Se
m
i-
in
va
si
ve

R
eq
ui
re
d

M
od
er
at
e

M
od
er
at
e

M
od
er
at
e

M
od
er
at
e

L
as
er

be
am

L
oc
al

Y
es

Se
m
i-
in
va
si
ve

R
eq
ui
re
d

H
ig
h

H
ig
h

H
ig
h

H
ig
h

L
ig
ht

ra
di
at
io
n

L
oc
al

Y
es

In
va
si
ve

N
o

L
ow

L
ow

L
ow

M
od
er
at
e

Fo
cu
se
d
io
n

be
am

L
oc
al

Y
es

In
va
si
ve

R
eq
ui
re
d

C
om

pl
et
e

C
om

pl
et
e

V
er
y
hi
gh

V
er
y
hi
gh

34 R. Piscitelli et al.

2.2.7 Comparison of Fault Injection Techniques

Thepreviously introduced fault injection techniques have several parameters to define
its application. The most important parameters are compared in Table2.2.

2.3 Fault Attacks

Faults attacks have gained popularity as a serious threat to embedded systems over
the last few years. Attacks can target a specific algorithm or generically modify the
program flow to attacker’s advantage. In the following, we refer the classification of
attacks and the organization proposed by Karaklajić et al. [15]. In particular, three
distinct classes of fault attacks are identified for embedded system.

2.3.1 Algorithm Specific Attacks

Fault attacks can be designed to exploit specific weaknesses of the target algorithm
which are introduced by the injection of a fault. Several attacks targeting a large
number of algorithms were presented in the past, the most common being the attacks
against AES, RSA, and ECC.

Bloemer et al. in [16] proposed an attack on AES which exploit the change of a
single bit after the first key addition. However, this attack can successfully recover
a complete key only when the adversary has the possibility to inject a fault at a very
precise timing and at a very specific position.

The security of asymmetric cryptosystems relies on problems which are mathe-
matically hard to be solved. Fault attacks can be designed to weaken the problems
and thus weaken the security of the algorithm based on that. A common target for
such attacks are public-key cryptography algorithm, in particular RSA and ECC, as
they are widely used for authentication, digital signature, and key exchange. RSA
is based on exponentiation using a square and multiply (S&M) routine, while ECC
is based on point-scalar multiplication using a double and add (D&A) routine. Both
(S&M) and (D&A) have similar structure where the set of executed routine depends
on the value of the processed bit of the secret.

Proposed attacks to these cryptosystems requires the attacker to change the base
point of an ECC. As a result, the scalar point-multiplication will be moved to a
weaker curve. The use of weak curve will make the problem of solving the discrete-
logarithm problem of ECC manageable, and thus will lead to the recover of the
secret [17]. The same attack can be carried out if the attacker manage to supply
wrong parameters for the curve [17]. Other attacks proposed in the past showed that
faults can be exploited to control few bits of the secret nonce in DSA and, which
ultimately allows to recover the whole key [18]. Pairing algorithm are also vulnerable

2 Fault Attacks, Injection Techniques and Tools for Simulation 35

Ta
bl
e
2.
2

C
om

pa
ri
so
n
of

fa
ul
ti
nj
ec
tio

n
m
ec
ha
ni
sm

s

M
ec
ha
ni
sm

C
os
t

C
on

tr
ol
la
bi
lit
y
T
ri
gg
er

Ty
pe

R
ep
ea
ta
bi
lit
y

In
je
ct
io
n
tim

e
R
is
k
of

da
m
ag
e

R
un

tim
e

in
je
ct
io
n

Si
m
ul
at
or

St
at
ic
an
al
is
ys

N
o

E
xe
cu
tio

n
ba
se
d

M
ed
.

H
ig
h

Y
es

A
pp
.[
lim

.]
H
ig
h

M
ed
.

N
o

N
o

T
ra
ce
-b
as
ed

Sy
s.
[l
im

.]
Y
es

T
ra
ns
is
to
r
le
ve
l

N
o

So
ft
w
ar
e
si
m
.
C
om

pi
le
tim

e
L
ow

L
ow

Y
es

A
pp
.

H
ig
h

L
ow

N
o

N
o

R
un

tim
e

O
S

Y
es

L
ow

-l
ev
el

V
M

si
m
.

M
ed

H
ig
h

Y
es

O
S

M
ed
.

H
ig
h

N
o

Y
es

Sy
s
[l
im

].

E
m
ul
at
io
n

H
ig
h

M
ed
.

M
ed
.

A
pp
.[
lim

.]
M
ed
.

H
ig
h

Y
es

Y
es

Sy
s.

H
ar
dw

ar
e

H
ig
h

M
ed
.

M
ed
.

Sy
s.

M
ed
.

H
ig
h

Y
es

Y
es

36 R. Piscitelli et al.

to faults [19]: it was demonstrated that by modifying the loop parameter of a pairing
algorithm, the secret point can be recovered.

2.3.2 Differential Fault Analysis

Differential fault analysis (DFA) is one of the most common exploits for crypto-
graphic algorithms. The main idea behind DFA is the following: faults are injected
in a device to alter the computation of the target algorithm. When a fault injection
is successful, it is reflected on the output ciphertext. The attacker also computes the
correct ciphertext for the same inputs. After collecting several correct/faulty cipher-
text pairs, differential cryptanalysis techniques are applied to discard key candidates.
With precise faults injection, the attacker can reduce the key candidates to a unique
solution. DFA was introduced as a threat to symmetric block ciphers by Biham [20]
and then extended to other symmetric primitives [21, 22]. The attack presented by
Giraud [23] targets the state during the last round, and assumes that the fault alters
only a single bit of the state, prior to the last SubBytes operation. The attack is
thus applicable only to the last AES round that does not include the MixColumns
operation, where the a single byte difference in the state will not spread to other
bytes. Attacks proposed in the past also target a single bit or a single byte in the
key-expansion routine of the target algorithm in order to recover the whole secret
key [24].

DFA has also been reported on public-key algorithms like RSA [25]. Bellcore
attack [26] attempts to factor the modulus n by injecting faults in exponentiation
phase using the Chinese remainder theorem. DFA was further extended to fault
sensitivity analysis (FSA [27]), which exploits the physical characteristics of faults
like timing instead of faulty outputs.

2.3.3 Tampering with the Program Flow

Faults can also be injected to change the flow of an executed software code [28–31].
A fault in program counter is an obvious way to modify the program flow. For code
implementing cryptographic algorithms, change in the program flow can be a secu-
rity threat. Often an instruction skip lead to a wrong computation of critical portion
of the algorithm, significantly weakening it. A notable example of this involves the
exponentiation algorithm [28]. Similarly, fault on loop counter or branch selection
were demonstrated to leak secret point of pairing schemes [30] or to reduce the
number of encryption round in symmetric key algorithms [20], thus enabling classi-
cal cryptanalysis. Often fault attack countermeasures are based on redundancy with
sanity check. Some efficient attacks simply try to skip the sanity check to bypass
a deployed countermeasure [32]. This approach can be distinguished in two main
categories: during compile time or during runtime. To inject faults at compile time,

2 Fault Attacks, Injection Techniques and Tools for Simulation 37

the program instruction must be modified before the program image is loaded and
executed. Rather than injecting faults into the hardware of the target system, this
method injects errors into the source code or assembly code of the target program
to emulate the effect of hardware, software, and transient faults. During runtime, a
mechanism is needed to trigger fault injection. Commonly used triggering mecha-
nisms include, timeouts, exception/traps and code insertions. Although this approach
is flexible, it has its shortcomings: first of all, it cannot inject faults into locations
that are inaccessible to software. Second, the poor time-resolution of the approach
may cause fidelity problems. For long latency faults, such as memory faults, the low
time-resolution may not be a problem. For short latency faults, such as bus and CPU
faults, the approach may fail to capture certain error behavior, like propagation.

2.4 Fault Injection Simulators and Their Applicability
to Fault Attacks

In simulation-based fault injection, the target system as well as the possible hardware
faults are modeled and simulated by a software program, usually called fault simu-
lator. The fault simulation is performed by modifying either the hardware model or
the software state of the target system. This means that the system could behave as if
there was a hardware fault [13]. There are two categories of fault injection: runtime
fault injection and compile-time fault injection. In the former, faults are injected
during the simulation or the execution of the model. In the latter, faults are injected
at compile time in the target hardware model or in the software executed by the tar-
get system. The advantage of the simulation-based fault injection techniques is that
there is no risk to damage the system in use. In addition, they are cheaper in terms of
time and efforts than the hardware techniques. They also have a higher controllabil-
ity and observability of the system behavior in the presence of faults. Nevertheless,
simulation-based fault injection techniques may lack in the accuracy of the fault
model and the system model. In addition, they have a poor time-resolution, which
may cause fidelity problems. Software fault injection is a special case of simulation-
based fault injectionwhere the target system is a largemicroprocessor-basedmachine
that may include caches, memories, and devices, running a complex software. This
technique is able to target applications and operating systems, which is not easy to
do with the hardware fault injection.

Fault-injection simulators are attractive because they do not require expensive
hardware. Moreover, they can be used to support all system abstraction levels, as
applications and operative systems, which is difficult at hardware level. The control-
lability of fault-injection simulators is very high: given sufficient detail in the model,
it is possible to modify any signal value in any desired way, with the results of the
fault-injection easily observable regardless of the location of the modified signal
within the model. The main goal of an early analysis of the resistance against fault
attacks is to allow designers to easily identify the weakest point of their design, and

38 R. Piscitelli et al.

to protect it with appropriate countermeasures. Although this approach is flexible, it
has some shortcomings:

• Large development efforts are required, as they involve the construction of the
simulation model of the system under analysis, including a detailed model of the
processor in use. This increase the cost of using simulation-based fault-injection
tools.

• Not all the fault attacks previously discussed can be simulated in the simulation
model.

• The fidelity of the model strongly depends on the accuracy of the models used.
• High time consuming, due to the length of the experiment.

Some attacks, in particular setup-time violations, can be reliably simulated using
state of the art EDA commodities. For some others, instead, it is impossible to have a
complete simulation. It is however possible to model the type of error which will be
induced into the device, and simulate the behavior of a device when a similar type of
error occurs with cycle accurate or with behavioral simulators. The strategy usually
adopted by these injection frameworks is to evaluate the effects, that the injected
faults have on the final result of the computation. Designer then attempts to mount
an attacks using the simulated data and can determine if the amount of information
which will be available to the attacker will be sufficient to successfully extract secret
information. In the rest of this section we revise known tools and approaches used
in the past for injecting and simulating faults at different level of abstraction and we
discuss their suitability for evaluating the resistance against fault attacks.

2.4.1 Weaknesses Identification with Static Analysis

Identification of portions of the circuit sensitive to fault attacks can be achieved
using static timing analysis. Static timing analysis produces a very detailed timing
characterization of the paths inside their design, highlighting the critical path and all
the other paths which are very close to the critical one. Barenghi et al. [33] proposed
to extract the worst-case delays associated with the input connections of the state and
key registers. Static analysis was carried out with Synposys PrimePower, using as
input the placed and routed netlist and the parasitics of the connections. The authors
compared the ranking of sensitivity to attacks, obtained using static analysis, with
the fault attacks mounted on a real device. Obtained results demonstrated that static
timing analysis provides an effective way to estimate the worst case timings for
the input lines of the state registers and pinpoint which ones are more likely to be
vulnerable to setup-time violation attacks.

2 Fault Attacks, Injection Techniques and Tools for Simulation 39

2.4.2 High-Level Simulation with Complex Fault Models

High-level simulators are system simulator which simulate the behavior of a device
with the precision of a clock cycle. They can be execution based,when the benchmark
is directly executed, or trace based, when the simulation is carried out using a trace
of execution previously generated.

2.4.2.1 Fault Injection in Execution-Based Simulators

In these kind of simulators, a module for fault injection is integrated in the target
design. The fault injection module can be integrated as dedicated module called
saboteur. It is inactive during normal operation and can alter value or timing char-
acteristics when active. Saboteurs can be inserted in series or parallel to the target
design. Serial insertion, in its simplest form, consists of breaking up the signal path
between a driver (output) and its corresponding receiver (input) and placing a sabo-
teur in between. In its more complex form, it is possible to break up the signal paths
between a set of drivers and its corresponding set of receivers and insert a sabo-
teur. For parallel insertion, a saboteur is simply added as an additional driver for
a resolved signal. The other approach of fault injection is using mutants which are
inserted by modifying parts of the target circuit components. Those two approaches
present the advantage of supporting all system abstraction levels: electrical, logical,
functional, and architectural. Such approaches allow full reproduction of: single-
bit flips, selected bit alterations, data corruptions, circuit rewiring, clock alteration
and instruction swaps effects. However, theory require large development effort and
cannot support fully randomisation and real-time features.

Existing available tools are:MEFISTO-C [34], VERIFY [35], HEARTLESS [36],
GSTF [37], FTI [38], Xception [39], FERRARI [40], SAFE [41], DOCTOR [42]. A
detailed overview can be found in [43].

Selected Simulators
Xception [39] is a software implemented fault injection tool for dependability analy-
sis. It provides an automated test suite that helps in injecting realistic faults. It injects
faults without any intrusion on the target system. No software traps are inserted and
hence program can be executed in normal speed. It uses the advanced debugging and
performance monitoring features that exist in processors to inject realistic faults by
software, and to monitor the activation of the faults in order to observe in detail their
impacts on the behavior of the system [39]. Xception is a flexible and low-costly tool
that could be used in a wide range of processors and machines (parallel and real-time
systems). In addition, it enables the definition of a general and precise processor
fault model with a large range of fault triggers and oriented to the internal processor
functional units.

40 R. Piscitelli et al.

2.4.2.2 Software Faults Emulation Tools

A few tools do exist to emulate the occurrence of faults in distributed applications.
One of those tools is DOCTOR [42] (integrateD sOftware fault injeCTiOn enviRon-
ment), that allows to inject faults in real-time systems. It supports faults in processor,
memory and communication. The tool can inject permanent, transient, or intermit-
tent faults. The fault scenarios that can be designed uses probabilistic model. While
this suits small quantitative tests, repeatable fault injection capabilities are required
for more complex fault scenarios.

SAFE [41] fault injection tool allows to automatically generate and execute fault
injection tests. SAFE injects or detects software faults inC andC++ software, in order
to force a software component failure, and to evaluate the robustness of the system
as a whole. Injected faults are designed to realistically reproduce the real defects
that hampers software systems, including issues affecting data initialization, control
flow, and algorithms. Testing team can easily know how vulnerable the software is
and fix it. The SAFE tool lets users customize which faults are injected.

2.4.2.3 Fault Injection in Trace-Based Simulators

An example of fault injection tools exploiting trace-based simulations is the one of
Miele [44]. The tool analyzes the system-level dependability of embedded systems.
The workflow is organized in three main phases: preliminary characterization of the
system, setup of the experimental campaign, and execution of experimental campaign
followed by results’ post-processing. The designer specifies monitoring and classi-
fication actions at application and architecture levels. Debug-like mechanism allow
to analyze the propagation of the errors in various functionalities of the executed
application. The proposed approach is extremely suitable to reproduce the effects in
simulation of single-bit flips, selected bit alterations, data corruptions and instruc-
tion swaps. Ferrari [40] (Fault-and-Error Automatic Real-Time Injection), developed
at the University of Texas at Austin, uses software traps to inject CPU, memory, and
bus faults. Ferrari consists of four components: the initializer and activator, the user
information, the fault-and-error injector, and the data collector and analyzer. The
fault-and-error injector uses software trap and trap handling routines. Software traps
are triggered either by the program counter when it points to the desired program
locations or by a timer. When the traps are triggered, the trap handling routines inject
faults at the specific fault locations, typically by changing the content of selected
registers or memory locations to emulate actual data corruptions. The faults injected
can be those permanent or transient faults that result in an address line error, a data
line error, and a condition bit error.

Jaca is a fault injection tool that is able to inject fault in object-oriented systems and
can be adapted to any Java application without the need of its source code, but only
few information about the application like the classes, methods, and attributes names
[45]. Jaca has a graphical interface that permits the user to indicate the applications
parameters under test in order to execute the fault injection [45]. Most of the fault

2 Fault Attacks, Injection Techniques and Tools for Simulation 41

injection tools are able to handle the injection of faults at low level of the software.
Jaca differs from the other tools in the fact that it can perform both low-level fault
injection, affecting Assembly language element (CPU registers, buses, etc.), and
high-level fault injection affecting the attributes and methods of objects in a Java
program.

The main advantage of using a trace-based simulator is the possibility of altering
specific parts of the system without the need of altering the main structure of the
system.

2.4.2.4 Software-Based Simulators

Software fault injection is a special case of simulation-based fault injection where
the target system is a large microprocessor-based machine that may include caches,
memories, and devices, running a complex software. This technique is able to target
applications and operating systems, which is not easy to do with the hardware fault
injection.

Selected Simulators
LFI is a tool to make fault injection-based testing more efficient and accessible to
developers and testers [46]. LFI injects faults at the boundary between shared libraries
and target programs, which permits to verify if the programs are handling the failures
exposed by the libraries correctly or not. More in detail, LFI permits to automatically
identify the errors exposed by shared libraries, find potentially buggy error recov-
ery code in program binaries, and produce corresponding injection scenarios. Fault
injection was rarely used in software development. LFI was developed in response to
this. It permits to reduce the dependence on human labor and correct documentation,
because it automatically profiles fault behaviors of libraries via static analysis of their
binaries. The tool aims to provide testers an easy, fast, and comprehensive method to
see howmuch the program is robust to face failures exposed between shared libraries
and the tested programs [46].

Byteman [47] is a byte code injection tool developed to support Java code testing
using fault injection technique. It is also very useful for troubleshooting and tracing
Javaprogramexecution.Bytemanprovides a functions librarywhichhelps generating
simple error conditions to complex error flows. Almost any Java code can be injected
into the application in scope at the injection point. POJO (plain old java object) can be
plugged in to replace built-in functions. Byteman works by modifying the bytecode
of the application classes dynamically at runtime.

2.4.3 Low-Level Virtual Machine Simulation

Fault injection tools based on virtual machine can be a good solution. First, because
they permit simulating the computer without having the real hardware system.

42 R. Piscitelli et al.

Moreover, they target hardware faults on the software level, and they allow observing
complex computer-based systems, with operating system and user applications.

Virtualization is the technology permitting to create a virtual machine (VM) that
behaves like a real physical computer with an Operating System (OS). It has an enor-
mous effect in todays ITworld since it ensures efficient and flexible performance, and
permits cost saving from sharing the same physical hardware. The virtual machine
where the software is running is called a guestmachine, and the realmachine inwhich
the virtualization takes place is called the host machine. The words host and guest
are used to make difference between the software that runs on the virtual machine
and the software that runs on the physical machine.

Selected Simulators
LLVM (Low-Level Virtual Machine) is a compiler framework designed to support
transparent, life-long program analysis, and transformation for arbitrary programs,
by providing high-level information to compiler transformations at compile time,
link-time, runtime, and in idle-time between runs [48, 49].

LLVM uses the LLVM Intermediate Representation (IR) as a form to represent
code in the compiler. It symbolizes the most important aspect of LLVM, because
it is designed to host mid-level analysis and transformations found in the optimizer
section of the compiler. The LLVM IR is independent from the source language and
the target machine. It is easy for a front end to generate, and expressive enough to
permit important optimizations to be performed for real targets.

QEMU [50] is a versatile emulation platform with support for numerous target
architectures like x86, ARM, MIPS and allowing to run a variety of unmodified
guest operating systems. In [51], BitVaSim is proposed as a fault injection simulator
on QEMU platform, for targets like PowerPC and ARM with built-in test software
framework. BitVaSim can inject faults in any process, even pre-compiled software
and allows a good degree of user configuration for fault injection. It can also be
used for hardware targets in a virtual machine. In addition, unmodified operating
systems and applications, especially the Built-In Test system can run on the prototype
without intrusion. The described technique provides complete control over the target
environment with fault injection process monitor and efficient feedback.

FAUMachine is a virtual machine that permits to install a full operating systems
and run them as if they are independent computers. FAUMachine is similar in many
aspect to standard virtual machines like QEMU [50] or VirtualBox [52]. The prop-
erty that distinguishes FAUMachine from the other virtual machines is its ability to
support fault injection capabilities for experimentation. FAUMachine supports the
following fault types [53]:

• MemoryCells: such as transient bit flips, permanent struck-at faults, andpermanent
coupling faults.

• Disk, CD/DVD drive: such as transient or permanent block faults, and transient or
permanent whole disk faults.

• Network: such as transient, intermittent, and permanent send or receive faults.

FAUMachine does not permit injecting faults in the CPU registers yet. Bit flips could
be easy to implement. Stuck-at faults is also possible but it is much more complex

2 Fault Attacks, Injection Techniques and Tools for Simulation 43

since FAUMachine uses just-in-time compiling. In FAUMachine, the injection of
fault could be done online via GUI, or defined (type, location, time, and duration of
fault) via VHDL scripts. Compared to existing fault injection tools, FAUMachine is
able to inject faults and observe the whole operating system or application software.
Using the virtualization, this tool provides a high simulation speed for both complex
hardware and software systems [53]. FAUMachine also supports automated tests,
including the specification of faults to be injected.

2.4.4 Transistor Level Simulation

As previously discussed, setup-time violation can be induced by underfeeding the
device. This attack can be completely simulated using SPICE level simulators, as
proposed by Barenghi et al. [33]. The authors evaluated if transistor level simula-
tor is capable of correctly predicting the fault patterns which were measured on a
real device. The simulation was carried out using Synopsys Nanosim, a fast SPICE
simulator, using the netlist and the parasitics generated by Cadence Encounter after
place and route. The device was simulated for different voltages, ranging from 0.3 to
0.5V. The simulation generated a number of faulty ciphertexts reasonably close to
the one observed in the experiments, allowing to speculate that Nanosim is capable
of predicting the setup-time violations measured in practice.

2.4.5 Emulation

Emulation-based fault injection has been introduced as a better solution for reducing
the execution time compared to simulation-based fault injection. It is often based on
the use of Field ProgrammableGateArrays (FPGAs) for speeding up fault simulation
and exploits FPGAs for effective circuit emulation. This technique can allow the
designer to study the actual behavior of the circuit in the application environment,
taking into account real-time interactions. However, when an emulator is used, the
initial VHDL description must be synthesizable.

Fault injection can be performed in hardware emulation models through compile
time reconfiguration and runtime reconfiguration. Here reconfiguration refers to the
process of addinghardware structures to themodelwhich are necessary to perform the
experiments. In compile-time reconfiguration, these hardware structures are added
by the instrumentation of HDL models. The main disadvantage of compile-time
reconfiguration is that the circuit must be resynthetised for each reconfiguration,
which can impose a severe overhead on the time it takes to conduct a fault injection
campaign.

44 R. Piscitelli et al.

2.5 Conclusions

Faults attacks are a powerful tool in the hand of adversaries, and they can have serious
impacts on the security of embedded systems. Currently, most of the evaluation
against fault attacks is done post-fabrication. However, it is important for designers
to know the sensitive fault targets and possibly fix it at the design time. With this
objective in mind, we summarize the most common fault attacks, the most frequently
used fault injection techniques and themost used approach for fault simulationswhich
could be used to evaluate the robustness of cryptographic circuits at design time.

Table2.2 classifies the different fault injectionmethods. The approaches presented
have different level of impact. Static timing analysis [33] provides an effective way
for the designer to predict circuit paths which are likely to experience setup-time
violations upon an attack, but it does not provide the possibility of simulating a fault.

Saboters and mutant fault injection approaches allow to properly simulate fault
injection effects such as single bit flips, selected bit alterations, data corruptions,
circuit rewiring, clock alteration, and instruction swaps. Furthermore, they provide
full control of both fault models and injection mechanisms, together with maximum
amount of observability and controllability. Essentially, given sufficient detail in the
model, any signal value can be corrupted in any desired way, with the results of
the corruption easily observable regardless of the location of the corrupted signal
within the model. This flexibility allows any potential failure model to be accurately
modeled. These methods are able to model both transient and permanent faults, and
allowmodeling of timing-related faults since the amount of simulation time required
to inject the fault is minimal. The main drawback of those two approaches is given
by the fact that only a predetermined set of faults can be injected, and new changes
cannot be applied at runtime.

Themain advantage of using a trace-based simulator as in [44] is given by the pos-
sibility of changing at runtime the execution traces, without a structural modification
of specific components of the architecture or saboteurs. In this way, fault effects gen-
eration is easier and less time consuming. Moreover, it allows for time-specific fault
attacks, since it is a cycle accurate based simulator. As main disadvantage, not all
the current existing fault effects such as rewiring and clock delays can be effectively
simulated, thus prohibiting an exhaustive analysis.

Virtual Machines-based tools can be a good solution for injecting faults. First,
because they permit simulating the computer without having the real hardware sys-
tem. Moreover, they target hardware faults on the software level, and they allow
observing complex computer-based systems, with operating system and user appli-
cations. However, at the state of the art, they do not support yet fault models defined
at software level, such as an instruction or a variable used in place of another.

Finally, for certain fault injection techniques, a complete simulation at SPICE level
is possible. The drawback of this approach is the time required for the simulation,
which can be prohibitive.

2 Fault Attacks, Injection Techniques and Tools for Simulation 45

References

1. Kocher P, Jaffe J, Jun B. Differential power analysis. In: Advances in CryptologyCRYPTO99.
Springer; 1999. p. 388–97.

2. Kocher PC. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Advances in CryptologyCRYPTO96. Springer; 1996. p. 104–13.

3. Rohatgi P. Electromagnetic attacks and countermeasures. In: Cryptographic engineering.
Springer; 2009. p. 407–30.

4. Schlösser A, Nedospasov D, Krämer J, Orlic S, Seifert J-P. Simple photonic emission analysis
of AES. In: Cryptographic hardware and embedded systems—CHES 2012. Springer; 2012.
p. 41–57.

5. Barenghi A. Bertoni GM, Breveglieri L, Pelosi G. A fault induction technique based on voltage
underfeedingwith application to attacks against AES andRSA. J Syst Softw. 2013;86(7):1864–
78.

6. Selmane N, Guilley S, Danger J-L. Practical setup time violation attacks on AES. In: Seventh
European dependable computing conference, EDCC-7 2008, Kaunas, Lithuania, 7–9 May
2008, IEEE Computer Society; 2008. p. 91–6.

7. Otto M. Fault attacks and countermeasures. PhD thesis, Universit at Paderborn; 2005.
8. International organization for standardization. ISO/IEC 7816-3: electronic signals and trans-

mission protocols. 2002. http://www.iso.ch.
9. Balasch J, Gierlichs B, Verbauwhede I. An in-depth and black-box characterization of the

effects of clock glitches on 8-bit MCUs. In: Breveglieri L, Guilley S, Koren I, Naccache D,
Takahashi J, editors. 2011 workshop on fault diagnosis and tolerance in cryptography, FDTC
2011, Tokyo, Japan, September 29, 2011. IEEE; 2011. p. 105–14

10. Govindavajhala S, Appel AW.Usingmemory errors to attack a virtualmachine. In: Proceedings
of the 2003 IEEE symposium on security and privacy, SP ’03. Washington, DC, USA: IEEE
Computer Society; 2003. p. 154.

11. Skorobogatov S. Optical fault masking attacks. In: Breveglieri L, Joye M, Koren I, Naccache
D, Verbauwhede I, editors. 2010 workshop on fault diagnosis and tolerance in cryptography,
FDTC 2010, Santa Barbara, California, USA, 21 August 2010. IEEE Computer Society; 2010.
p. 23–9

12. Barenghi A, Breveglieri L, Koren I, Naccache D. Fault injection attacks on cryptographic
devices: theory, practice, and countermeasures. Proc IEEE. 2012;100(11):3056–76.

13. J-J Quisquater, D Samyde. Eddy current for magnetic analysis with active sensor. In: Esmart
2002, Nice, France, 9 2002.

14. TorranceR, JamesD.The state-of-the-art in IC reverse engineering. In:Cryptographic hardware
and embedded systems-CHES 2009. Springer; 2009. p. 363–81.

15. Karaklajic D, Schmidt J-M, Verbauwhede I. Hardware designer’s guide to fault attacks. IEEE
Trans VLSI Syst. 2013;21(12):2295–306.

16. Blömer J, Seifert J-P. Fault based cryptanalysis of the advanced encryption standard (AES). In:
Wright RN, editor. Financial cryptography, 7th international conference, FC2003,Guadeloupe,
French West Indies, January 27–30, 2003, revised papers. Lecture notes in computer science,
vol. 2742. Springer; 2003. p. 162–81.

17. Ciet M, JoyeM. Elliptic curve cryptosystems in the presence of permanent and transient faults.
Des Codes Crypt. 2005;36(1):33–43.

18. Naccache D, Nguyen PQ, Tunstall M, Whelan C. Experimenting with faults, lattices and the
DSA. In: Vaudenay S, editor. Public key cryptography—PKC 2005, proceedings of the 8th
international workshop on theory and practice in public key cryptography, Les Diablerets,
Switzerland, January 23–26, 2005. Lecture notes in computer science, vol. 3386, Springer;
2005. p. 16–28.

19. Duursma IM, Lee H-S. Tate pairing implementation for hyperelliptic curves y2 = xp − x + d.
In: Laih C-S, editor. ASIACRYPT 2003, proceedings of the 9th international conference on
the theory and application of cryptology and information security: advances in cryptology,

http://www.iso.ch

46 R. Piscitelli et al.

Taipei, Taiwan, November 30–December 4, 2003. Lecture notes in computer science, vol.
2894. Springer; 2003. p. 111–23.

20. Biham E, Shamir A. Differential fault analysis of secret key cryptosystems. In: Kaliski BS Jr.,
editor. CRYPTO ’97, proceedings of the 17th annual international cryptology conference on
advances in cryptology, Santa Barbara, California, USA, August 17–21, 1997. Lecture notes
in computer science, vol. 1294. Springer; 1997. p. 513–25.

21. Tunstall M, Mukhopadhyay D, Ali S. Differential fault analysis of the advanced encryption
standard using a single fault. In: Ardagna CA, Zhou J, editors. Proceedings of the 5th IFIPWG
11.2 international workshop on information security theory and practice. Security and privacy
of mobile devices in wireless communication, WISTP 2011, Heraklion, Crete, Greece, June
1–3, 2011. Lecture notes in computer science, vol. 6633. Springer; 2011. p. 224–33.

22. Rivain M. Differential fault analysis of DES. In: Joye M, Tunstall M, editors. Fault analysis in
cryptography. Information security and cryptography. Springer; 2012. p. 37–54

23. Giraud C. Dfa on aes. In: Advanced encryption standard—AES, 4th International conference,
AES 2004. Springer; 2003. p. 27–41.

24. Biehl I,Meyer B,Müller V.Differential fault attacks on elliptic curve cryptosystems. In: Bellare
M, editor. CRYPTO 2000, proceedings of the 20th annual international cryptology conference
on advances in cryptology, Santa Barbara, California, USA, August 20–24, 2000. Lecture notes
in computer science, vol. 1880. Springer; 2000. p. 131–146.

25. Berzati A, Canovas C, Goubin L. Perturbating RSA public keys: an improved attack. In:
Oswald E, Rohatgi P, editors. CHES 2008, proceedings of the 10th international workshop
on cryptographic hardware and embedded systems, Washington, D.C., USA, August 10–13,
2008. Lecture notes in computer science, vol. 5154. Springer; 2008. p. 380–395.

26. Boneh D, DeMillo RA, Lipton RJ. On the importance of checking cryptographic protocols for
faults (extended abstract). In: Fumy W, editor. Advances in cryptology—proceedings of the
EUROCRYPT ’97, international conference on the theory and application of cryptographic
techniques, Konstanz, Germany, May 11–15, 1997. Lecture notes in computer science, vol.
1233. Springer; 1997. p. 37–51.

27. Li Y, SakiyamaK,Gomisawa S, Fukunaga T, Takahashi J, Ohta K. Fault sensitivity analysis. In:
Mangard S, Standaert F-X, editors. CHES2010, proceedings of the 12th internationalworkshop
on cryptographic hardware and embedded systems, Santa Barbara, CA, USA, August 17–20,
2010. Lecture notes in computer science, vol. 6225. Springer; 2010. p. 320–34.

28. Schmidt J-M, Herbst C. A practical fault attack on square and multiply. In: Breveglieri et al.
[56], p. 53–8.

29. Schmidt J-M, Medwed M. A fault attack on ECDSA. In: Breveglieri L, Koren I, Naccache D,
Oswald E, Seifert J-P, editors. Sixth international workshop on fault diagnosis and tolerance
in cryptography, FDTC 2009, Lausanne, Switzerland, 6 September 2009. IEEE Computer
Society; 2009. p. 93–9.

30. Page D, Vercauteren F. A fault attack on pairing-based cryptography. IEEE Trans Comput.
2006;55(9):1075–80.

31. Schmidt J-M, Medwed M. Fault attacks on the montgomery powering ladder. In: Rhee KH,
Nyang DH, editors. Information security and cryptology—ICISC 2010: 13th international
conference, Seoul, Korea, December 1–3, 2010, revised selected papers. Lecture notes in
computer science, vol. 6829. Springer; 2010. p. 396–406.

32. KimCH,Shin JH,Quisquater J-J, LeePJ. Safe-error attack onSPA-FA resistant exponentiations
using a HWmodular multiplier. In: NamK-H, Rhee G, editors. ICISC 2007, proceedings of the
10th international conference on information security and cryptology, Seoul, Korea, November
29–30, 2007. Lecture notes in computer science, vol. 4817. Springer; 2007. p. 273–81.

33. Barenghi A, Hocquet C, Bol D, Standaert F-X, Regazzoni F, Koren I. A combined design-
time/test-time study of the vulnerability of sub-threshold devices to low voltage fault attacks.
IEEE Trans Emerg Top Comput. 2014;2(2):107–18.

34. Folkesson P, Svensson S, Karlsson J. A comparison of simulation based and scan chain imple-
mented fault injection. In: Digest of papers: FTCS-28, the twenty-eigth annual international
symposium on fault-tolerant computing,Munich, Germany, June 23–25, 1998. IEEEComputer
Society; 1998. p. 284–93.

2 Fault Attacks, Injection Techniques and Tools for Simulation 47

35. Sieh V, Tschäche O, Balbach F. Verify: evaluation of reliability using vhdl-models with embed-
ded fault descriptions. In: FTCS. IEEE Computer Society; 1997. p. 32–6.

36. Rousselle C, Pflanz M, Behling A, Mohaupt T, Vierhaus HT. A register-transfer-level fault
simulator for permanent and transient faults in embedded processors. In: DATE; 2001. p. 811.

37. Baraza JC,Gracia J,GilD,Gil PJ.Aprototype of aVHDL-based fault injection tool: description
and application. J Syst Arch. 2002;47(10):847–67.

38. López C, Entrena L, Olías E. Automatic generation of fault tolerant VHDL designs in RTL.
In: FDL (Forum on Design Languages), Lyon, France, September 2001.

39. Carreira J, Madeira H, Silva JG. Xception: software fault injection and monitoring in processor
functional units; 1995.

40. Kanawati GA, Kanawati NA, Abraham JA. Ferrari: a flexible software-based fault and error
injection system. IEEE Trans Comput. 1995;44(2):248–60.

41. Cotroneo D, Natella R. Fault injection for software certification. In: IEEE security and privacy,
special issue on safety-critical systems: the next generation, vol. 11(4). IEEEComputer Society.
p. 38–45.

42. Han S, Rosenberg HA, Shin KG. Doctor: an integrated software fault injection environment;
1995.

43. Ziade H, Ayoubi RA, Velazco R. A survey on fault injection techniques. Int Arab J Inf Technol.
2004;1(2):171–86.

44. Miele A. A fault-injection methodology for the system-level dependability analysis of multi-
processor embedded systems.MicroprocessMicrosyst EmbedHardwDes. 2014;38(6):567–80.

45. de Moraes RLO, Martins E. JACA—a software fault injection tool. In: DSN. IEEE Computer
Society; 2003. p. 667.

46. Marinescu PD, Candea G. LFI: a practical and general library-level fault injector. In: DSN.
IEEE; 2009. p. 379–88.

47. Dinn AE. Flexible, dynamic injection of structured advice using byteman. In: Proceedings
of the tenth international conference on aspect-oriented software development companion,
AOSD’ 11. New York, NY, USA: ACM; 2011. p. 41–50.

48. Lattner C, AdveV. LLVM: a compilation framework for lifelong program analysis and transfor-
mation. In: Proceedings of the international symposium on code generation and optimization:
feedback-directed and runtime optimization,CGO ’04.Washington,DC,USA: IEEEComputer
Society; 2004. p. 75.

49. KooliM,Benoit P,DiNataleG,Torres L, SiehV. Fault injection tools based on virtualmachines.
In: 2014 9th international symposium on reconfigurable and communication-centric systems-
on-chip (ReCoSoC), May 2014. p. 1–6.

50. Bellard F. QEMU, a fast and portable dynamic translator. In: Proceedings of the annual con-
ference on USENIX annual technical conference, ATEC ’05. Berkeley, CA, USA: USENIX
Association; 2005. p. 41.

51. Wan H, Li Y, Xu P. A fault injection system based on QEMU simulator and designed for bit
software testing. Appl Mech Mater. 2013;347–350:580–7.

52. Watson J. Virtualbox: bits and bytes masquerading as machines. Linux J. 2008(166).
53. Potyra S, Sieh V, Cin MD. Evaluating fault-tolerant system designs using faumachine. In:

Guelfi N, Muccini H, Pelliccione P, Romanovsky A, editors. EFTS. ACM; 2007. p. 9.
54. Breveglieri L, Gueron S, Koren I, Naccache D, Seifert J-P (eds). Fifth international workshop

on fault diagnosis and tolerance in cryptography, 2008, FDTC 2008, Washington, DC, USA,
10 August 2008. IEEE Computer Society; 2008.

Chapter 3
Recent Developments in Side-Channel
Analysis on Elliptic Curve Cryptography
Implementations

Louiza Papachristodoulou, Lejla Batina and Nele Mentens

3.1 Introduction

The emerging need for secure communications in embedded systems is constantly
threatened by sophisticated side-channel analysis (SCA) attacks. SCA attacks exploit
various types of physical leakage of secret information from cryptographic devices.
The physical leakage originates also from the power consumption [1], the electro-
magnetic radiation [2, 3], and the timing behavior [4] of the device. We focus on
attacks exploiting power consumption leakage, namely power analysis attacks. These
attacks are based on the principle that a switching event of a signal inside a device
causes a current to be drawn from the power supply or to be drained to the ground,
which is illustrated in Fig. 3.1 on the basis of a CMOS inverter. When the input
switches from a logical 1 to a logical 0 or vice versa, the output makes the opposite
transition, respectively charging or discharging the output capacitor. When the input
remains constant, there is no switching current and no switching power consumption.
This physical behavior is exploited by power analysis attacks to extract data that are
processed internally in the device.

Within this area of power analysis of cryptographic implementations, there are
various methods of analysis, such as Simple Power Analysis (SPA), Differential
Power Analysis (DPA), and Collision Analysis (CA). SPA uses a single power trace
or several traces, i.e., the instantaneous power consumption of a single run of an
algorithm over a certain period of time. DPA uses statistical methods to extract

L. Papachristodoulou · L. Batina
Digital Security Group, Radboud University, P.O. Box 9010, 6500 Nijmegen,
GL, The Netherlands
e-mail: louiza@cryptologio.org

L. Batina
e-mail: lejla@cs.ru.nl

N. Mentens (B)
KU Leuven, ESAT/COSIC & IMinds, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
e-mail: nele.mentens@kuleuven.be

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_3

49

50 L. Papachristodoulou et al.

Fig. 3.1 Switching current
at the output of a CMOS
invertor

0−0 1−1 0−01−1

0−11−0 0−1 1−0

information from multiple traces [1]. CA exploits the leakage of two portions of
traces when the same intermediate values are used [5].

Naive implementations of public-key cryptosystems are usually susceptible to
SPA attacks because of, e.g., the use of conditional branches. In the RSA cryptosys-
tem, these branches are present in the modular exponentiation algorithm when it is
executed using an iteration of modular squarings and modular multiplications. The
analogy of modular exponentiation in RSA is point multiplication in elliptic curve
cryptosystems. Naive implementations use the double-and-add method consisting
of consecutive point doublings and point additions, where a point addition is only
executed when the corresponding key bit equals 1. This way, a single power trace
reveals a logical 1 in the key through the presence of a point addition. One type of
countermeasures balance the computation such that the power traces always look
similar regardless of the processed key bits. Other countermeasures randomize the
computation such that an attacker is not able to correlate the power traces with the
processed data.

This chapter starts with an overview of elliptic curves used in cryptography in
Sect. 3.2. Since the power analysis attacks we discuss, focus on the scalar multipli-
cation algorithm, Sect. 3.3 presents different options for this algorithm. Section3.4
elaborates on power analysis attacks on elliptic curve cryptosystems, while Sect. 3.5
gives an overview of countermeasures at the algorithmic level.

3.2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) was introduced around 1985 independently by
Miller [6] and Koblitz [7]. It is broadly used for implementing asymmetric cryp-
tographic protocols in embedded devices due to the small key length and memory

3 Recent Developments in Side-Channel Analysis … 51

requirements compared to equivalent RSA implementations. For instance, a 256-bit
field curve provides a security level of 128 bits, which is roughly equivalent to a
2048-bit RSA key (see [8] for more details).

3.2.1 Coordinate Systems

An elliptic curve E over the finite field K , denoted as EK , can be defined in terms
of solutions (x, y) to one of the equations defined in Sect. 3.2.2. The pairs that
verify these equations represent the affine coordinates of a point over the curve E .
From the addition rules on an elliptic curve, the necessary operations are addition,
multiplication, and inversion over K . Inversion is the most expensive operation and
can be avoided using other types of coordinate systems for the points P = (x, y).
We hereby present the most commonly used coordinates systems that can be found
in cryptographic implementations of elliptic curve protocols.
Projective coordinates
In the projective coordinate system, each point P = (x, y) is represented by three
coordinates (X,Y, Z), where x = X

Z , y = Y
Z .

Jacobian coordinates
In the Jacobian coordinates system, each point P = (x, y) is represented also by
three coordinates (X,Y, Z), with x = X

Z2 , y = Y
Z3 .

López-Dahab coordinates
In the López-Dahab system, the relation for the point (X,Y, Z) is x = X

Z , y = Y
Z2 .

3.2.2 Forms of Elliptic Curves

There are several forms of elliptic curves defined by their curve equation. Below we
will treat some commonly used forms.
Weierstrass curves
An elliptic curve defined over a field K is defined by the Weierstrass equation

EK : y2 + α1xy + α3y = x3 + α2x
2 + α4x + α6. (3.1)

Together with the point at infinity O, the set (EK ∪ O,+) forms an abelian group
with neutral element O.
When the characteristic of the field K is not 2 or 3, then the general Weierstrass form
can be simplified to

EK : y2 = x3 + αx + β. (3.2)

In the following, it is assumed that char(K) �= 2, 3. Adding the points P = (x1, y1)
and Q = (x2, y2) gives a third point on the curve, namely P + Q = (x3, y3) accord-
ing to the formulas

52 L. Papachristodoulou et al.

{
x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3) − y1,

with λ = y1 − y2
x1 − x2

if P �= Q and λ = 3x21 + α

2y1
if P = Q.

For points represented in Jacobian coordinates, P = (X1,Y1, Z1) and Q =
(X2,Y2, Z2), the addition of P and Q with P �= Q is P + Q = (X3,Y3, Z3) with

X3 = F2 − E3 − 2BE2,Y3 = F(BE2 − X3) − DE3, Z3 = Z1Z2E, (3.3)

where A = X1Z2
2 , B = X2Z2

1 , C = Y1Z3
2, D = Y2Z3

1 , E = A − B, F = C − D.
Jacobian addition needs 12M + 4S, with M and S the number of multiplications
and squarings over K , respectively. Point doubling can be performed very efficiently
with only 3M + 6S using the formulas

X3 = B2 − 2A,Y3 = B(A − X3) − Y 4
1 , Z3 = Y1Z1, (3.4)

where A = X1Y 2
1 , B = 1

2
(3X2

1 + αZ4
1).

Weierstrass curves are standardized and widely used in cryptography [9–12].
However, they have amain drawback regarding their side-channel resistance; namely
their addition formulas are incomplete. As is obvious from the previous formulas,
addition and doubling are handled differently and the point at infinity gives an excep-
tion case. In [13], Bosma and Lenstra presented complete formulas for Weierstrass
curves, which had an exceptional case for the pair of points (P, Q) if and only if
P − Q is a point of order two. In [14], Renes, Costello, and Batina presented com-
plete addition formulas for odd order elliptic curves E/Fq : y2 = x3 + αx + b with
q ≥ 5, which require only 12 field multiplications 12M.1 The complete addition
formulas using Jacobian representation of a point are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X3 = (X1Y2 + X2Y1)(Y1Y2 − α(X1Z2 + X2Z1) − 3bZ1Z2)

−(Y1Z2 + Y2Z1)(αX1X2 + 3b(X1Z2 + X2Z1) − α2Z1Z2),

Y3 = (Y1Y2 + α(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − α(X1Z2 + X2Z1) − 3bZ1Z2)

+(3X1X2 + αZ1Z2)(αX1X2 + 3b(X1Z2 + X2Z1) − α2Z1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + α(X1Z2 + X2Z1) + 3bZ1Z2)

+(X1Y2 + X2Y1)(3X1X2 + αZ1Z2)

Edwards curves
Edwards curves, introduced by Edwards in [15], were the first curves shown to have
a complete addition law. Applications of Edwards and twisted Edwards curves in

1For the overviewonelliptic curves in this section,weomit counting themultiplications by a constant
(Mα) and the additions A, which are used for extensive comparison results in some publications.

3 Recent Developments in Side-Channel Analysis … 53

cryptography are extensively studied by Bernstein and Lange [16, 17]. An Edwards
curve is defined over a field K with char(K) �= 2 by the following equation:

Ed : y2 + x2 = 1 + dx2y2, (3.5)

where d ∈ K\{0, 1}. The Edwards addition law for two points P = (x1, y1) and
Q = (x2, y2), in affine coordinates, is given by the following formulas:

P + Q = (x3, y3) = (
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2
1 − dx1x2y1y2

). (3.6)

This addition law is unified, i.e., the same formula can be used for both addition and
doubling without exceptional cases. The neutral element is the point (0, 1). If d is
not a square, then the addition law is complete and there are no exceptional cases for
the neutral element.
Twisted Edwards curves, introduced in [18], are a generalization of Edwards curves
and they have the form Eα,d : αx2 + y2 = 1 + dx2y2. The addition law for twisted
Edwards curves is a generalization of Eq. (3.6):

P + Q = (x3, y3) = (
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − αx1x2
1 − dx1x2y1y2

). (3.7)

The cost of addition and doubling on Edwards curves depends on the form of the
curve and the coordinates chosen by the developer. An overview of all types of curves
and coordinates is given in the Explicit Formulas Database [19]. The most efficient
implementation of twisted Edwards curves is given by Bernstein et al. in [18]. It uses
inverted twisted Edwards coordinates and needs 9M + 1S for addition and 3M + 4S
for doubling.2

Montgomery curves
In [20], P. L. Montgomery defined the following form of elliptic curves over finite
fields of odd characteristic:

EM : By2 = x3 + Ax2 + x, B(A2 − 4) �= 0. (3.8)

Let P1 = (x1, y1) and P2 = (x2, y2) be points onEM . Then, the point P3 = (x3, y3) =
P1 + P2 can be calculated using the following formulas:
Addition formulas (P1 �= P2)

⎧⎨
⎩

λ = (y2 − y1)/(x2 − x1)
x3 = Bλ2 − A − x1 − x2
y3 = λ(x1 − x3) − y1

2The developer can choose to use different formulas for addition and doubling in twisted Edwards
curves for extra efficiency in the implementation or unified formulas for resistance against side-
channel attacks.

54 L. Papachristodoulou et al.

Doubling formulas (P1 = P2)

⎧⎨
⎩

λ = (3x21 + 2Ax1 + 1)/(2By1)
x3 = Bλ2 − A − 2x1
y3 = λ(x1 − x3) − y1

Montgomery arithmetic is very efficient with additional speed-up by computing
only (X, Z) coordinates of intermediate points [21]. We set (x, y) = (X/Z ,Y/Z)

and present the operations in projective coordinates, as described in [20]. We note
here that the point nP = (Xn,Yn, Zn) is the n−times multiple of the point P =
(X,Y, Z). The addition and doubling formulas for (m + n)P = mP + nP are as
follows: Addition formulas (m �= n)

{
Xm+n = Zm−n[(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)]2
Zm+n = Xm−n[(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)]2

Doubling formulas (m = n)

⎧⎨
⎩
4Xn Zn = (Xn + Zn)

2 − (Xn − Zn)
2

X2n = (Xn + Zn)
2(Xn − Zn)

2

Y2n = (4Xn Zn)((Xn − Zn)
2 + ((A + 2)/4)(4Xn Zn))

In [22], it is shown that the loop iteration in the Montgomery ladder using (X, Z)

coordinates is performed in only 11M + 4S. Moreover, as presented in [23], the
number of additions and doublings in scalar multiplications on Montgomery form
elliptic curves only depends on the bit length of the key and not on the bit patterns
or the bit itself at a certain position of the scalar.
Hessian curves
A Hessian curve over a field K is defined by the cubic equation

EK : x3 + y3 + z3 = dxyz, (3.9)

where d ∈ K and d3 �= 27. Hessian and twisted Hessian curves are interesting for
cryptography due to their small cofactor 3 and their side-channel resistance [24–26].
Moreover, theHessian addition formulas (also called Sylvester formulas) can be used
for doubling, a fact that provides a form of unification.
In [27], Farashahi and Joye presented efficient unified formulas for generalized
Hessian curves as follows:

EK : x3 + y3 + cz3 = dxyz, (3.10)

where c, d ∈ K , c �= 0 and d3 �= 27c. The unified formulas are complete for certain
parameter choices. More precisely, the group of K -rational points on a generalized
Hessian curve has complete addition formulas, if and only if c is not a cube in K .
The fastest known addition formulas on binary elliptic curves with 9M + 3S for

3 Recent Developments in Side-Channel Analysis … 55

extended projective coordinates and 8M + 3S for mixed affine-projective addition
are presented in [27]. The sum of two points P , Q represented in extended projective
coordinates by (Xi : Yi : Zi : Ai : Bi : Ci : Di : Ei : Fi), where Ai = X2

i , Bi = Y 2
i ,

Ci = Z2
i , Di = XiYi , Ei = Xi Zi , Fi = Yi Zi and for i = 1, 2, is the point P + Q =

(X3 : Y3 : Z3 : A3 : B3 : C3 : D3 : E3 : F3) with

⎧⎨
⎩

X3 = cC1F2 + D1A2,

Y3 = B1D2 + cE1C2,

Z3 = A1E2 + F1B2,

with A3 = X2
3, B3 = Y 2

3 , C3 = Z2
3 , D3 = X3Y3, E3 = X3Z3, F3 = Y3Z3.

The complete addition formulas for twisted Hessian curves of cofactor 3 in [24]
give the fastest results for prime-field curveswith 8.77M for certain curve parameters.

3.3 Scalar Multiplication Algorithms

ECCprimitives are used for cryptographic protocols such as theEllipticCurveDigital
Signature Algorithm (ECDSA) for digital signatures, Elliptic Curve ElGamal as an
encryption/decryption scheme, and Elliptic Curve Diffie-Hellman (ECDH) as a key
exchange scheme. The main operation in all those protocols using ECC is scalar
multiplication of a point P on a curve and with an integer k.

Computing the result of a scalar multiplication on an elliptic curve can be done
in a similar way as exponentiation in RSA. A simple and efficient algorithm is
binary scalar multiplication, where an n-bit scalar k is written in its binary form
(k0, k1, . . . , kn−1)2 with k = ∑

i ki2
i , ki ∈ {0, 1}. The binary algorithm processes

a loop, scanning the bits of the scalar (from the most significant bit to the least
significant one, or the other way around) and performing a point doubling only if the
current bit is 0 or a doubling and an addition if the bit is 1.

Scalar multiplication algorithms take as input a point P in affine or projective
coordinates and the scalar k. The result is the point [k]P on the curve. During the
execution of the algorithm, mixed coordinates can be used for an additional speed-up
[28].

Scalar multiplication is a sensitive operation, since it manipulates the secret key k
and returns the result according to the bits of the key. Naïve implementations of scalar
multiplication with if-statements are subject to SCA, and more precisely timing
attacks. Coron’s randomization countermeasures of point or scalar, as presented
in [29] and in Sect. 3.5, can thwart timing or DPA attacks, but not SPA attacks. SPA
leakage is present when there is a difference in operation flow between only doubling
or doubling-and-addition. Point additions and point doublings give different leakage
patterns and since these operations are key dependent, the key can be retrieved quite
easily. SPA-resistant algorithms are regular algorithms, which perform a constant
operation flow regardless of the scalar value. A nice overview of fast and regular
scalar multiplication algorithms is given in [30]. In this section, we present the most
broadly used regular scalar multiplication algorithms.

56 L. Papachristodoulou et al.

3.3.1 Left-to-Right Double-and-Add-Always Algorithm

The double-and-add-always algorithm was initially proposed by Coron in [31] as
a first attempt to avoid if-statements and therefore prevent the identification of
different operations. The algorithm performs a point doubling followed by a point
addition in a for loop, scanning the scalar bits from the most significant to the least
significant one. Both operations are performed in every loop and according to the
key bit, the final assignment toR0 will be eitherR0 orR1. There are no conditional

Algorithm 1: The left-to-right double-and-add-always algorithm
Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P
R0 ← P ;
for i ← x − 2 down to 0 do

R0 ← 2R0 ;
R1 ← R0 + P ;
R0 ← Rki ;

end

return R0

statements in the algorithm, but there is one key-dependent assignment, which can
leak secret information. Another important remark is that R0 is initialized by P
instead of O, in order to avoid exceptional cases given by the point at infinity.

3.3.2 Right-to-Left Double-and-Add-Always Algorithm

The binary right-to-left double-and-add-always algorithm of [32] is shown below as
Algorithm 2. The steps of the algorithm are similar to Algorithm 1with the following
differences:

• The bits of the scalar are scanned from the least significant to the most significant
one.

• Two temporary registers are used instead of three and they are both effectively
used, without any dummy operations.

Similar to Algorithm 3.3.1, there are no conditional statements in this algorithm,
but there is a key-dependent assignment,which canbevulnerable to attacks.However,
there are several attacks that can be mounted on the left-to-right, but not on the right-
to-left algorithm (for instance the Doubling attack, described in Sect. 3.4, is only
applicable on the left-to-right algorithm).

3 Recent Developments in Side-Channel Analysis … 57

Algorithm 2: Binary right-to-left double-and-add-always algorithm
Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P
R0 ← O;
R1 ← P ;
for i ← 0 up to x-1 do

b ← 1 − ki ;
Rb ← 2Rb ;
Rb ← Rb + Rki ;

end

return R0

3.3.3 Montgomery Ladder

The Montgomery Ladder, initially presented by Montgomery in [20] as a way to
speed up scalar multiplication on elliptic curves, and later used as the primary secure
and efficient choice for resource-constrained devices, is one of the most challenging
algorithms for simple side-channel analysis due to its natural regularity of operations.
A comprehensive security analysis of theMontgomery ladder, given by Joye andYen
in [33], showed that the regularity of the algorithm makes it intrinsically protected
against a large variety of implementation attacks (SPA, some fault attacks, etc.). The
Montgomery ladder is described in Algorithm 3. For a specific choice of projective
coordinates, as described in Sect. 3.2.2 and in [21], one can do computations with
only X and Z coordinates, whichmakes this optionmorememory efficient than other
algorithms.

Algorithm 3: The Montgomery Ladder
Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P
R0 ← P ;
R1 ← 2P ;
for i ← x − 2 down to 0 do

b ← 1 − ki ;
Rb ← R0 + R1 ;
Rki ← 2 · Rki ;

end

return R0

58 L. Papachristodoulou et al.

3.3.4 Side-Channel Atomicity

Side-channel atomicity is an SPA countermeasure proposed by Chevallier-Mames
et al. [34], in which individual operations are implemented in such a way that they
have an identical side-channel profile (e.g., for any branch and any key-bit related
subroutine). In short, it is suggested in [34] that the point doubling and addition
operations are implemented such that the same code is executed for both operations.
This renders the operations indistinguishable by simply inspecting a suitable side-
channel. One could, therefore, implement a point multiplication as described in
Algorithm 4.

Algorithm 4: Side-Channel Atomic double-and-add algorithm
Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P
R0 ← O; R1 ← P; i ← x − 1 ;
n ← 0 ;
while i ≥ 0 do

R0 ← R0 + Rn ;
n ← n ⊕ ki ;
i ← i − ¬n ;

end

return R0

There are certain choices of coordinates and curves for which this approach can
be deployed by using unified or complete addition formulas for the group operations.
The unified and complete formulas of Weierstrass, Edwards and Hessian curves are
described in Sect. 3.2.2.

3.4 Side-Channel Attacks on ECC

Attacking implementations of elliptic curve cryptography (ECC) with natural pro-
tection against side-channel attacks, e.g., implementations using Edwards curves, is
quite challenging. This form of elliptic curves, proposed byEdwards in 2007 [15] and
promoted for cryptographic applications by Bernstein and Lange [18], showed some
advantages compared to elliptic curves in Weierstrass form. For instance, the fast
and complete formulas for addition and doubling put these types of curves forward
as more appealing for memory-constrained devices and at the same time resistant to
classical simple power analysis (SPA) techniques. Recently, due to the work of Renes
et al., complete formulas have been published for curves in Weierstrass form [14].

Although considered a very serious threat against ECC implementations, dif-
ferential power analysis (DPA), as proposed in [1], cannot be applied directly to

3 Recent Developments in Side-Channel Analysis … 59

ECC-based algorithms and protocols. Soon after the first DPA paper by Kocher et
al., Coron showed how to attack the scalar multiplication operation by DPA tech-
niques [31]. However, the idea does not apply to other ECC protocols where the
secret is either not a scalar involved in the scalar multiplication algorithm or a scalar
that is used only once, like, e.g., in ECDSA or in ephemeral Diffie-Hellman. The
latter is incompatible with the requirement of DPA to collect a large number of power
traces of computations on the same secret data.

When attacking ECDSA, two secrets could be of interest for the attacker. She
could go for an ephemeral key or a secret scalar that becomes a part of the signature.
The idea of attacking the ephemeral key is to get reveal a few key bits (from just
one measurement) and then proceed with some sort of theoretical cryptanalysis to
recover the remaining bits. This kind of special attacks is often used in combination
with lattice techniques similar to [35, 36], in order to derive the whole private key
from a few bits of multiple ephemeral keys.

The richness of the mathematical structures behind public-key systems and other
algorithm-dependent features, that are special for both RSA and ECC, created oppor-
tunities formany unique side-channel attacks exploiting those features. The firstwork
to propose new techniques was the paper of Fouque and Vallette [37]. They introduce
a new attack against scalar multiplication (or modular exponentiation) that looks for
identical patterns within power traces due to the same intermediate results occurring
within the computation. In this way, the so-called “doubling attack” only requires
two queries to the device. This work has started a new line of research on new attack
techniques that reside somewhere between SPA and DPA, of which the most notable
are collision [5, 37–41] and template attacks [36, 42, 43].

Collision-based attacks exploit the fact that when processing the same data, the
same computations will result in the same (or very similar) patterns in the power con-
sumption traces.However, although the idea is easily verifiable, the efficiency ofmost
of the so far introduced collision-based attacks is shown only on simulated traces; no
practical experiments on real ECC implementations have confirmed those results. To
the best of our knowledge, only two practical collision-based attacks on exponentia-
tion algorithms were published, each of which rely on very specific assumptions and
deal with very special cases. Hanley et al. exploit collisions between input and output
operations within the same trace [44]. On the other hand, Wenger et al. performed
a hardware-specific attack on consecutive rounds of a Montgomery ladder imple-
mentation [45]. However, both attacks are very restrictive in terms of applicability to
various ECC implementations as they imply some special implementation options,
such as, e.g., the use of López–Dahab coordinates, where field multiplications use
the same key-dependent coordinate as input to two consecutive rounds. A class of
attacks similar to collision-based attacks is sometimes also called horizontal attacks
and they were first defined for modular exponentiation by Clavier et al. [46]. Their
attack is inspired by Walter’s work [38] and it requires a unique power trace, in this
way rendering classical randomization countermeasures. In another work [47], the
authors have introduced a general framework enabling to model both horizontal and
classical attacks (the latter are called vertical attacks in this work) in a simple way.

60 L. Papachristodoulou et al.

Their follow-up paper [41] introduced horizontal attacks for ECC but the results were
obtained from simulations only and no real measurements were used.

We observe that the trend of attacks is shifting more toward this type of collision
and horizontal attacks as known randomization-based countermeasures are effective
in protecting ECC against SPA and DPA attacks. Therefore, in the remainder of this
chapter we focus on collision-based/inspired attacks and we give a detailed example
of one such attack i.e. the Online Template Attack (OTA).

3.4.1 Collision-Correlation Attacks

Asmentioned above, collision attacks exploit leakages by comparing two portions of
the same or different traces exploiting the same power being consumed when values
are reused. The Big Mac attack [38] is the first theoretical attack on public-key cryp-
tosystems, in which only a single trace is required to observe key dependencies and
collisions during an RSA exponentiation. Witteman et al. performed a similar attack
on the RSA modular exponentiation even in the presence of blinded messages [48].
Clavier et al. introduced horizontal correlation analysis, as a type of attack where a
single power trace is enough to recover the private key [46]. They also extended the
Big Mac attack using different distinguishers, i.e., types of statistical tests.

The doubling attack, proposed by Fouque and Vallette [37] and described previ-
ously, is a special type of collision attack relevant to ECC. The main assumption of
this attack is that an adversary can distinguish collisions of power trace segments
(within a single or more power traces) when the device under attack performs twice
the same computation, even if the adversary is not able to tell which exact computa-
tion is done. Collision of two computations will not reveal the value of the operand.
Yen et al. extended this attack to the Refined Doubling Attack (RDA) [39], where the
adversary is assumed to be able to detect the collision between two modular squar-
ings, i.e., detecting if the squared value is the same or not. Collisions of computations
cannot be distinguished; the only knowledge obtained is that ki = ki−1 if a collision
is detected. Based on the derived relationship between every two adjacent private
key bits (either ki = ki−1 or ki �= ki−1) and a given bit (e.g., k0 or km−1), all other
private key bits can be derived uniquely. RDA is a powerful attack technique that
works against some scalar multiplication algorithms, which are resistant against the
doubling attack (e.g., the Montgomery power ladder).

3.4.2 Horizontal Attacks and Variants

An interesting class of side-channel attacks is the Horizontal Analysis attack, where
a single trace is used to recover the secret scalar. The main characteristic of the traces
that makes horizontal attacks possible lies in the fact that the operation sequences of
doubling-adding and doubling-doubling can be distinguished. The attacker applies

3 Recent Developments in Side-Channel Analysis … 61

the classical correlation analysis using different parts of time samples in the same
side-channel trace to recover the secret scalar bit-by-bit. This technique can be useful
to attack protected implementations, where the secret value or unknown input is
blinded. The first horizontal attacks were applied to RSA implementations; extension
of those to ECC implementations is straight-forward, since scalar multiplication and
exponentiation algorithms have the same operation steps.

The so-calledBigMac attack fromWalter [38] is the first attack of this kind, where
squarings (S) are distinguished frommultiplications (M) and the secret exponent of an
RSA exponentiation can be recovered from a single execution curve. The distinction
is possible by averaging and comparing the cycles performed in the multiplier of the
device during long-integer multiplication, since more cycles are needed for SM than
for SS. This attack can be directly applied to ECC implementations.

The term horizontalwas first introduced byClavier et al. in [46], where the authors
performed a horizontal correlation analysis to compute the correlation factor on sev-
eral segments extracted from a single execution curve of a known message RSA
encryption. More specifically, their proposed method starts by finding a sequence of
elementary calculations (Ci) j (with i, j ∈ Z indicating the sequence of the calcula-
tion and the order of the execution respectively) that processes the samemathematical
operation (e.g., fieldmultiplication) and depends on the same part of the secret scalar.
The outputs Oi j of the calculations Ci (Xi) that depend on the same input value Xi

will give high correlation results and in this way, they can be distinguished from out-
puts of computations with different input values. Horizontal correlation analysis was
performed on RSA using the Pearson correlation coefficient in [46] and triangular
trace analysis of the exponent in [49].

The most recent attack, proposed by Bauer et al. in [41], is a type of horizontal
collision correlation attack on ECC, which combines atomicity and randomization
techniques. Based on the basic assumption of collision attacks that an adversary is
able to distinguish when two field multiplications have at least one common operand,
their attack consists of the following steps:

• Identify two elementary calculationsC1,C2 that are processed N timeswith inputs
from the same distribution. The correlation between the random output values
O1, O2 must depend on the same secret sub-part s.

• For each of the N processings of Ci get an observation lij , with j ∈ {1, . . . , N }.
• Compute the Pearson correlation coefficient on the two samples of observations

ρ = ρ((l1j) j , (l
2
j) j).• Deduce information on the secret scalar from ρ using an appropriate distinguisher

that shows which observation is more similar to the real secret value.

The horizontal collision correlation attack is shown by simulated traces to be applica-
ble to atomic implementations and to implementations based on unified addition
formulas over Edwards curves.

Two recent publications on blinded asymmetric algorithms propose the combi-
nation of horizontal and vertical techniques, in an attempt to provide more practical
attacks against blinded implementations and avoid the complex signal processing
phase. Bauer et al. [50] at Indocrypt 2013, presented an attack on RSA blinded

62 L. Papachristodoulou et al.

exponentiation based on this approach. They took advantage of the side-channel
leakage of the entire long-integer modular multiplication without splitting the trace
into parts of single precision multiplications. However, their attack requires a small
public exponent (no greater than 216 + 1) and an exponent blinding factor smaller
than 32 bits. Their observation that the scalar blinding does not mask a large part of
the secret value, led Feix et al. [51] a year later to exploit this vulnerability vertically
on a ECC implementation. The most significant part of the blinded scalar can be
recovered with a horizontal attack. The least significant part of the scalar is retrieved
using vertical analysis (several execution traces) and the information leaked in the
previous steps of the attack.

3.4.3 Template Attacks

The most powerful SCA attack from an information theoretic point of view is con-
sidered to be a template attack (TA). Template attacks, as introduced in the original
paper by Chari et al. in [52], are a combination of statistical modeling and power
analysis attacks consisting of two phases, as follows:

• The first phase is the profiling or template-building phase, where the adversary
builds templates to characterize the device by executing a sequence of instructions
on fixed data. Focusing on an “interesting pattern” or finding the points of interest
is very common in this phase.

• The second phase is the template-matching phase, in which the adversary matches
or correlates the templates to actual traces of the device. By applying some signal
processing and classification algorithms to the templates, it is possible to find the
best matching for the traces.

In this type of attacks, the adversary is assumed to have in his possession a device
which behaves similar to the device under attack (target device), in order to build tem-
plate traces. In his device he can simulate the same algorithms and implementations
that run in the target device. For the template-matching phase several distinguishers
and classification algorithms are proposed; in the next section the most common
classifiers are presented.

The practical application of TAs is shown on several cryptographic implementa-
tions such as RC4 in [53] and elliptic curves in [54]. Medwed and Oswald demon-
strated in [42] a practical template attack on ECDSA. However, their attack required
an offline DPA attack on the EC scalar multiplication operation during the template-
building phase, in order to select the points of interest. They also need 33 template
traces per key bit. Furthermore, attacks against ECDSA and other elliptic curve sig-
nature algorithms only need to recover a few bits of the ephemeral scalar for multiple
scalar multiplications with different ephemeral scalars and can then employ lattice
techniques to recover the long-term secret key [35, 36, 43]. It is not possible to
obtain several traces in the context of ephemeral Diffie-Hellman: an attacker only
gets a single trace and needs to recover sufficiently many bits of this ephemeral scalar

3 Recent Developments in Side-Channel Analysis … 63

from side-channel information to be able to compute the remaining bits through, for
example, Kangaroo techniques [55, 56]. With these techniques and by using pre-
computation tables, it is possible to exploit partial information on the subkeys and
recover the last l unknown bits of the key in O(

3
√
l) group operations [57].

3.4.4 Common Distinguishers

In this section, the most common distinguishers used in SCA for correlation analysis
and template-matching are presented. Machine learning techniques for classification
and clustering are broadly used in SCA, in order to distinguish between traces with
high noise ratios.

According to [58], unsupervised clustering is generally useful in side-channel
analysis when profiling information is not available and an exhaustive partitioning
is computationally infeasible. The authors presented an attack on an FPGA-based
elliptic curve scalar multiplication using the k−means method. In [59], Perin et al.
used unsupervised learning to attack randomized exponentiations.

Lerman et al. showed in [60] that machine learning techniques give better clas-
sification results when there is limited ability of the adversary to perform profiling
of the device and in a high dimensionality context, where many parameters affect
the leakage of the device. Indeed, combining three side-channel leakages and a
clustering-based approach for non-profiled attacks, gives higher success rates than
traditional template attacks, as shown by Specht et al. in [61].

The success results of online template attacks (presented in the next section) are
significantly improved in [62] by using the k-nearest neighbor approach, naïve Bayes
classification and the support vector machine method for template classification. In
order to explain these techniques, we first give the definition of the Euclidean distance
and the Pearson correlation coefficient.
Euclidean Distance The Euclidean distance between two points is defined as the
square root of the sum of the squares of the differences between the corresponding
point values:

dEUC =
√√√√

n∑
i=1

(xi − yi)2

In the SCA setting, a realization of a random variable X corresponds to x . A sample
of n observations or traces of X is denoted by (xi)1≤i≤n , where the index i denotes
the different observations or the different time when an observation occurs in the
same trace.
Pearson correlation The Pearson correlation coefficient measures the linear inde-
pendence between two observations X and Y :

64 L. Papachristodoulou et al.

ρ(X,Y) = n
∑

i xi yi − ∑
i xi

∑
i yi√

n
∑

i x
2
i − (

∑
i xi)

2

√
n

∑
i

y2i − (
∑
i

yi)2

In SCA, the Pearson correlation coefficient is used to describe the difference in the
Hamming weight of the observations.
Naïve Bayes Classification The naïve Bayes classification method is based on prob-
ability concepts, and more precisely on the Bayes theorem for conditional proba-
bilities of independent events [63]. According to the conditional probability model,
let x = (x1, . . . , xn) be the vector of problem instances (independent variables) to
be classified, each one having a feature n. Each instance is assigned a probability
p(ck |x1, . . . , xn), for k possible classes. The set of classes c1, c2, . . . , ck is mutually
exclusive and exhaustive.

Using Bayes’ theorem, the posterior conditional probability is p(ck |x) =
p(ck) p(x|ck)

p(x)
. Assuming that each event and posterior probability is independent

on each previous event, the conditional distribution over the class variable c is
p(ck |x1, . . . , xn) = 1

Z p(ck)
∏n

i=1 p(xi |ck)where the evidence Z = p(x) is a scaling
factor dependent only on x1, . . . , xn , that is, a constant if the values of the feature
variables are known.

The naïve Bayes classifier is a function that combines the naïve Bayes probability
model with a decision rule. One common rule is to pick the hypothesis that is most
probable; that is the maximum value of the a posteriori probability. For each class
ci , the class index that gives the maximum value for an event is chosen as classifier.
K-Nearest NeighborThe k-NearestNeighborClassification (kNN) is a classification
method based on the closest instances of the training set to the unlabeled data.
Basically, according to [63], it consists of the following two steps:

1. Choose the number of k closest instances (from the training set) to the sample.
2. The majority label (class) for the chosen closest instances will be class for the

unlabeled data.

The distancemetric plays an important role, in order to determine the closest instance.
In kN N , the Euclidean distance or the Manhattan distance can be used. The value
k indicates the number of the already-classified closest instances that are chosen in
order to classify the next unlabeled data. The default value is 1, but with larger value
for k it is possible to obtain higher success rate with less template traces. Figure3.2
shows an example with k = 2 and k = 4 close instances; if the new sample is closer
to A, it will be classified in the “A-class.”

Fig. 3.2 kN N method for
k = 2 and k = 4

3 Recent Developments in Side-Channel Analysis … 65

Fig. 3.3 SVM: distance to
the hyperplane for two sets
of training data

SVMASupport VectorMachine (SVM) is a supervised learningmodel that produces
a discriminative classifier formally defined by a separating hyperplane. In other
words, given labeled training data, the algorithm outputs an optimal hyperplane
which categorizes new examples. Figure3.3 shows such a hyperplane. An optimal
hyperplane, as defined in [64], is the one that gives the largest minimum distance to
the training points, because in this way noisy data will still be classified correctly.
Therefore, the optimal separating hyperplane maximizes the margin of the training
data. An SVMmodel is a representation of the examples as points in space, mapped
so that the examples of the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall on. The classifier
in an SVM can be nonlinear for data sets that are not easily separable, but in the
following analysis a linear classifier gives very good results.

3.4.5 A Special Case: Online Template Attacks

In this section, we present in more detail an adaptive template attack technique,
which is called an Online Template Attack (OTA) and is initially proposed by Batina
et al. in [65]. This technique resides between horizontal and template attacks. The
attacker is able to recover a complete scalar after obtaining only one power trace
of a scalar multiplication from the device under attack. This attack is characterized
as online, because templates are created after the acquisition of the target trace.
While the same terminology is used, OTA is not a typical template attack; i.e., no
preprocessing template-building phase is necessary. OTA functions by acquiring one
target trace from the device under attack and comparing patterns of certain operations
from this trace with templates obtained from the attacker’s device that runs the same
implementation. Pattern matching is performed at suitable points in the algorithm,
where key-bit related assignments take place by using an automated module based
on the Pearson correlation coefficient.

The attacker needs only very limited control over the device used to generate the
online template traces. The main assumption is that the attacker can choose the input
point to a scalar multiplication, an assumption that trivially holds even without any
modification to the template device in the context of ephemeral Diffie-Hellman. It

66 L. Papachristodoulou et al.

also holds in the context of ECDSA, if the attacker can modify the implementation
on the template device or can modify internal values of the computation. This is no
different than for previous template attacks against ECDSA.

OTA is defined as a side-channel attack with the following conditions:

1. The attacker obtains only one power trace of the cryptographic algorithm involv-
ing the targeted secret data. This trace is called the target trace. The device, from
which the target trace is obtained, is the target device. The fact that only one target
trace is necessary for the attack, makes it possible to attack scalar multiplication
algorithms with ephemeral scalar and with randomized scalar.

2. The attacker is generating template traces after having obtained the target trace.
These traces are called (online) template traces.

3. The attacker obtains the template traces on the target device or a similar device3

with very limited control over it, i.e., access to the device to run several executions
with chosen public inputs. The attacker does not rely on the assumption that the
secret data are the same for all template traces.

4. At least one assignment in the exponentiation algorithm is made depending on the
value of particular scalar bit(s), but there are no brancheswith key-dependent com-
putations. Since the doubling operation is attacked, this key-dependent assign-
ment should be during doubling. As a counterexample, it is noted that the binary
right-to-left add-always algorithm for Lucas recurrences [32] is resistant to the
proposed attack, because the result of the doubling is stored in a non-key-
dependent variable.

The attack methodology is as follows:

• Acquire a full target trace from the device under attack, during the execution of a
scalar multiplication.

• Locate the doubling and addition operations performed in each round.
• Find multiples of mP , where m ∈ Z,m ≤ k and k is the scalar. These points are
used to create the template traces.

The methodology offers a generic attack framework, which does not require any
previous knowledge of the leakage model nor a specific type of curve. It is applicable
to various forms of curves (Weierstrass, Edwards and Montgomery curves), scalar
multiplication algorithms and implementations. Contrary to the doubling attack [37],
OTA can be launched against right-to-left algorithms and the Montgomery ladder.

The basic idea, as depicted in Fig. 3.4 consists of comparing the traces for the
inputs P (target trace) and 2P (online template trace) while executing scalar mul-
tiplication and then finding similar patterns between them, based on the hypothesis
on a bit for a given operation. The target trace is obtained only once. For every bit
of the scalar, an online template trace with input kP, k ∈ Z is obtained, where k is
chosen as a function of a hypothesis on this bit.

In the original paper, pattern matching is performed using the Pearson correla-
tion coefficient, ρ(X,Y), which measures the linear relationship between two vari-

3Similar device means the same type of microcontroller running the same algorithm.

3 Recent Developments in Side-Channel Analysis … 67

D(O)

D(O)

kMSB

Template Trace

Target Trace

time

kMSB−2

D(2P)
or D(3P)A(2P,P)

D(2P) A(4P,2P)

D(P)A(O,P)

A(O,2P)

kMSB−1

Fig. 3.4 Schematic representation of OTA [66]

ables X and Y . For power traces, the correlation coefficient shows the relationship
between two points of the trace,which indicates theHamming-weight leakage of key-
dependent assignments during the execution of a cryptographic algorithm. Extension
to other distinguishers from machine learning is performed in [62].

The template matching corresponds to a list of correlation coefficients that show
the relationship between all samples from the template trace to the same consecutive
amount of samples in the target trace. If the hypothesis on the given key bit is correct,
then the pattern match between the template traces at the targeted operation will be
high (in experiments it reached 99%).

In this way, the first i bits of the key can be recovered. Knowledge of the first i bits
provides the attacker with complete knowledge of the internal state of the algorithm
just before the (i + 1)th bit is processed. Since at least one operation in the loop
depends on this bit, a hypothesis can be made about the (i + 1)th bit, a template
trace based on this hypothesis is computed, and this trace is correlated with the target
trace at the relevant predetermined point of the algorithm.
OTA on scalar multiplication algorithms The core idea and feasibility of the attack
is demonstrated through an example based on the double-and-add-always algorithm
described in Algorithm 1. Table3.1 shows two executions of the algorithm for two
different scalars k = 100 and k = 110. The first execution of the loop always starts by
doubling the input pointP , for all values of k. It is assumed that kx−1 = 1. Depending
on the second-most significant key bit kx−2, the output of the first iteration of the
algorithm will be either 2P or 3P . For any point P it is, therefore, possible to get a
power trace for the operation 2P , i.e., the attacker lets the algorithm execute the first
two double-and-add iterations. In the proposed setup, the authors could zoom into
the level of one doubling, which will be the template trace. Then, the attacker can

Table 3.1 Two executions of the double-and-add-always algorithm [65]

k = 100 k = 110

R0 = P R0 = P

R0 = 2P, R1 = 3P , return 2P R0 = 2P, R1 = 3P , return 3P

R0 = 4P, R1 = 5P , return 4P R0 = 6P, R1 = 7P , return 6P

68 L. Papachristodoulou et al.

perform the same procedure with 2P as the input point to obtain the online template
trace that he wants to compare with the target trace. If it is assumed, that the second-
most significant bit of k is 0, then he compares the 2P template with the output of
the doubling in the first iteration. Otherwise, he compares it with the online template
trace for 3P .

Assuming that the first (i − 1) bits of k are known, he can derive the i th bit by
computing the two possible states of R0 after this bit has been treated and recover
the key iteratively. Note that only the assignment in the i th iteration depends on the
key bit ki , but none of the computations do, so it is necessary to compare the trace
of the doubling operation in the (i + 1)th iteration with the original target trace. To
decide whether the i th bit of k is zero or one, the trace that the doubling operation in
the (i + 1)th iteration would give for ki+1 = 0 is compared with the target trace. For
completeness, he can compare the target trace with a trace obtained for ki+1 = 1 and
verify that it has a lower pattern match percentage; in this case, the performed attack
needs two template traces per key bit. However, if during the acquisition phase the
noise level is low and the signal is of good quality, an efficient attack can be performed
with only the target trace and a single trace for the hypothetical value of Rki+1 .

Attacking the right-to-left double-and-add-always algorithm of [32] can be done
in a similar way, since it is a type of key-dependent assignment OTA. The attacker
targets the doubling operation and notes that the input point will be doubled either
in the first (if k0 = 0) or in the second iteration of the loop (if k0 = 1). If k is fixed
he can easily decide between the two by inputting different points, since if k0 = 1
he will see the common operation 2O. If k is not fixed, he simply measures the first
two iterations and again uses the operation 2O if the template generator should use
the first or second iteration. Once he is able to obtain clear traces, the attack itself
follows the general description of an OTA.
Montgomery Ladder The main observation that makes OTA attacks applicable to
the Montgomery ladder is that at least one of the computations, namely the doubling
in the main loop, directly depends on the key bit ki . For example, if it is assumed
that the first three bits of the key are 100, then the output of the first iteration will
be R0 = 2P . If it is assumed that the first bits are 110, then the output of the first
iteration will be R0 = 3P . Therefore, if the attacker compares the pattern of the
output of the first iteration of Algorithm 3 with scalar k = 100, he will observe a
higher correlation with the pattern of R0 = 2P than with the pattern of R0 = 3P .
This is demonstrated in the working example of Table3.2.

Table 3.2 Two executions of the Montgomery ladder [65]

k = 100 k = 110

R0 = P, R1 = 2P R0 = P, R1 = 2P

b = 1 R1 = 3P , R0 = 2P b = 0 R0 = 3P , R1 = 4P

b = 1 R1 = 5P , R0 = 4P b = 1 R1 = 7P , R0 = 6P

3 Recent Developments in Side-Channel Analysis … 69

Side-channel atomicity
Simple atomic algorithms do not offer any protection against online template

attacks, because the regularity of point operations does not prevent mounting this
sort of attack. The point 2P , as an output of the third iteration of Algorithm 4, will
produce a power trace with a pattern that is very similar to the trace that would have
the point 2P as an input. Therefore, the attack will be the similar to the one described
for the binary left-to-right double-and-add-always algorithm; the only difference is
that instead of the output of the second iteration of the algorithm, the attacker has
to focus on the pattern of the third iteration. In general, when an attacker forms a
hypothesis about a certain number of bits of k, the hypothesis will include the point
in time whereR0 will contain the predicted value. This means that he would have to
acquire a larger target trace to allow all hypotheses to be tested.
Practical results The feasibility and efficiency of OTA is shown in [65] with prac-
tical attacks on the double-and-add-always scalar multiplication running on the
ATmega163 microcontroller [67] in a smart card. The scalar multiplication algo-
rithm is based on the curve arithmetic of the Ed25519 implementation presented
in [68], which is available online at http://cryptojedi.org/crypto/#avrnacl. The ellip-
tic curve used in Ed25519 is the twisted Edwards curve E : −x2 + y2 = 1 + dx2y2

with d = −(121665/121666) and base point

For more details on Ed25519 and this specific curve, see [69, 70]. The whole under-
lying field and curve arithmetic is the same as in [68]. This means in particular
that points are internally represented in extended coordinates as proposed in [71].
In this coordinate system, a point P = (x, y) is represented as (X : Y : Z : T) with
x = X/Z , y = Y/Z , and x · y = T/Z .

Experimental results of OTA with extended projective coordinates of 256 bits,
extended projective coordinates with reduced 255-bit input and input points with
affine compressed coordinates are presented in [65]. The attack targets the output
of the doubling operation and then performs pattern matching based on the Pearson
correlation coefficient.

The correct key bit guess (k2 = 0) gives 97% correlation of the target trace with
the template trace for 2P . On the other hand, the correlation of the target trace
with the template trace for 3P is at most 83%. These high correlation results hold
when one key bit is attacked. For every key bit, the pattern matching will give
peaks as in Fig. 3.5. Attacking five bits with one acquisition gives lower numbers
for pattern matching for both the correct and the wrong scalar guess, mainly due
to the noise that is higher for longer acquisitions. However, the difference between
correct and wrong assumptions is still remarkable; correct bit assumptions have 84–
88% matching patterns, while the correlation for the wrong assumptions drops to
50–72%. To determine the value of one bit, it is thus necessary to compute only one
template trace, and decide on the value of the targeted bit depending on whether the

http://cryptojedi.org/crypto/#avrnacl

70 L. Papachristodoulou et al.

Fig. 3.5 Pattern Matching 2P (blue) to target and 3P to target (brown) [65]

correlation is above or below a certain threshold (in this case, the threshold can be
set to 80%.
Error-Detection and CorrectionThe idea ofOnlineTemplateAttackswas extended
by Dugardin et al. in [66] with an adaptive template attack on scalar multiplication.
The authors propose a generic method to distinguish matching templates and using
two templates per key bit, they manage to detect and correct errors for wrong bit
assumptions. This fact increases the success rate of the attack significantly compared
to the originalOTA, reaching 99.8%when100 average template traces are used. They
also take advantage of the horizontal and vertical leakage,which occurs in the broadly
used software implementation of mbedTLS during the modular multiplication of
large numbers (256-bit elements).
Classification Algorithms for Template AttacksThe fact that the template-building
phase in OTA is not necessary, significantly simplifies the process of retrieving the
key, leaving the overhead of the attack in the template-matching phase. The template-
matching technique used for both OTA papers [65, 66] is based on the Pearson
correlation coefficient. In [62], more efficient techniques from the field of Machine
Learning are used as distinguishers, and the proposed attack reaches a success rate
of 100% with only 20 template traces per key bit. This work is the first step toward a
framework for “automating” the template-matching phase. The attack can be classi-
fied as a form of OTA having the same attack model and assumptions. The proposed
classification techniques from the field of Machine Learning (k−Nearest Neighbor,
Naïve Bayes, SVM) provide an efficient and simplified way to match templates dur-
ing a Template Attack with very high success rates. A practical application of this
attack is demonstrated on the scalar multiplication algorithm for the Brainpool curve
BP256r1 implemented in mbedTLS (formerly PolarSSL, version 1.3.7).

3.5 Countermeasures

To prevent first-order DPA attacks [1, 4], it is not sufficient to make the operations
time-constant and the power traces indistinguishable. The most common counter-
measure applied in ECC implementations is randomization of the secret values. In
this way, developers make it more difficult to extract useful information from secret
values. This section first covers different types of randomization. Further, we focus
specifically on countermeasures against OTA attacks.

3 Recent Developments in Side-Channel Analysis … 71

3.5.1 Randomization Countermeasures

Scalar randomization Instead of a point multiplication with the scalar k, the blinded
scalar k ′ is used, which is computed as follows:

k ′ = k + #E · r .

Here, #E is the number of points on the curve and r is a random number [31].
Because kP and k ′P always result in the same point on the elliptic curve, this method
is effective against first-order DPA attacks when the random number is changed for
every execution of the point multiplication.
Projective coordinate randomization In addition to scalar randomization, another
countermeasure against DPA attacks on elliptic curve point multiplication is pro-
jective coordinate randomization. This countermeasure exploits the fact that the
Z -coordinate can be chosen randomly when using projective coordinates [31]. This
comes down to choosing a different Z -coordinate for each pointmultiplication during
the conversion of the input point P to projective coordinates.
Base point splitting Using this technique, the scalar multiplication is not performed
on the point P , but on the point P + R, where R is a random point on the curve.
After the point multiplication k(P + R), the value kR is subtracted from the result.
Elliptic curve isomorphism randomization The idea to protect scalar multipli-
cation by transforming a curve through various random morphisms, was initially
proposed by Joye and Tymen in [72]. Assume that φ is a random isomorphism
from EK → E ′

K , which maps P ∈ EK → P ′ ∈ E ′
K . Multiplying P ′ with k will give

Q′ = [k]P ′ ∈ E ′
K . With the inverse map φ−1 we can get back to Q = [k]P . An

attacker needs to know the internal representation of the point in order to perform a
successful attack, so if P ′ is on a curve that the adversary does not know, he cannot
create input points in the correct representation.

3.5.2 OTA Countermeasures

Given that an attacker needs to predict the intermediate state of an algorithm at
a given point in time, we can assume that the countermeasures that are used to
prevent DPAwill also have an effect on the OTA. There are methods for changing the
representation of a point, which can prevent OTA and make the result unpredictable
to the attacker. Most notably those countermeasures are randomizing the projective
representation of points and randomizing the coordinates through a random field
isomorphism as described in [73]. However, inserting a point in affine coordinates
and changing to (deterministic) projective coordinates during the execution of the
scalar multiplication (compressing and decompressing of a point), does not affect
the OTA type of attack, as it is shown with practical experiments in [65].

72 L. Papachristodoulou et al.

References

1. Kocher P, Jaffe J, Jun B. Differential power analysis. In: Wiener M, editor. Advances in cryp-
tology CRYPTO ’99, vol. 1666. LNCS, Springer; 1999. p. 388–97.

2. GandolfiK,Mourtel C, Olivier F. Electromagnetic analysis: concrete results. In: Proceedings of
third international work-shop, Cryptographic hardware and embedded systems—CHES 2001,
Paris, France, May 14–16, 2001. Generators; 2001. p. 251–61. doi:10.1007/3-540-44709-1_
21. http://dx.doi.org/10.1007/3-540-44709-1_21.

3. Quisquater J-J, Samyde D. Electro magnetic analysis (EMA): measures and counter-measures
for smart cards. In: Proceedings of the international conference on research in smart cards:
smart card programming and security. E-SMART ’01. London, UK, UK: Springer; 2001.
p. 200–10. ISBN:3-540-42610-8. http://dl.acm.org/citation.cfm?id=646803.705980.

4. Kocher PC. Timing attacks on implementations of Diffe-Hellman, RSA, DSS, and other sys-
tems. In: Koblitz N, editor. Advances in cryptology CRYPTO ’96, vol. 1109. LNCS, Springer;
1996. p. 104–13.

5. Schramm K, Wollinger T, Paar C. A new class of collision attacks and its application to DES.
In: Johansson T, editor. Fast software encryption, vol. 2887. LNCS, Springer; 2003. p. 206–22.

6. Miller VS. Use of elliptic curves in cryptography. In: Williams HC, editor. Proceedings of
advances in cryptology—CRYPTO ’85, Santa Barbara, California, USA, August 18–22, 1985,
vol. 218. Lecture notes in computer science. Springer; 1985. p. 417–26. ISBN:3-540-16463-4.
doi:10.1007/3-540-39799-X_31. http://dx.doi.org/10.1007/3-540-39799-X_31.

7. Koblitz N. Elliptic curve cryptosystems. Math Comput. 1987;48:203–9.
8. BlakeNSI, SeroussiG.Advances in elliptic curve cryptography, vol. 317.CambridgeUniversity

Press; 1999.
9. ANSI-X9.62. Public key cryptography for the financial services industry: the elliptic curve

digital signature algorithm (ECDSA), 1998.
10. ANSI-X9.63. Public key cryptography for the financial services industry: key agreement and

key transport using elliptic curve cryptography, 1998.
11. BSI. RFC 5639—Elliptic curve cryptography (ECC) brainpool standard curves and curve

generation. Technical report Bundesamt für Sicherheit in der Informationstechnik (BSI), 2010.
12. NIST. FIPS Publication 186-4—Digital signature standard (DSS). Tech. rep. National Institute

of Standards and Technology (NIST), 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
186-4.pdf.

13. Bosma W, Lenstra H. Complete systems of two addition laws for elliptic curves. J Num-
ber Theory 1995;53(2):229–40. ISSN:0022-314X. http://dx.doi.org/10.1006/jnth.1995.1088.
http://www.sciencedirect.com/science/article/pii/S0022314X85710888.

14. Renes J, Costello C, Batina L. Complete addition formulas for prime order elliptic curves.
In: Fischlin M, Coron J-S, editors. Proceedings of progress in cryptology EUROCRYPT 2016
(35th international conference on cryptology in Europe, Vienna, Austria, May 8–12, 2016),
vol. 9665. LNCS, Springer. p. 403–28.

15. Edwards HM. A normal form for elliptic curves. In: Koç ÇK, Paar C, editors. Bulletin of the
American mathematical society, vol. 44. 2007. p. 393–422. http://www.ams.org/journals/bull/
2007-44-03/S0273-0979-07-01153-6/home.html.

16. Bernstein DJ, Lange T. A complete set of addition laws for incomplete Edwards curves. In:
IACR cryptology ePrint archive 2009. p. 580. http://eprint.iacr.org/2009/580.

17. Bernstein DJ, Lange T. Faster addition and doubling on elliptic curves. In: Kurosawa K, editor.
Advances in cryptologyASIACRYPT 2007, vol. 4833. LNCS, Springer; 2007. p. 29–56. http://
cr.yp.to/papers.html#newelliptic.

18. Bernstein DJ, Birkner P, Joye M, Lange T, Peters C. Twisted edwards curves. In: Vaudenay
S, editor. Progress in cryptology AFRICACRYPT 2008, vol. 5023. LNCS, Springer; 2008,
p. 389–405. http://cr.yp.to/papers.html/#twisted.

19. Bernstein DJ, Lange T. Explicit formulas database. http://www.hyperelliptic.org/EFD/.
20. Montgomery PL. Speeding the pollard and elliptic curve methods of factorization. Math Com-

put. 1987;48(177):243–64.

http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dl.acm.org/citation.cfm?id=646803.705980
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://dx.doi.org/10.1006/jnth.1995.1088
http://www.sciencedirect.com/science/article/pii/S0022314X85710888
http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://eprint.iacr.org/2009/580
http://cr.yp.to/papers.html#newelliptic
http://cr.yp.to/papers.html#newelliptic
http://cr.yp.to/papers.html/#twisted
http://www.hyperelliptic.org/EFD/

3 Recent Developments in Side-Channel Analysis … 73

21. Stam M. On montgomery-like representations for elliptic curves over GF(2k). In: Desmedt
YG, editor. Proceedings of public key cryptography PKC 2003: 6th international workshop on
practice and theory in public key cryptography Miami, FL, USA, January 6–8, 2003. Berlin,
Heidelberg: Springer; 2002. p. 240–54. ISBN: 978-3-540-36288-3. doi:10.1007/3-540-36288-
6_18. http://dx.doi.org/10.1007/3-540-36288-6_18.

22. Izu T, Möller B, Takagi T. Improved elliptic curve multiplication methods resistant against side
channel attacks. In: Progress in cryptology—INDOCRYPT2002, third international conference
on cryptology in India, Hyderabad, India, December 16–18, 2002. p. 296–313. doi:10.1007/
3-540-36231-2_24. http://dx.doi.org/10.1007/3-540-36231-2_24.

23. Okeya K, Kurumatani H, Sakurai K. Elliptic curves with the montgomery-form and their
cryptographic applications. In: Proceedings public key cryptography, third international work-
shop on practice and theory in public key cryptography, PKC 2000, Melbourne, Victoria,
Australia, January 18–20, 2000. p. 238–57. doi:10.1007/978-3-540-46588-1_17. http://dx.
doi.org/10.1007/978-3-540-46588-1_17.

24. Bernstein DJ, Chuengsatiansup C, Kohel D, Lange T. Twisted hessian curves. In: Proceedings
of progress in cryptology—LATINCRYPT 2015—4th international conference on cryptology
and information security in Latin America, Guadalajara, Mexico, August 23–26, 2015. p. 269–
94. doi:10.1007/978-3-319-22174-8_15. http://dx.doi.org/10.1007/978-3-319-22174-8_15.

25. Hisil H, Wong KK-H, Carter G, Dawson E. Faster group operations on elliptic curves. In:
Brankovic L, Susilo W, editors. Seventh Australasian information security conference (AISC
2009), vol. 98. CRPIT. Wellington, New Zealand: ACS; 2009. p. 7–19.

26. Joye M, Quisquater J. Hessian elliptic curves and side-channel attacks. In: Proceedings of
Cryptographic hardware and embedded systems—CHES 2001, third international workshop,
Paris, France, May 14–16, 2001. Generators, 2001. p. 402–10. doi:10.1007/3-540-44709-1_
33. http://dx.doi.org/10.1007/3-540-44709-1_33.

27. Farashahi RR, Joye M. Effcient arithmetic on hessian curves. In: Proceedings of Public key
cryptography—PKC 2010, 13th international conference on practice and theory in public key
cryptography, Paris, France, May 26–28, 2010. p. 243–60. doi:10.1007/978-3-642-13013-7_
15. http://dx.doi.org/10.1007/978-3-642-13013-7_15.

28. Cohen H, Miyaji A, Ono T. Efficient elliptic curve exponentiation using mixed coordinates. In:
OhtaK, PeiD, editors. Proceedings of advances in cryptology—ASIACRYPT ’98, international
conference on the theory and applications of cryptology and information security, Beijing,
China, October 18–22, 1998. Lecture notes in computer science, vol. 1514. Springer; 1998.
p. 51–65. ISBN: 3-540-65109-8. doi:10.1007/3-540-49649-1_6. http://dx.doi.org/10.1007/3-
540-49649-1_6.

29. Coron J. Resistance against differential power analysis for elliptic curve cryptosystems. In:
Koç ÇK, Paar C, editors. Proceedings of cryptographic hardware and embedded systems, first
international workshop, CHES ’99, Worcester, MA, USA, August 12–13, 1999. Lecture notes
in computer science, vol. 1717. Springer; 1999. p. 292–302. ISBN: 3-540-66646-X. doi:10.
1007/3-540-48059-5_25. http://dx.doi.org/10.1007/3-540-48059-5_025.

30. Rivain M. Fast and regular algorithms for scalar multiplication over elliptic curves. In: IACR
Cryptology ePrint Archive, 2011. p. 338. http://eprint.iacr.org/2011/338.

31. Coron J-S. Resistance against differential power analysis for elliptic curve cryptosystems.
In: Koç ÇK, Paar C, editors. Cryptographic hardware and embedded systems CHES’99,
vol. 1717. LNCS, Springer; 1999. p. 292–302. http://saluc.engr.uconn.edu/refs/sidechannel/
coron99resistance.pdf.

32. Joye M. Highly regular right-to-left algorithms for scalar multiplication. In: Paillier P, Ver-
bauwhede I, editors. Cryptographic hardware and embedded systems CHES 2007, vol. 4727.
LNCS, Springer; 2007. p. 135–47.

33. Joye M, Yen S. The montgomery powering ladder. In: Kaliski BS, Koç ÇK, Paar C, editors.
Cryptographic hardware and embedded systemsCHES2002, vol. 2523. LNCS, Springer; 2002.
p. 291–302.

34. Chevallier-Mames B, Ciet M, Joye M. Low-cost solutions for preventing simple sidechannel
analysis: side-channel atomicity. IEEE Trans Comput. 2004;53(6):760–8.

http://dx.doi.org/10.1007/3-540-36288-6_18
http://dx.doi.org/10.1007/3-540-36288-6_18
http://dx.doi.org/10.1007/3-540-36288-6_18
http://dx.doi.org/10.1007/3-540-36231-2_24
http://dx.doi.org/10.1007/3-540-36231-2_24
http://dx.doi.org/10.1007/3-540-36231-2_24
http://dx.doi.org/10.1007/978-3-540-46588-1_17
http://dx.doi.org/10.1007/978-3-540-46588-1_17
http://dx.doi.org/10.1007/978-3-540-46588-1_17
http://dx.doi.org/10.1007/978-3-319-22174-8_15
http://dx.doi.org/10.1007/978-3-319-22174-8_15
http://dx.doi.org/10.1007/3-540-44709-1_33
http://dx.doi.org/10.1007/3-540-44709-1_33
http://dx.doi.org/10.1007/3-540-44709-1_33
http://dx.doi.org/10.1007/978-3-642-13013-7_15
http://dx.doi.org/10.1007/978-3-642-13013-7_15
http://dx.doi.org/10.1007/978-3-642-13013-7_15
http://dx.doi.org/10.1007/3-540-49649-1_6
http://dx.doi.org/10.1007/3-540-49649-1_6
http://dx.doi.org/10.1007/3-540-49649-1_6
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-48059-5_025
http://eprint.iacr.org/2011/338
http://saluc.engr.uconn.edu/refs/sidechannel/coron99resistance.pdf
http://saluc.engr.uconn.edu/refs/sidechannel/coron99resistance.pdf

74 L. Papachristodoulou et al.

35. Benger N, van de Pol J, Smart NP, Yarom Y. Ooh aah... just a little bit: a small amount of side
channel can go a longway. In: Proceedings of cryptographic hardware and embedded systems—
CHES 2014—16th international workshop, Busan, South Korea, September 23–26, 2014.
p. 75–92. doi:10.1007/978-3-662-44709-3_5. http://dx.doi.org/10.1007/978-3-662-44709-
3_5.

36. Römer T, Seifert J. Information leakage attacks against smart card implementations of the
elliptic curve digital signature algorithm. In:Attali I, JensenT, editors. Smart card programming
and security, vol. 2140. LNCS, Springer; 2001. p. 211–19.

37. Fouque P-A, Valette F. The doubling attack why upwards is better than downwards. In: Walter
CD, Koç ÇK, Paar C, editors. Cryptographic hardware and embedded systems CHES 2003,
vol. 2779. LNCS, Springer; 2003. p. 269–80.

38. Walter CD. Sliding windows succumbs to big mac attack. In: Koç ÇK, Naccache D, Paar
C, editors. Cryptographic hardware and embedded systems CHES 2001, vol. 2162. LNCS,
Springer; 2001. p. 286–99.

39. Yen S, Ko L, Moon S, Ha J. Relative doubling attack against montgomery ladder. In: Won DH,
Kim S, editors. Information security and cryptology ICISC 2005, vol. 3935. LNCS, Springer;
2005. p. 117–28.

40. HommaN,Miyamoto A, Aoki T, Satoh A, Shamir A. Collision-based power analysis of modu-
lar exponentiation using chosen-message pairs. In: Oswald E, Rohatgi P, editors. Cryptographic
hardware and embedded systems—CHES 2008, vol. 5154. LNCS, Springer; 2008. p. 15–29.

41. Bauer A, Jaulmes É, Prouff E, Wild J. Horizontal collision correlation attack on elliptic curves.
In: Lange T, Lauter K, Lisonek P, editors. Selected areas in cryptography, vol. 8282. LNCS,
Springer; 2014. p. 553–70.

42. MedwedM, Oswald E. Template attacks on ECDSA. In: Chung K-I, Sohn K, YungM, editors.
Information security applications, vol. 5379. LNCS, Springer; 2009. p. 14–27.

43. Mulder ED, Hutter M, Marson ME, Pearson P. Using bleichenbacher’s solution to the hidden
number problem to attack nonce leaks in 384-Bit ECDSA. In: Bertoni G, Coron J-S, editors.
Cryptographic hardware and embedded systemsCHES2013, vol. 8086. LNCS, Springer; 2013.
p. 435–52. https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=71281.

44. Hanley N, Kim H, Tunstall M. Exploiting collisions in addition chain-based expo-nentiation
algorithms using a single trace. Cryptology ePrint Archive, Report 2012/485.2012.

45. Wenger E, Korak T, Kirschbaum M. Analyzing side-channel leakage of RFID suitable light-
weight ECC hardware. In: Hutter M, Schmidt J-M, editors. Radio frequency identification, vol.
8262. LNCS, Springer; 2013. p. 128–44.

46. Clavier C, Feix B, Gagnerot G, Roussellet M, Verneuil V. Horizontal correlation analysis on
exponentiation. In: Soriano M, Qing S, Lopez J, editors. Information and communications
security, vol. 6476. LNCS, Springer; 2010. p. 46–61.

47. Bauer A, Jaulmes É, Prouff E, Wild J. Horizontal and vertical side-channel attacks against
secure RSA implementations. In: Proceedings topics in cryptology—CT-RSA 2013—the cryp-
tographers’ track at the RSA conference 2013, San Francisco,CA, USA, February 25–March
1, 2013. p. 1–17. doi:10.1007/978-3-642-36095-4_1. http://dx.doi.org/10.1007/978-3-642-
36095-4_1.

48. Witteman M, van Woudenberg J, Menarini F. Defeating RSA multiply-always and message
blinding countermeasures. In: Kiayias A, editor. Topics in cryptology CT-RSA 2011, vol. 6558.
LNCS, Springer; 2011. p. 77–88.

49. Clavier C, Feix B, Gagnerot G, Giraud C, Roussellet M, Verneuil V. ROSETTA for single trace
analysis. In: Galbraith S, Nandi M, editors. Progress in cryptology INDOCRYPT 2012, vol.
7668. LNCS, Springer; 2012. p. 140–55.

50. Bauer A, Jaulmes É. Correlation analysis against protected SFM implementations of RSA. In:
Proceedings progress in cryptology—INDOCRYPT 2013—14th international conference on
cryptology in India, Mumbai, India, December 7–10, 2013. p. 98–115. doi:10.1007/978-3-
319-03515-4_7. http://dx.doi.org/10.1007/978-3-319-03515-4_7.

51. Feix B, Roussellet M, Venelli A. Side-channel analysis on blinded regular scalar multiplica-
tions. Cryptology ePrint Archive, Report 2014/191. http://eprint.iacr.org/.2014.

http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-44709-3_5
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=71281
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-319-03515-4_7
http://dx.doi.org/10.1007/978-3-319-03515-4_7
http://dx.doi.org/10.1007/978-3-319-03515-4_7
http://eprint.iacr.org/.2014

3 Recent Developments in Side-Channel Analysis … 75

52. Chari S, Rao JR, Rohatgi P. Template attacks. In: Cryptographic hardware and embedded
systems—CHES 2002, 4th international workshop, Redwood Shores, CA, USA, August 13–
15, 2002, Revised Papers. 2002. p. 13–28. doi:10.1007/3-540-36400-5_3. http://dx.doi.org/
10.1007/3-540-36400-5_3.

53. Rechberger C, Oswald ME. Practical template attacks. In: Lim CH, Yung M, editors. Infor-
mation security applications, vol. 3325. Lecture notes in computer science. Springer; 2004. p.
440–56.

54. Mulder ED, Buysschaert P, Örs SB, Delmotte P, Preneel B, Vandenbosch G, Verbauwhede I.
Electromagnetic analysis attack on an FPGA implementation of an elliptic curve cryptosystem.
In: IEEE international conference on computer as a tool. Belgrade, Serbia & Montenegro;
2005. p. 1879–82. doi:10.1109/EURCON.2005.1630348. http://www.sps.ele.tue.nl/members/
m.j.bastiaans/spc/demulder.pdf.

55. Avanzi RM.Generic algorithms for computing discrete logarithms. In:Handbook of elliptic and
hyperelliptic curve cryptography, 2005. p. 476–94. doi:10.1201/9781420034981.pt5. http://dx.
doi.org/10.1201/9781420034981.pt5.

56. Pollard JM. Kangaroos, monopoly and discrete logarithms. J. Crypt. 2000;13(4):437–47.
doi:10.1007/s001450010010. http://dx.doi.org/10.1007/s001450010010.

57. Lange T, van Vredendaal C, Wakker M. Kangaroos in side-channel attacks. In:Smart card
research and advanced applications—13th international conference, CARDIS 2014, Paris,
France, November 5–7, 2014. Revised selected papers. 2014. p. 104–21. doi:10.1007/978-
3-319-16763-3_7. http://dx.doi.org/10.1007/978-3-319-16763-3_7.

58. Heyszl J, Ibing A,Mangard S, Santis FD, Sigl G. Clustering algorithms for non-profiled single-
execution attacks on exponentiations. In: Smart card research and advanced applications—
12th international conference, CARDIS 2013. Berlin, Germany, November 27–29, 2013.
Revised Selected papers. 2013. p. 79–93. doi:10.1007/978-3-319-08302-5_6. http://dx.doi.
org/10.1007/978-3-319-08302-5_6.

59. Perin G, Imbert L, Torres L, Maurine P. Attacking randomized exponentiations using unsu-
pervised learning. In: Constructive side-channel analysis and secure design—5th interna-
tional workshop, COSADE 2014, Paris, France, April 13–15, 2014. Revised selected papers,
2014. p. 144–60. doi:10.1007/978-3-319-10175-0_11. http://dx.doi.org/10.1007/978-3-319-
10175-0_11.

60. Lerman L, Poussier R, Bontempi G, Markowitch O, Standaert F-X. Template attacks vs.
machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Man-
gard S, Poschmann AY, editors. Constructive side-channel analysis and secure design. Lecture
notes in computer science (LNCS). Springer; 2015. p. 20–33.

61. Specht R, Heyszl J, KleinsteuberM, Sigl G. Improving non-profiled attacks on exponentiations
based on clustering and extracting leakage from multi-channel high-resolution EM measure-
ments. In: Constructive side-channel analysis and secure design—6th international workshop,
COSADE 2015, Berlin, Germany, April 13–14, 2015. Revised selected papers, 2015. p. 3–19.
doi:10.1007/978-3-319-21476-4_1. http://dx.doi.org/10.1007/978-3-319-21476-4_1.

62. Özgen E, Papachristodoulou L, Batina L. Classifcation algorithms for template matching. In:
IEEE international symposium on hardware oriented security and trust, HOST 2016, McLean,
VA, USA; 2016 (to appear).

63. Bramer M. Chapter 3, introduction to classifcation: naïve bayes and nearest neighbour. In:
Principles of data mining. undergraduate topics in computer science. London: Springer; 2013.
p. 21–37. ISBN: 978-1-4471-4883-8. doi:10.1007/978-1-4471-4884-5_3. http://dx.doi.org/
10.1007/978-1-4471-4884-5_3.

64. Alpaydin E. Chapter 13, kernel machines. In: Introduction to machine learning.
65. Batina L, Chmielewski L, Papachristodoulou L, Schwabe P, Tunstall M. Online template

attacks. In: Proceedings progress in cryptology—INDOCRYPT 2014—15th international con-
ference on cryptology in India, New Delhi, India, December 14–17, 2014. p. 21–36.

66. Dugardin M, Papachristodoulou L, Najm Z, Batina L, Danger J, Guilley S. Dismantling real-
world ECCwith horizontal and vertical template attacks. In: Constructive side-channel analysis
and secure design—7th international workshop, COSADE 2016, Graz, Austria, April 14–15,
2016 (to appear).

http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1109/EURCON.2005.1630348
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf
http://dx.doi.org/10.1201/9781420034981.pt5
http://dx.doi.org/10.1201/9781420034981.pt5
http://dx.doi.org/10.1201/9781420034981.pt5
http://dx.doi.org/10.1007/s001450010010
http://dx.doi.org/10.1007/s001450010010
http://dx.doi.org/10.1007/978-3-319-16763-3_7
http://dx.doi.org/10.1007/978-3-319-16763-3_7
http://dx.doi.org/10.1007/978-3-319-16763-3_7
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-1-4471-4884-5_3
http://dx.doi.org/10.1007/978-1-4471-4884-5_3
http://dx.doi.org/10.1007/978-1-4471-4884-5_3

76 L. Papachristodoulou et al.

67. Corporation A. ATMEL AVR32UC technical reference manual. ARMDoc Rev.32002F, 2010.
http://www.atmel.com/images/doc32002.pdf.

68. Hutter M, Schwabe P. NaCl on 8-bit AVR microcontrollers. In: Youssef A, Nitaj A, editors.
Progress in cryptology AFRICACRYPT 2013, vol. 7918. LNCS, Springer; 2013. p. 156–72.

69. Bernstein DJ, Duif N, Lange T, Schwabe P, Yang BY. High-speed high-security signatures. In:
Preneel B, Takagi T, editors. Cryptographic hardware and embedded systems CHES 2011, vol.
6917. LNCS. see also full version [14]. Springer; 2011, p. 124–42.

70. Bernstein DJ, Duif N, Lange T, Schwabe P, Yang B-Y. High-speed high-security signatures.
J Crypt Eng. 2012;2(2):77–89. http://cryptojedi.org/papers/#ed25519, see also short version
[13].

71. Hisil H, Wong KK-H, Carter G, Dawson E. Revisited edwards curves. In: Pieprzyk J, editor.
Advances in cryptology ASIACRYPT, vol. 5350. LNCS, Springer; 2008. p. 326–43.

72. Joye M, Tymen C. Protections against differential analysis for elliptic curve cryptography. In:
Proceedings of Cryptographic hardware and embedded systems—CHES 2001, third interna-
tional workshop, Paris, France, May 14–16, 2001. Generators, 2001. p. 377–90. doi:10.1007/
3-540-44709-1_31. http://dx.doi.org/10.1007/3-540-44709-1_31.

73. Joye M. Smart-card implementation of elliptic curve cryptography and DPA-type attacks.
In: Quisquater J-J, Paradinas P, Deswarte Y, Kalam A AE, editors. Smart card research and
advanced applications VI, vol. 135. IFIP international federation for information processing.
Kluwer Academic Publishers, Springer; 2004. p. 115–25.

http://www.atmel.com/images/doc32002.pdf
http://cryptojedi.org/papers/#ed25519
http://dx.doi.org/10.1007/3-540-44709-1_31
http://dx.doi.org/10.1007/3-540-44709-1_31
http://dx.doi.org/10.1007/3-540-44709-1_31

Chapter 4
Practical Session: Differential Power
Analysis for Beginners

Jiří Buček, Martin Novotný and Filip Štěpánek

4.1 Introduction

Differential Power Analysis (DPA) is a powerful method for breaking the crypto-
graphic system. The method does not attack the cipher, but the physical implemen-
tation of the cryptographic system. Therefore, even systems using modern strong
ciphers like AES are vulnerable to such attacks, if proper countermeasures are not
applied.

The DPAmethod uses the fact that every electronic system has a power consump-
tion. If you measure the power consumption of digital system, you will probably see
the power trace like in Fig. 4.1 with its peaks on rising and falling edges of clock.
If the digital system runs an encryption and if you run this encryption several times
using various input data, you may notice slight variations in power traces, as shown
in Fig. 4.1. These variations are caused by many factors (varying temperature, etc.),
but one of them are varying processed (inner) data. DPA utilizes the fact that power
consumption depends on processed data (e.g., number of ones and zeros in processed
byte) to break the cryptographic system.

To demonstrate the power of power analysis we prepared this tutorial for you.
Before we start, please, download all necessary materials from the web. You will
find the compressed archive at the address http://users.fit.cvut.cz/~novotnym/DPA.
zip (the file has about 250MB). Uncompressedmaterials can be found also at address
http://users.fit.cvut.cz/~novotnym/DPA, whichmight be useful if you have problems

J. Buček · M. Novotný (B) · F. Štěpánek
Faculty of Information Technology, Czech Technical University in Prague,
Praha, Prague, Czech Republic
e-mail: martin.novotny@fit.cvut.cz; novotnym@fit.cvut.cz

J. Buček
e-mail: jiri.bucek@fit.cvut.cz

F. Štěpánek
e-mail: filip.stepanek@fit.cvut.cz

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_4

77

http://users.fit.cvut.cz/~novotnym/DPA.zip
http://users.fit.cvut.cz/~novotnym/DPA.zip
http://users.fit.cvut.cz/~novotnym/DPA

78 J. Buček et al.

Fig. 4.1 The figure shows 500 power traces in the same time interval of 200 samples. Each power
trace is run for unique input data, power traces are overlapped. Variations in power traces are caused
by variations in processed data

to download the whole archive. The compressed archive contains two folders. In
folderAnalysis youwill find files used in Sect. 4.2. Files used in Sect. 4.3 are available
in folder Measurement.

You do not need to perform any measurement with an oscilloscope, as we have
done these measurements for you. In folder Analysis you will find two sets of mea-
surements, one set for a known key 00 11 22 33 44 55 66 77 88 99 aa
bb cc dd ee ff, and one set for an unknow key. These sets will be used in
Sect. 4.2. You are also provided with sample codes in MATLAB that you can use in
your program/script.

However, if you are equippedwith an osciloscope (e.g., PicoScope), you canmake
your own measurement. Several advices you will find in Sect. 4.3.

4.2 Differential Power Analysis—Key Recovery

At this point you are either given or were able to measure the power consumption
(traces) of the SmartCard yourself. For each power trace you have a pair of the
plaintext and the encrypted ciphertext. Therefore you have all the information you
need, except of the secret key. It is the goal of the differential power analysis to extract
the secret key using the mentioned traces, plaintext, ciphertext, and the knowledge
of the encryption algorithm by creating the hypothesis of the power consumption
and correlating it to the measured traces.

4 Practical Session: Differential Power Analysis for Beginners 79

4.2.1 Method

We are not going to explain the method here. If you are not familiar with the method,
youmay find its explanation, e.g., in the book [1], p. 119, or youwill find presentation
dpa_Lisbon.pdf in downloaded materials.

To summarize the method, you shall go through following steps:

1. Choose an intermediate value that depends on data and key
2. Measure the power traces while encrypting the data
3. Build amatrix of hypothetical intermediate values inside the cipher for all possible

keys and traces
4. Using a power model, compute the matrix of hypothetical power consumption

for all keys and traces
5. Statistically evaluate which key hypothesis best matches the measured power in

each individual time.

The right key (part of the right key) is determined by key hypothesis → interme-
diate value → consumption, best correlating to actually measured consumption at
some moment. We repeat the analysis for other parts of key, until we determine the
whole key.

4.2.2 Schedule of Your Work

We reccommend you to proceed according to the following steps:

1. Plot one trace in the program you are using (MATLAB/Octave, Mathematica,
etc.). Check that it is complete.

2. Plot several traces (e.g., 1st, 10th, 50th). Check the alignment of traces (they
overlay correctly, triggering works).

3. Select the appropriate part of the traces (e.g., containing the first round). Read in
the appropriate number of traces.

4. Depending on your measurements, youmay have to perform a correction of mean
values (if your measurements “wander” in voltage over time). You can do so by
subtracting from each trace its mean value.

5. Recover the secret key using the DPA with correlation coefficients. The method
is summarized in Sect. 4.2.1.

4.2.3 Training Sets

In folder Analysis you will find two sets of measurements. One set is for known key
00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff, the other set
is for unknown key.

80 J. Buček et al.

4.2.3.1 Training Set for Known Key 00 11 22 33 44 55 66 77
88 99 Aa Bb Cc Dd Ee Ff

To implement and debug your program/script, we provide testing traces of 200
AES encryptions (AES 128, with 10 rounds). We encrypted 200 plaintexts (file
plaintext-00112233445566778899aabbccddeeff.txt), obtaining 200 ciphertexts (file
ciphertext-00112233445566778899aabbccddeeff.txt. During encryptions we mea-
sured power traces (traces-00112233445566778899aabbccddeeff.bin). Each trace
has a length of 370 000 samples (in this case). Each sample is represented by 8 bit
unsigned value (i.e., the length of the file is 370 000 bytes * 200 traces = 74 MB).

If your program/script is correct, then you should reveal the key 00 11 22 33
44 55 66 77 88 99 AA BB CC DD EE FF.

4.2.3.2 Training Set for Unknown Key

If you are successful with the set above, you may try to recover the unknown key.
We made 150 AES encryptions (AES 128, with 10 rounds).

Files plaintext-unknown_key.txt and ciphertext-unknown_key.txt contain plain-
texts and corresponding ciphertexts, which were produced by an AES encryption
with an unknown key. File traces-unknown_key.bin stores power traces recorded
during encryptions of above plaintexts. File traceLenght-unknown_key.txt contains
information on trace length, i.e., 550000 samples in this case.

You can easily check whether you found correct key. Just take any plaintext
from the file plaintext-unknown_key.txt, encrypt it with the key you determined by
the analysis, and compare the resulting ciphertext with a corresponding ciphertext
from the file ciphertext-unknown_key.txt. If the ciphertexts match, you found the
correct key.

4.2.4 Tools

We will use a system suitable for numerical calculations. MATLAB seems to be a
system best-tailored for our needs (matrix operations with large matrices). We also
can use freeware alternative Octave, that is compatible with MATLAB in its basic
functions.

Mathematica is also one of alternatives. Mathematica can Import data in MAT-
LAB format (.mat).

You may also use other computer algebraic systems—your possible experience
is welcome!

4 Practical Session: Differential Power Analysis for Beginners 81

4.2.4.1 MATLAB—Using the Prepared Functions

The following code samples show, how to use the prepared functions (files) to speed-
up the key recovery process.

measurement.m the code template for the key recovery process
myin.m loads the content of the text files (plaintext.txt, ciphertext.txt) gen-

erated during the measurement
myload.m loads the content of the binary files (traces.bin) generated during

the measurement
mycorr.m is used to calculate the correlation coefficient later during the

recovery process

All the files are available in archive in the folder Analysis and should be placed into
your MATLAB project directory. The following code snippets show in more detail,
how to load the appropriate data using the prepared functions and are all included in
the template measurement.m.

In case you are new to MATLAB, you can see some basic examples in the
Sect. 4.2.4.2.

MATLAB code example—loading the data

1 %%%%%%%%%%%%%%%%%%%%
2 % LOADING the DATA %
3 %%%%%%%%%%%%%%%%%%%%
4
5 % modify fo l lowing var iab les so they correspond
6 % your measurement setup
7 numberOfTraces = 200;
8 t r aceS i ze = 350000;
9

10 % modify the fo l lowing var iab les to speed−up the measurement
11 % (t h i s can be done l a t e r a f t e r analys ing the power trace)
12 o f f s e t = 0;
13 segmentLength = 350000;
14 % for the beginning the segmentLength = t raceS i z e
15
16 % columns and rows var iab les are used as inpu t s
17 % to the func t ion loading the p l a i n t e x t / c i phe r t e x t
18 columns = 16;
19 rows = numberOfTraces ;
20
21 %%%%%%%%%%%%%%%%%%%%%%%%%
22 % Call ing the func t i ons %
23 %%%%%%%%%%%%%%%%%%%%%%%%%
24
25 % func t ion myload processes the binary f i l e containing the
26 % measured t races and s to re s the data in the output matrix so
27 % the t races (or t h e i r reduced par ts) can be used for the key
28 % recovery process .
29 % Inputs :
30 % ’ f i l e ’ − name of the f i l e containing the measured t races

82 J. Buček et al.

31 % traceS i z e − number of samples in each trace
32 % o f f s e t − used to de f ine d i f f e r e n t beginning of the power trace
33 % segmentLength − used to de f ine d i f f e r e n t / reduced length of the

power trace
34 % numberOfTraces − number of t races to be loaded
35 %
36 % To reduce the s i z e of the t race (e . g . , to speed−up the
37 % computation process) modify the o f f s e t and segmentLength
38 % input s so the loaded par ts of the t races correspond to the
39 % trace segment you are using for the recovery .
40 t r a c e s = myload (’ t r a c e s . bin ’ , t raceSize , o f f s e t , segmentLength ,

numberOfTraces) ;
41
42 % func t ion myin i s used to load the p l a i n t e x t and c i phe r t e x t
43 % to the corresponding matr ices .
44 % Inputs :
45 % ’ f i l e ’ − name of the f i l e containing the p l a i n t e x t or c i phe r t e x t
46 % columns − number of columns (e . g . , s i z e of the AES data block)
47 % rows − number of rows (e . g . , number of measurements)
48 p l a i n t e x t = myin (’ p l a i n t e x t . t x t ’ , columns , rows) ;
49 c i phe r t ex t = myin (’ c i phe r t ex t . t x t ’ , columns , rows) ;
50
51 %%
52 % EXERCISE 1 −− Plo t t i ng the power trace (s) : %
53 %%
54 % Plot one trace (or p lo t the mean value of t races) and check
55 % tha t i t i s complete and then s e l e c t the appropriate part of
56 % the t races (e . g . , containing the f i r s t round) .
57
58 % −−> create the p lo t s here <−−

MATLAB code example—using the correlation coefficients

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % EXERCISE 2 −− Key recovery : %
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Create the power hypothes i s for each byte of the key and then
5 % corre la t e the hypothes i s with the power t races to ex t rac t the
6 % key .
7 % Task con s i s t s of the fo l lowing par ts :
8 % − create the power hypothes i s
9 % − ex t rac t the key using the r e s u l t s of the mycorr func t ion

10
11 % var iab les dec lara t ion
12 by t eS t a r t = 1;
13 byteEnd = 16;
14 keyCandidateStar t = 0;
15 keyCandidateStop = 255;
16
17 % for every byte in the key do :
18 for BYTE=by t eS t a r t : byteEnd
19
20 % Create the power hypothes i s matrix (dimensions :
21 % rows = numberOfTraces , columns = 256) .

4 Practical Session: Differential Power Analysis for Beginners 83

22 % The number 256 represen t s a l l poss ib l e by tes (0 x00 . . 0 xFF) .
23 powerHypothesis = zeros (numberOfTraces ,256) ;
24 for K = keyCandidateStar t : keyCandidateStop
25 % −−> create the power hypothes i s here <−−
26 end ;
27
28 % func t ion mycorr re turns the cor re la t i on c o e f i c i e n t s matrix
29 % calcu la ted from the power consumption hypothes i s matrix
30 % powerHypothesis and the measured power t races . The
31 % resu l t i ng cor re la t i on c o e f i c i e n t s s tored in the matrix CC
32 % are l a t e r used to ex t rac t the correc t key .
33 CC = mycorr (powerHypothesis , t r a c e s) ;
34
35 % −−> do proper operat ions here <−−
36 % −−> to f i nd the correc t byte of the key <−−
37
38 end ;

4.2.4.2 MATLAB for Beginners

Here you find several useful commands.We are working in certain working directory
where all working files and scripts (files .m) are placed.

Almost allMATLABobjects arematrices. Column or rowvector are special cases,
however, generally we are working with n-dimensional arrays. Almost all numbers
are of type double.

1 % example (t h i s i s a comment)
2 % matrix crea t ion :
3 a = [1 ,2 ,3 ;4 ,5 ,6 ;7 ,8 ,9]
4 % we have de f ined the var iab le a , the r e s u l t has been pr in ted
5 b = rand (100 ,100) ;
6 % semicolon (;) suppresses pr in t i ng the r e s u l t (important for huge

data)
7 % showing part of a matrix b :
8 b (1 :10 ,5 :7)
9 % matrix mu l t i p l i c a t i on (addi t ion / sub t rac t ion / d i v i s i on) works :

10 c = [2 ,0 ,0 ;0 ,2 ,0 ;0 ,0 ,2]
11 a ∗ c
12 % for entry−by−entry mu l t i p l i ca t i on , we use .∗
13 a .∗ c

Vectors are special cases of matrices

1 % vec tors are spec ia l cases of matr ices
2 v = [1 ,3 ,5 ,7] % row vector
3 v (1 , :) % equiva len t to v
4 v (1 ,3 :4) % part of v
5 % transpos i t i on
6 v ’ % creates column vec tor
7 % spec ia l matr ices

84 J. Buček et al.

8 zeros (3 ,3)
9 ones (3 ,3)
10 eye (3 ,3)
11 rand (3 ,3)
12 % indexing by a vec tor
13 iv = [3 ,4 ,1 ,2]
14 v (iv)
15 % by indexing we can create o r i g i na l l y not e x i s t i n g components
16 v
17 v ([1 , 1] , 1 : 3)
18 v ([1 , 1 , 1] , :)
19 v (ones (1 ,5) , :)
20 v ’ (: , ones (1 ,5)) % works only in Octave

Graph plot

1 % graph p lo t
2 e = rand (1 ,100) ;
3 plot (e)
4 f = rand (1 ,100) ;
5 hold on % adding the second trace in to the graph
6 plot (f)
7 % i f x i s a matrix :
8 plot (x) % plo t s the s e t of t races by columns of x
9 plot (x ’) % plo t s the s e t of t races by rows of x (using

t ranspos i t i on)

Cycles

1 % how to wri te cyc les
2 for i =1:10
3 for j =1:20
4 x (i)=b i t xo r (v (i) ,w(j)) ;
5 end
6 end

Manipulating files

1 % Manipulating f i l e s
2
3 % open f i l e for reading :
4 MyFile = fopen (’myFile . bin ’ , ’ r ’) ;
5 % skip in Myfi le from current pos i t i on (’ cof ’) by Of f s e t :
6 fseek (MyFile , Offset , ’ cof ’) ;
7 % read Number of u in t8s to the vec tor Values (from the current

pos i t i on) :
8 Values = fread (MyFile , Number , ’ u in t8 ’) ;
9 % close MyFile :

10 f c l o s e (MyFile) ;
11
12 % Manipulating t e x t f i l e s
13
14 % open f i l e for reading :
15 TextFi le = fopen (’myTextFile . t x t ’ , ’ r ’) ;

4 Practical Session: Differential Power Analysis for Beginners 85

16 % reading l i n e from Tex tFi le :
17 Line = fge t s (TextFi le) ;
18 % reading 16 values from the Line according to the pa t t ern (l i k e in C

) :
19 [values , l] = sscanf (Line , ’%02x ’ , 16) ;

Printing data in hex-form

1 % suppose the key i s s tored here in the key array :
2 key =[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,1 ,2 ,3 ,4 ,5 ,6 ,7] ;
3
4 % to pr i n t i t in hex−form run the fo l lowing for−cyc le :
5 for i =1:16
6 fpr in t f (’Byte %d of the key i s 0x%2.2X \ n ’ , i , key (i)) ;
7 end ;

4.2.4.3 MATLAB/Octave Tips

• For xoring of values you may use the bitxor function. This function also per-
forms bit-wise xor of vectors and matrices (of the same size).

• The average value (mean value) is calculated by the functionmean. If a is amatrix,
then mean(a) is a (row) vector of mean values of columns, while mean(a,2)
is a (column) vector of mean values of rows (which is probably what we want).

• If you like to extend (copy) the column vector into matrix, use indexing (e.g., you
like to extend vector b into matrix having 100 columns):

1. By indexing: b_mat = b(:,ones(1,100));
2. By replication: b_mat = repmat(b,1,100);

• You can use arrays SubBytes and byte_Hamming_weight (see the file
tab.mat). Remember that the first index of an array is equal to 1, therefore
you probably need to increment index by 1, e.g.,: a = SubBytes(x + 1);
b = byte_Hamming_weight(a + 1); This works also for matrices (!)—
if x is a matrix, then SubBytes applies to all its elements (the result is a matrix
again).

4.2.4.4 Mathematica—Tips

Mathematica can import files in MATLAB format (matrix format, .mat) using func-
tion Import. Function Import may be highly memory demanding, as it always
imports the whole file.

1 $HistoryLength = 0; (∗ saving the memory∗)
2 SetDirectory [NotebookDirectory []]
3 NUMBER = 500;
4 t = Import [" t r aces−pa r t . mat"] [[1]] [[1 ; ; NUMBER]] ;

86 J. Buček et al.

1 {MemoryInUse [] , MaxMemoryUsed[]} (∗ checking the occupied memory∗)
2 Lis tL ineP lo t [t [[1 ; ; 100 , 1 ; ; 100]]]

Use the function Mean for elimination of a systematic error of measurement
(different DC component between traces). Mean applied to a matrix returns a vec-
tor of means of columns. However, we need means of rows, i.e. we have to use
Mean[Transpose[...]].

4.3 DPA—Measurement with an Oscilloscope

First we will set up a basic measurement of the smart card consumption. We will
use JSmartCard Explorer to communicate with the card, and PicoScope 6 GUI to
establish basic parameters of the measurement. Then, we will switch to a separate
program that will control both the card and the oscilloscope and will perform a series
of measurements needed for the DPA attack.

4.3.1 Preparation of the Measurement

1. Connect the card reader to your computer and insert the SmartCard into the
reader, as shown in Fig. 4.2.

2. Run JSmartCard Explorer from Primiano Tucci [2]. (In Java. Compiled JAR
file you find either on web [3] or in file JSmartCardExplorer.jar in downloaded
archive).

• Press theConnect button to connect to theSmartCard. (Status should begreen.)
• Fill-in the fields Class (80), INS (60), P1 (00), P2 (00), Data IN, and Le (10)
as shown in Fig. 4.3 (all in HEX).

• Press Send. The card should run AES encryption over the entered data and
return the ciphertext, as shown in Fig. 4.3.

Fig. 4.2 Connect the card reader to your computer and insert the SmartCard into the reader

4 Practical Session: Differential Power Analysis for Beginners 87

Fig. 4.3 Fill-in proper fields and press Send

Fig. 4.4 Insert card into the measuring adaptor (green PCB), then insert the measuring adaptor
into the reader

3. To measure the card power consumption, we will be using Picoscope 5204 (and
5203) and two oscilloscope probes. Connect the probes to channels A (blue,
trigger), and B (red, trace measurement).

4. Remove the card from the reader and insert it into the measuring adaptor (green
PCB), then insert the measuring adaptor into the reader. See Fig. 4.4

5. Connect the Picoscope probes to the measuring adaptor. Unlike to Fig. 4.5, set
the trigger probe (channel A, blue) to the X10 position and the measurement
probe (channel B, red) to the X1 position.

6. Connect the Picoscope to a free USB port of your computer (if not already
connected).

7. For the measurement you need the following software:

• PicoScope 6 software with drivers. You can download it from [4]. You can
find it also in downloaded materials as a file PicoScope6_r6_8_11.exe.

88 J. Buček et al.

Fig. 4.5 Connect the Picoscope probes to the measuring adaptor. Set the trigger probe (channel A,
blue) to the X10 position and the measurement probe (channel B, red) to the X1 position

• Software Development Kit. The relevant files should be included in the Visual
Studio project below. If not, you can download the SDK from the web [5] or
you may find it in downloaded materials as a file PS5000sdk_r10_5_0_32.zip.

• Library forworkingwith smart cards (WINSCard.lib). This should be included
in the installation of Visual Studio. (It is a part of Microsoft Windows SDK.)

8. Run the PicoScope 6 program
9. You should make the following settings:

• Timebase: 500us/Div, x1 (zoom), 1 MS (samples)
• Channel A: +-1V DC
• Channel B: +-1V DC
• Trigger: Auto (after tuning the settings, switch to Repeat)
• Trigger Event: Simple Edge, Rising
• Trigger Channel: A
• Trigger Threshold: 200 mV

Warning: These settings may need to be adjusted according to the particular card
and other circumstances.

10. Set the Single measurement at the oscilloscope, and send data to the card using
JSmartCard Explorer from Primiano Tucci. You should see a waveform like in
Fig. 4.6.

4 Practical Session: Differential Power Analysis for Beginners 89

Fig. 4.6 Powertrace of one encryption

Fig. 4.7 Menu Properties of
PicoScope program

11. Display the Properties panel by right-clicking somewhere in the window and
selecting View Properties (see Fig. 4.7).

12. From the Properties panel remember the following values:

• Sample interval,
• Sample rate,
• No. samples.

We will need these values later, when setting the measurement program.

90 J. Buček et al.

4.3.2 Compilation of Program for Measurement

At this stage, you should have verified that the SmartCard works correctly (responds
to the command for AES encryption), and that the signals from the card look rea-
sonable. Press Disconnect or close JSmartCard Explorer, and close PicoScope 6
GUI. We will use a separate program to control both the SmartCard reader and the
oscilloscope.

For measurement it is necessary to adjust and compile C++ program stored in
an archive Pico5000.zip. Zip file contains source files and Microsoft Visual Studio
project. After extracting the archive and opening the project in Microsoft Visual
Studio you have to check the following settings in project properties:

1. Paths to include and library directories, see Fig. 4.8.
2. Paths to additional dependencies, see Fig. 4.9.
3. In source file main.cpp set up the measuring channels, trigger voltage level, and

number of measurements.

Compile the program (Build → Build Solution). Before running the program do
not forget:

• to disconnect the card in JSmartCard Explorer and
• quit the PicoScope program,

otherwise the card and/or the PicoScope would be occupied, hence the measuring
program will not be able to connect to it.

Fig. 4.8 Visual Studio project setup—include and library directory paths

4 Practical Session: Differential Power Analysis for Beginners 91

Fig. 4.9 Visual Studio project setup—additional dependencies

Measured data are in file traces.bin, plaintext and cipher text in files plaintext.txt
and ciphertext.txt and length of one measurement is stored in file traceLength.txt.

Now you have measured data to be used for DPA.

References

1. Mangard S, Oswald E, Popp T. Power analysis attacks: revealing the secrets of smart cards. US:
Springer; 2008.

2. Tucci P. JSmartCardExplorer. https://www.primianotucci.com/os/smartcard-explorer. Acce-
ssed 02 Mar 2016.

3. Tucci P. JSmartCardExplorer. http://downloads.sourceforge.net/jsmart-card/JSmartCard
Explorer.jar. Accessed 02 Mar 2016.

4. Picotech. PicoScope 6 software with drivers. http://downloads.picotech.com/winxp/
PicoScope6_r6_8_11.exe. Accessed 02 Mar 2016.

5. Picotech. Software development kit. http://dl.picotech.com/drivers/PS5000sdk_r10_5_0_32.
zip. Accessed 02 Mar 2016.

https://www.primianotucci.com/os/smartcard-explorer
http://downloads.sourceforge.net/jsmart-card/JSmartCardExplorer.jar
http://downloads.sourceforge.net/jsmart-card/JSmartCardExplorer.jar
http://downloads.picotech.com/winxp/PicoScope6_r6_8_11.exe
http://downloads.picotech.com/winxp/PicoScope6_r6_8_11.exe
http://dl.picotech.com/drivers/PS5000sdk_r10_5_0_32.zip
http://dl.picotech.com/drivers/PS5000sdk_r10_5_0_32.zip

Chapter 5
Fault and Power Analysis Attack Protection
Techniques for Standardized Public Key
Cryptosystems

Apostolos P. Fournaris

5.1 Introduction

The basic building block of any security protocol is its cryptographic algorithms and
their primitive operations. While there exist many cryptographic algorithms only
few of them are standardized. In several of them, their cryptographic primitives have
considerable similarities. This is especially true in public key cryptographywhere the
real, day-to-day, security scene is dominated by security products relying on public
key cryptography schemes that are based on RSA, El Gamal or ECC approaches.
So, considerable research is focused on enhancing the security of such standardized
schemes implementations without reducing those implementation performance.

The mathematical backbone of RSA, El-Gamal and ECCs is the integer factoriza-
tion problem (IFP), the discrete logarithm (DLP) and elliptic curve discrete logarithm
problem (ECDLP) respectively. Those problems rely on the arithmetic operations of
modular exponentiation (ME) and scalar multiplication (SM) that from number the-
oretic perspective are very closely related. RSA and El-Gamal is structured around
Z

∗
n multiplicative and additive cyclic group, i.e., where addition and multiplication

operations are defined.Modular exponentiation inZ∗
n for RSA is defined as ce mod n

where c is an RSA message, e is the exponent (public or private RSA key) and n is
the public modulus. To reduce high bit length of involved numbers needed to keep
the IFP or DLP hard, we can replace Z∗

n with a different abelian group where these
problems are harder. Such group is the Elliptic Curve group E(F) where F is a
finite field. However, since this group is additive, all Z∗

n multiplication operations
are replaced by their additive equivalent. Thus, in ECC schemes, all Elliptic Curve
points P : (x, y) are defined over the additive group E(F) where F is a finite field
in which each EC point’s coordinates (x, y) belong to F and instead of Z∗

n multipli-
cation, addition between EC points is performed while instead of Z∗

n squaring EC

A.P. Fournaris (B)
Computer Informatics Engineering Department, Technological
Educational Institute of Western, Antirion, Greece
e-mail: apofour@ieee.org; afournaris@teimes.gr

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_5

93

94 A.P. Fournaris

doubling (as a special case of addition) is performed.Z∗
n ME can be realized as series

ofmodular multiplications and squaring operations. Similarly, due to the equivalence
of Z∗

n multiplication to E(F) EC point addition, E(F) scalar multiplication (SM),
defined as e · P where P ∈ E(F) (P is denoted also as base point) and e ∈ F , from
engineering perspective, is equivalent to Z

∗
n ME and can be realized as a series of

E(F) EC point addition and E(F) point doubling operations.
Regardless of the fact thatZ∗

n operations and F operations (i.e., operation between
EC point coordinates) can have significant differences (e.g., when F is a binary
extension field), the Z

∗
n multiplication to EC(F) addition equivalence hints that

the two public key cryptographic primitives design (ME and SM) follow similar
principles for achieving efficiency in hardware terms (chip covered area, resources,
computation time, power consumption). Traditional ME and SM algorithms like
multiply and square or double-and-add algorithms respectively are very close in
concept.

Similar ME and SM design principles, however, lead to common implementation
attack techniques and approaches. Implementation attacks target an actual implemen-
tation of a cryptographic algorithm and exploit information leakage (side channel
attack) or faulty behavior (fault injection) of the implementation’s physical charac-
teristics (power dissipation, timing, electromagnetic emission, etc.). As expected,
side channel (SCA) and fault analysis (FA) attacks in ME or SM designs require
similar SCA-FA countermeasures. In this book chapter, apart from FAs, our research
interest is focused on SCAs relying on power dissipation, known as power analysis
attacks (PA) but the proposed countermeasures can be also applicable to other SCAs
(e.g., relying on electromagnetic emission or timing).

In this book chapter, expanding the work of [1], the concept of a unified SCA-FA
protection mechanism both for ME and SM is explored. This mechanism is capable
of thwarting a wide range of existing PA and FA attack approaches. The proposed
approach is a variation of the Montgomery Power Ladder algorithm for ME/SM that
is sufficiently modified in order to counter “vertical” and “horizontal” simple and
advanced SCAs (focusing on PAs). To achieve that goal, the randomization technique
is adopted in the proposed algorithm by introducing a random element ∈Z∗

n or E(F)

along with the message/base point in every algorithmic round. This randomization
is propagated and extended in each round and is only removed after the last round
of the proposed algorithm. The high regularity of the Montgomery Power Ladder
algorithm and its intrinsic parallelism provide high performance as well as addi-
tional resistance against SCAs-PAs. The proposed algorithm takes advantage of the
intrinsic mathematical coherence between intermediate algorithmic values, offered
byMontgomery Power Ladder, to detect possible faults (following the infective com-
putation principle) thus providing FA resistance. Attempts to bypass successfully the
fault detection mechanism by injecting a second fault lead to non-usable information
by an attacker since the ME/SM result is released (unblinded) only after passing the
fault detection check. The above countermeasures are combined in an harmonic way
so that they do not introduce new vulnerabilities.

5 Fault and Power Analysis Attack … 95

The rest of the paper is organized as follows. In Sect. 5.2 existing SCA-PA and
FA approaches and countermeasures on ECC and RSA systems are presented. In
Sect. 5.3 the proposed approach is described and a security analysis of the algorithm
is made in Sect. 5.4, while Sect. 5.5 concludes the paper.

5.2 Public Key Primitive Fault and Power Attacks
and Countermeasures

5.2.1 Side Channel Attacks and Countermeasures

Tomodel side channel attacks we can adopt the approach described in [2, 3]. Assume
that we have a computation C (which can be an RSA modular exponentiation or EC
scalar multiplication) that consists of series of O0 or O1 operations that require
inputs X0 and X1, respectively (thus Oi (Xi) for i ∈ {0, 1}). During processing of the
C computation, each operation can be linked to an information leakage variable Li .
A side channel analysis attack is possible if there is some secret information s that is
shared between Oi and its leakage Li . The ultimate goal of a side channel analysis is,
by using a strategy, to deduce s from the information leakage Li . The simplest way
to achieve that is by examining a sequence of Oi operations in time to discover s.
Simple SCAs (SSCAs) can be easily mounted in square-and-multiply/double-and-
add algorithms used in ME/SM and are typically horizontal type of attacks meaning
that they are mounted using a single leakage trace that is processed in time. When
SSCAs are not possible, advanced SCAs (ASCAs) must be mounted to a ME/SM
architecture to extract s.

Advanced SCAs do not focus only on the operations (eg. Oi) but also on the
computation operands [3]. Advanced SCAs are focused on a subset of the calculation
C (and/or Oi) and through collection of sufficiently large number N of leakage traces
Li (t) for all t ∈ {1, . . . , N } using inputs Xi (t) exploit the statistical dependency
between the calculation on C for all Xi and the secret s. ASCAs follow the hypothesis
test principle [2, 4] where a series of hypothesis ś on s (usually on some bit j of s,
i.e., ś j = 0 or 1) is made and a series of leakage prediction values are found based
on each of these hypothesis using an appropriate prediction model. The values of
each hypothesis are evaluated against all actual leakage traces using an appropriate
distinguisher δ for all inputs Xi so as to decide which hypothesis is correct.

SSCAs and ASCAs can follow one of two different leakage collection and analy-
sis strategies, as originally described in [2], the vertical or horizontal approach. In the
vertical approach, the implementation is used N times using either the same or differ-
ent inputs each time t in order to collect traces-observations Li (t). Each observation
is associated with t-th execution of the implementation. In the horizontal approach,
leakage traces-observations are collected from a single execution of the implemen-
tation under attack and each trace corresponds to a different time period within the

96 A.P. Fournaris

time frame of this execution. As expected, in horizontal attacks the implementation
input is always the same.

Many SSCAs fit on the horizontal analysis strategy, as long as they are based
on a single implementation execution leakage collection. Such attacks enable the
attacker to discriminate O1: modular multiplication (RSA) or point addition (ECC)
from O0: Modular squaring (RSA) or point doubling (ECC) in time thus revealing
all bits of the secret s (the exponent (RSA) or secret scalar (ECC)). There also
exist ASCA horizontal attacks that take advantage of the fact that each Oi operation
when implemented in an existing generic processor, is broken into a series of digit
based operations (e.g., word-based field multiplications) that are all associated to
the same bit of the secret exponent/scalar. Such attacks are the Big Mac attack [5],
the Horizontal Correlation Analysis attack (HCA) [6] or the Horizontal Collision
Correlation attack (HCCA) [2, 3] that are described both for RSA and ECC designs.

There is a very broad range of vertical approach-based attacks on ME/SM imple-
mentations including sophisticated SSCAs andmost of theASCAs. Such SSCAs that
require more than oneME/SM executions (e.g., two executions) include comparative
SCAs (originally focused on Power attacks (PAs)) like the doubling attack (collision
based attack) [7] (DA attack) and its variant, relative doubling attack (RDA attack)
[8] or the chosen plaintext attack in [9] (also known as 2-Torsion Attack (2-TorA) for
ECC). Vertical SSCA include also attacks applied specifically to SM, like the refined
PA (RPA) or zero PA (ZPA) where a special point P0 (that can zero a P coordinate) is
fed to an SM accelerator, thus enabling scalar bit l recovery through a vulnerability
at round l.

Most ASCAs follow the vertical attack paradigm. Their success rate is associated
with the number of traces that are needed to be processed vertically in order to
reveal the secret s. The most widely used ASCA vertical attack is Differential Attack
(DSCA) originally proposed by Kocher in [10] that is later expanded into the more
sophisticated Correlation SCA (requiring less traces to reveal the secret than DSCA)
[11] and collision correlation attack [12–14] that can be mounted even if the attacker
does not have full control of the implementation inputs.

Recently, researchers have shown that appropriate combination of vertical and
horizontal attacks can enhance SCA success rate even against implementations that
have strong SCA countermeasures [14, 15]. These publications are mainly based on
vertical attacks that use horizontal attacks to bypass randomization/blinding coun-
termeasures.

Countermeasures: SSCAs are thwarted by making the leakage trace of O1 indistin-
guishable from the leakage trace of O0. This can be achieved by more sophisticated
(regular) ME/SE algorithms, like the square-and-multiply always/ double-and-add
always technique or theMontgomery power ladder (MPL) technique [16] (presented
in the following Table) or by applying the atomicity principle in the existing square-
and-multiply / double-and-add ME/SM algorithm. Atomicity is realized by brak-
ing each Oi operation into atomic blocks (e.g., the same field operations) that are
arranged in such way in time that they follow the same sequence for both O1 and O0.
On the other hand, regular ME/SM algorithms provide SSCA resistance by making

5 Fault and Power Analysis Attack … 97

MPL for RSA primitives
Input: c, e = (1, et−2, ...e0) ∈ Z

∗
n

where n is the public modulus
Output: S = ce mod n
Initialization: T0 = 1, T1 = c
For i = t − 1 to 0

If ei = 1 then
T1 = T 2

1 mod n
T0 = T0 · T1 mod n

else
T0 = T 2

0 mod n
T1 = T0 · T1 mod n

Return: T0

MPL for ECC primitives
Input: P,∈ E(F), e =
(et−1, et−2, ...e0) ∈ F
Output: S = (e · P)

Initialization: T0 = O , T1 = P
For i = t − 1 to 0

If ei = 1 then
T1 = 2 · T1
T0 = T0 + T1

else
T0 = 2 · T0
T1 = T0 + T1

Return: T0

the number of Oi operations constant in each ME/SM round (that processes one
bit of the secret exponent/scalar). Unfortunately, the above countermeasures can be
bypassed when each Oi operation is realized by Z

∗
n operations or F operations (for

ME or SM respectively) that are implemented as a series of word-based operations
(typical case in software implementations). In such case, horizontal attacks like the
Big Mac, HCA, HCCA are still successful. Furthermore, the above countermeasures
are thwarted by all vertical type of attacks including DA, RDA, and 2-Torsion and
all ASCAs.

Randomization is a favorable solution for countering ASCAs (both horizontal
and vertical). Using randomization, the sensitive information (exponent or scalar)
is disassociated from the leakage trace and is hidden by multiplicatively or addi-
tively blinding this information using a random Group (Z∗

n or E(F)) element. This
hiding/blinding involves exponent, public modulus or message multiplication with a
random number in the RSA case, or adding a random R point to the SM base point
P , multiplying with a random element of F the base point’s projective coordinates as
well as applying EC or finite field random isomorphisms (Coron’s Countermeasures
[17]). Many of the above countermeasures do not fully protect an ME/ SM architec-
ture from CSCA, CCSCA (and the SM specific attacks of RPA, ZPA [18]). This is
more evident in ECC SM implementations where attackers have managed to defeat
all 3 of Coron’s countermeasures (for some regular SM algorithms). For example, in
SSCA resistant algorithms, like the BRIP method [19] (presented below) where the
same random number is added to each round’s point values (thus creating a vulner-
ability [20]), randomization (base point blinding) may not prevent RDA or 2-TorA.
Researchers have also shown that blinding cannot protect anME/SM implementation
if Z∗

n operations or F operations (for ME or SM respectively) are implemented as
a series of word-based operations. In such case, horizontal attacks (HCA, HCCA)
or vertical-horizontal attack combinations are successful in revealing the secret s
[14, 15]. Yet still, message/base point blinding can resist horizontal attacks as long
as the bit length of the employed random element is large enough [6].

98 A.P. Fournaris

BRIP for RSA primitives
Input: c, B, B−1, e =
(1, et−2, ...e0) ∈ Z

∗
n where n is

the public modulus
Output: S = ce mod n
Initialization: T0 = B, T1 = B−1,
T2 = c · B−1 mod n
For i = t − 1 to 0

T0 = T 2
0 mod n

If ei = 1 then
T0 = T0 · T2 mod n

else
T0 = T0 · T1 mod n

Return: T0 = T0 · T1 mod n

BRIP for ECC primitives
Input: P, B,∈ E(F), e =
(et−1, et−2, ...e0) ∈ F
Output: S = e · P
Initialization: T0 = B, T1 = −B,
T2 = P − B
For i = t − 1 to 0

T0 = 2 · T0
If ei = 1 then
T0 = T0 + T2

else
T0 = T0 + T1

Return: T0 = T0 + T1

5.2.2 Fault Attack and Countermeasures

Fault attacks can be injected in various parts of the RSA/ECC implementation includ-
ing storage elements, control instructions or computation units as a whole. Bellcore
researchers introducing FAs in public key systems, have shown that RSA, especially
CRT1 RSA, is very vulnerable against fault attacks [21]. Similarly, FAs have been
very successful in ECC implementations. There exist various FAs aiming the SM
implementation, like C and M safe error attacks where the value of a single bit of
the scalar e is changed and it is observed if this action leads to a different point
multiplication outcome or not (safe error). There also exist FAs focusing on a weak
curve-based fault analysis including invalid base point attacks where by injecting
a fault in the SM base point, this point with high probability becomes a point of a
weak curve.2 This approach can be expanded into invalid curve attacks, where any
unknown fault in any part of the hardware implementation (memory, buses, registers
etc.) influencing any EC parameter can possibly lead to a transition to a weak curve
[22]. By specializing the fault injection process to the x EC point coordinate (as long
as the y coordinate is not used), more promising attack results can be provided by
transferring SM calculations to a weak twist of the original EC with high probability
(twist curve FAs) [23].

Apart from the patented approach of Shamir [24] (Shamir’s trick), early attempts
to thwart the Bellcore attack and EC SM fault attacks were based on infective com-
putation [25]. Through this approach, any computational errors introduced by a fault
will propagate throughout the computation, “infecting” all intermediate variable thus
ensuring that the final result always becomes faulty and appears random and use-
less to the adversary in the end. After an initial attempt on this concept by Yen in
[26], in the case of RSA, insecurities were found by Blömer et al. [27], thus the
infective computing approach was enhanced with a fault detection mechanism based
on the introduction of public modulus (n) multiplicative masking (BOS scheme).

1Chinese Remainder Theorem.
2A weak elliptic curve is a curve that can be cryptanalyzed easily.

5 Fault and Power Analysis Attack … 99

BOS scheme was insecure in several possible thread models [28], as shown in
[29, 30]. More than one fault can be carefully injected, as shown by Kim and
Quisquater in [31], in certain parts of the CRT and non-CRT RSA to bypass the
fault detection operation as a whole; thus revealing the public modulus or its pri-
vate factors (KQ scheme). This attack consists of injecting two faults, one during
exponentiation and another during fault detection. To prevent such attack, the RSA
outcome should be revealed and stored only after fault detection. This attack of more
than one fault injections can also be applied to ECC designs to bypass the fault
detection mechanism.

In the case of ECCs, similar countermeasure steps where introduced by
researchers, including infective computation and fault detection [32]. However, to
thwart the transition to weak ECs due to fault injection additional countermeasures
could be taken into account, including point validation and EC integrity checks for
invalid point and invalid curve (EC parameter) attacks. In general, the fault detection
mechanism for bothRSAandECC schemes is focused on a coherency check between
intermediate values during ME (RSA) or SM (ECC). This check is usually a mathe-
matical connection between those intermediate values that is retained throughout the
computation flow and is disrupted when an fault is injected. A coherency sensitive
mechanism can check if the mathematical connection between those values exists or
not, thus detecting an attack [33–35].

RSA and ECC implementations are very susceptible to SCA and especially
power attacks (PA) especially when such attacks are combined with Fault attacks
[36, 37]. Providing protection for FA or PA independently can thwart only one kind
of hardware attack while adversaries usually apply a combination of different attack
techniques to compromise an RSA/ECC hardware architecture. Combining more
than one type of countermeasure as well as adopting and combining well-established
resistance principles in an RSA/ECC implementation can achieve long-term SCA-
FA resistance against such attacks [33, 34, 38]. However, combining FA and PA
resistance approaches may introduce new vulnerabilities that can be exploited to
attack the public key implementation system [16, 19, 37, 39, 40] thus reducing the
RSA/ECC implementation overall physical attack resistance.

5.3 Proposed Approach

The broad variety and heterogeneity of PA and FA attacks implies that it is hard to
design countermeasures capable of providing wide scale protection. This is further
supported by the fact that PA and FA combinations apart from eliminating vulner-
abilities may introduce new ones. Apart from specific design oriented countermea-
sures like dual rail logic and power balancing [41, 42] that must be fine-tuned to a
single implementation in order to be effective, algorithmic-based countermeasures
may offer a more generic protection approach that can be applied to a wide range
of RSA/ECC implementations regardless of the architecture those implementations
follow. Our goal is to describe such algorithmic approaches for PA and FA resistance

100 A.P. Fournaris

that combine effectively different PA and FA countermeasures and offer long-term
PA-FA resistance against known attacks. This research approach focus point is on
well-established PA-FA resistance principles rather than specific resistance counter-
measures on ME and SM accelerator units.

As a basis of the proposed algorithm approach on PA-FA resistant ME/SM, the
MPL algorithm is used. The MPL algorithm is resistant against many of the men-
tioned attack in Sect. 5.2.1, it does not rely on dummy operations in order to hide the
computation flow during ME/SM execution (modular multiplication or squaring for
ME or point addition and doubling for SM) and also favors operation parallelism thus
leading to fast implementations. The original MPL algorithm though offers SSCA
resistance (and more specifically Simple PA resistance) and under some restrictions
is horizontal attack resistant. To further enhance the MPL with ASCA resistance,
we must introduce some blinding technique through additive or multiplicative ran-
domization. Such countermeasure follows the protection technique of message/base
point blinding, since it constitutes an approach that under careful application in the
MPL algorithm cannot be bypassed or introduce considerable performance overhead
to a ME/SM implementation. Other techniques like exponent/scalar blinding are not
very efficiently implemented and are found to have vulnerabilities [36, 37]. However,
message/base point blinding must be realized in such a way that it should not suffer
from vulnerabilities similar to the BRIP method [20].

Assuming that all operations in the proposed algorithm are defined in a group G,
where G is either the multiplicative group Z∗

n (for RSA) or the additive group E(F)

(for ECC), we introduce a random element B ∈ G and its inverse B−1 ∈ G into the
MPL computation flow that can blind the message multiplicatively (B · c mod n,
i.e., message blinding for RSA) or the base point P additively (B + P , i.e., base
point blinding). In contrast to similar approaches, where in each ME/SM round the
round’s computed values are blinded with the same random element, in the proposed
approach, a round’s values are randomized with a different number in each round (a
multiple of the random element B).

Concerning FA resistance, our approach adopts a combination of the infective
computation and fault detection resistance principles, following the intermediate
values mathematical coherence characteristic of the MPL algorithm. As observed in
[16] and by Giraud in [33], the T0 and T1 value in an MPL round always satisfy the
equation T0 = c · T1 mod n or T0 = P + T1 for ME or SM, respectively. Injecting a
fault during computation in a T1 or T0 variable will ruin this coherence and by intro-
ducing an MPL coherence detection mechanism in the end of the MPL algorithm,
this fault will always be detected. Finally, efficiency of the proposed approach is
achieved by employing Montgomery modular multiplication for ME and by exploit-
ing the intrinsic parallelism that exist in the MPL algorithm. The proposed PA-FA
resistant algorithm is presented below in two formulations, ME for RSA and SM for
ECC schemes.

FA-PA Montgomery ME algorithm for RSA primitives
Input: c, B, B−1, e = (1, et−2, . . . e0) ∈ Z

∗
n where n is the public modulus

Output: (s0, s1, s2, s4) = (Be · ce mod n, Be+1 · ce+1 mod n, B2t · c2t mod n, B−e

mod n)

5 Fault and Power Analysis Attack … 101

Initialization: T = R2 mod n, s0 = s1 = bR = B · R mod n, s3 = s4 = s5 = bR−1 =
B−1 · R mod n, where R = 2 j+2

1. TR = T · c · R−1 mod n
2. s2 = bR · TR · R−1 mod n
3. For i = 0 to t − 1

(a) If ei = 1 then
s0 = s0 · s2 · R−1 mod n,
s4 = s4 · s3 · R−1 mod n
else
s1 = s1 · s2 · R−1 mod n,
s5 = s5 · s3 · R−1 mod n

(b) s2 = s22 · R−1 mod n, s3 = s23 · R−1 mod n

4. s0 = s0 · b−1 · R−1 mod n, s1 = s1 · c · R−1 mod n
s2 = s2 · 1 · R−1 mod n, s4 = s4 · b · R−1 mod n

5. If (values of i , e are not modified and s0 · s1 · R−1 mod n = s2 · 1 · R−1 mod n)
then return s0, s1, s2, s4 else return error

The above algorithm can be used for non CRT RSA or as a building block for
CRT RSA primitive. It employs as inputs the message c, the random number B and
its multiplicative inverse B−1, the public modulus n and the exponent e. Note that ei
corresponds to the i-th bit of e and that j is the bit length of themodulus n.We assume
that the multiplicative inverse of B exists, meaning that gcd(B, n) = 1 (B and n are
relatively prime). Possible fault injection attack can be detected by checking s0 · s1 ·
R−1modn

?= s2 · R−1 mod n (Z∗
n MPL coherency check). If no fault is injected, the

above equation is always true.3 The exponentiation result can be found after fault
detection by performing s0 · s4 mod n = Be · ce · B−e mod n = ce mod n.

FA-PA SM algorithm for ECC primitives
Input: P, B, B−1 ∈ E(F), e = (1, et−2, ...e0) ∈ F
Output: (S0, S1, S2, S4) = (e · (B + P), (e + 1) · (B + P), 2t · (B + P), (−e) · B)

Initialization: S0 = S1 = B, s3 = s4 = s5 = −B

1. S2 = B + P
2. For i = 0 to t − 1

(a) If ei = 1 then
S0 = S0 + S2,
S4 = S4 + S3
else
S1 = S1 + S2,
S5 = S5 + S3

(b) S2 = 2 · S2, S3 = 2 · S3

3Note that e is logical NOT of e and that e + e = 2t − 1.

102 A.P. Fournaris

3. S0 = S0 − B, S1 = S1 + P
S4 = S4 + B

4. If (values of i , e are not modified and S0 + S1 = S2) then return S0, S1, S2, S4
else return error

The above algorithm can be applied to any EC type (Wierstrass, Hessian,
Montgomery, Edwards curves etc.) under any coordinate system (affine, projective,
mixed). It employs as inputs the base point P , a random point B and its additive
inverse B−1 = −B, along with the scalar e. Note that ei corresponds to the i-th bit
of e and that j is the bit length of all involved finite field elements. Similar to its ME
version, possible fault injection attack can be detected by evaluating the E(F) MPL

coherence check S0 + S1
?= S2. If no fault is injected, the above equation is always

true and only then can the exponentiation result be released (after fault detection) by
performing S0 + S4 calculation.

5.4 Security Analysis

The MPL algorithm due to its regularity in the number of Oi operations performed
in its round, provides resistance against SSCAs (and more specifically PAs). Thus,
simple PAs, the simplest form of horizontal SCAs, are not successful against MPL.
The atomic block approach, that has been found to be vulnerable to advanced hor-
izontal attacks, like Big Mac, HCA, HCCA attack [2, 3, 5, 6], is not applied in
MPL (the algorithm uses no dummy data and is by design highly regular). However,
some ASCA horizontal attacks can be successful even against MPL. This problem
can be thwarted by the use of message/base point blinding (with a high bit length
random element) and by avoiding the use of digit serial Z∗

n or F operations (mainly
multiplications).

The adopted blinding technique of the proposed algorithm prevents vertical
SSCAs (vertical SPAs) (like DA, RDA) since the connection between two con-
secutive messages/base point inputs is lost (they are blinded with different random
numbers/points). However, message/base point blinding randomization, as indicated
in [8], is not enough to provide protection against 2-TorA. So, it is imperative that
the intermediate computation results are blinded with a different random element
of G in every ME/SM round. This is achieved by exponentiating/scalar multiplying
the random element B along with the message/base point without normalizing the
random element to B at the end of each ME/SM round, as is done in similar blinding
techniques (e.g., in the BRIP approach [19]).

The random element involvement in each of the proposed algorithm’s round with
out normalization (apart from the end of the algorithm) enhances message/base point
blinding andmakes the proposed approach highly resistant against ASCAs (andmore
specifically advanced PAs). DPA and CPA are not successful against the proposed
message/base point blinding approach.

5 Fault and Power Analysis Attack … 103

Regarding fault injection attacks, the proposed algorithms, as already mentioned,
rely on the MPL round coherence check introduced at the end of a single ME or SM
operation. This enhances the principle of fault infective computation introduced in
[43]. However, a clever attacked could try to bypass the fault detectionmechanism by
introducing an additional fault after this function complementing an already injected
fault during the main algorithmic process [31] (similar to the KQ attack). This two
fault approach is not applicable in the proposed algorithm since the faulty result
after fault detection remains blinded. Unblinding correctly this result will require a
correct value (not faulty) to be used after fault detection. By bypassing the detection
mechanism the attacker cannot discriminate if theME/SM output is a blinded correct
result or a faulty result. Thus, this result is useless for fault analysis.

5.5 Conclusion

In this book chapter, a common protection approach against SCA-PA and FA attacks
is introduced both for RSA and ECC primitive operations of modular exponentiation
and scalar multiplication, respectively. Our approach adopts and extends the MPL
algorithm by introducing message/base point blinding, extension of the randomiza-
tion operation per ME/SM round through a random element exponentiation/scalar
multiplication in every round and infective computation along with a fault detection
mechanism that releases the correct result only after passing the MPL coherency
check. The proposed algorithmic solution constitutes a protection framework against
a wide variety of SSCA and ASCA attacks (focusing on PAs) as well as FA attacks
that introduce one or two faults and process them statically or statistically.

Acknowledgements This work is supported by EU COST action IC1204 “Trustworthy Manufac-
turing and Utilization of Secure Devices (TRUDEVICE)”.

References

1. Fournaris A, Sklavos N. Public key cryptographic primitive design and protection against fault
and power analysis attacks. In:DATE2015 conferenceWorkshop on trustworthymanufacturing
and utilization of secure devices, 2015.

2. Bauer A, Jaulmes E, Prouff E, Wild J. Horizontal and vertical side-channel attacks against
secure rsa implementations. In: Dawson E, editor. Topics in cryptology, CT-RSA 2013, ser.
LNCS, vol. 7779. Berlin, Heidelberg: Springer; 2013. p. 1–17.

3. Bauer A, Jaulmes E, Prouff E, Wild J. Horizontal collision correlation attack on elliptic curves.
In: Lange T, Lauter K, Lison KP Selected areas in cryptography—SAC 2013, ser. Lecture notes
in computer science, vol. 8282. Berlin, Heidelberg: Springer; 2014. p. 553–70.

4. KocCK.Cryptographic engineering. 1st ed. Incorporated: Springer PublishingCompany; 2008.
5. Walter C. Slidingwindows succumbs to bigmac attack. In: Koc C, NaccacheD, Paar C, editors.

Cryptographic hardware and embedded systems CHES 2001, ser. Lecture notes in computer
science, vol. 2162. Berlin, Heidelberg: Springer, 2001. p. 286–99.

104 A.P. Fournaris

6. Clavier C, Feix B, Gagnerot G, Roussellet M, Verneuil V. Horizontal correlation analysis
on exponentiation. In: Soriano M, Qing S, Lpez J, editors. Information and communications
security, ser. Lecture notes in computer science, vol. 6476. Berlin, Heidelberg: Springer; 2010.
p. 46–61.

7. Fouque PA, Valette F. The doubling attack why upwards is better than downwards. In: Walter
C, Koc C, Paar C, editors. Cryptographic hardware and embedded systems—CHES 2003, ser.
Lecture notes in computer science, vol. 2779. Berlin/Heidelberg: Springer, p. 269–80.

8. Yen S, Ko L, Moon S, Ha J. Relative doubling attack against Montgomery Ladder. Inf Secur
Cryptol. 2006;2005:117–28.

9. Yen SM, Lien WC, Moon SJ, Ha J. Power analysis by exploiting chosen message and internal
collisions—vulnerability of checking mechanism for rsa-decryption. In: Dawson E, Vaude-
nay S, editors. Mycrypt, ser. Lecture notes in computer science, vol. 3715. Springer; 2005.
p. 183–95.

10. Kocher P, Jaffe J, Jun B. Differential power analysis. In: Advances in cryptology proceedings
of crypto 99. Springer; 1999, p. 388–97.

11. Amiel F, Feix B, Villegas K. Power analysis for secret recovering and reverse engineering of
public key algorithms. In: Adams C,Miri A,WienerM, editors. Selected areas in cryptography,
ser. Lecture notes in computer science, vol. 4876. Berlin, Heidelberg, Springer; 2007. p. 110–
25.

12. Bogdanov A, Kizhvatov I, Pyshkin A. Algebraic methods in side-channel collision attacks
and practical collision detection. In: Chowdhury D, Rijmen V, Das A, editors. Progress in
cryptology—INDOCRYPT 2008, ser. Lecture notes in computer science, vol. 5365. Berlin,
Heidelberg: Springer; 2008. p. 251–65.

13. Moradi A. Statistical tools flavor side-channel collision attacks. In: Pointcheval D, Johansson
T, editors. Advances in cryptology EUROCRYPT 2012, ser. Lecture notes in computer science,
vol. 7237. Berlin, Heidelberg: Springer; 2012. p. 428–45.

14. Feix B, Roussellet M, Venelli A. Side-channel analysis on blinded regular scalar multiplica-
tions. In: Meier W, Mukhopadhyay D, editors. Progress in cryptology—INDOCRYPT 2014,
ser. Lecture notes in computer science, vol. 8885. Springer International Publishing; 2014.
p. 3–20.

15. Bauer A, Jaulmes I. Correlation analysis against protected sfm implementations of rsa. In:
Paul G, Vaudenay S, editors. Progress in cryptology INDOCRYPT 2013, ser. Lecture notes in
computer science, vol. 8250. Springer International Publishing; 2013. p. 98–115.

16. Joye M, Yen S-M. The montgomery powering ladder. In: CHES ’02: revised papers from the
4th international workshop on cryptographic hardware and embedded systems. London, UK:
Springer; 2003. p. 291–302.

17. Coron J-S. Resistance against differential power analysis for elliptic curve cryptosystems.
In: Proceedings of the first international workshop on cryptographic hardware and embedded
systems, ser. CHES ’99. London, UK: Springer; 1999. p. 292–302.

18. Goubin L. A refined power-analysis attack on elliptic curve cryptosystems. In: Public key
cryptographyPKC 2003, 2002. p. 199–211.

19. Mamiya H, Miyaji A, Morimoto H. Efficient countermeasures against RPA, DPA, and SPA.
Crypt Hardware Embed Syst. 2004;3156:243–319.

20. Amiel F, Feix B. On the BRIP algorithms security for RSA. In: Information security theory
and practices. Convergence and next generation networks: smart devices; May 2008.

21. Boneh D, DeMillo RA, Lipton R-J. On the importance of checking cryptographic protocols
for faults (extended abstract). In: EUROCRYPT’97, 1997. p. 37–51.

22. Ciet M, JoyeM. Elliptic curve cryptosystems in the presence of permanent and transient faults.
Des Codes Crypt. 2005;36(1):33–43.

23. Fouque P-A, Lercier R, Réal D, Valette F. Fault attack on elliptic curve montgomery ladder
implementation. In: 2008 5thworkshop on fault diagnosis and tolerance in cryptography. IEEE;
Aug. 2008. p. 92–8.

24. Shamir A. Method and apparatus for protecting public key schemes from timing and fault
attacks. U.S. Patent 5,991,415, May 1999.

5 Fault and Power Analysis Attack … 105

25. Sung-Ming Y, Kim S, Lim S, Moon S. RSA speedup with residue number system immune
against hardware fault cryptanalysis, vol. 2288. In: Information security and cryptology ICISC
2001, 2002. p. 397–413.

26. Sung-Ming Y, Seungjoo K, Seongan L, Sang-Jae M. RSA speedup with chinese remain-
der theorem immune against hardware fault cryptanalysis. IEEE Trans Comput. 2003;52(4):
461–72.

27. Blömer J, Otto M, Seifert J. A new CRT-RSA algorithm secure against Bellcore attacks. In:
Proceedings of the 10th ACM conference on computer and communications security. ACM,
2003. p. 311–20.

28. Wagner D. Cryptanalysis of a provably secure CRT-RSA algorithm. In: Proceedings of the 11th
ACM conference on computer and communications security. ACM, 2004. p. 92–7.

29. Liu S, King B, Wang W. A CRT-RSA algorithm secure against hardware fault attacks. In:
2nd IEEE international symposium on dependable. Autonomic and secure computing, 2006.
p. 51–60.

30. Qin B, Li M, Kong F. Further cryptanalysis of a provably secure CRT-RSA Algorithm. In: The
1st international symposium on data, privacy, and E-Commerce (ISDPE 2007). IEEE, Nov.
2007, p. 327–31.

31. Kim C, Quisquater J. Fault attacks for CRT based RSA: new attacks, new results, and new
countermeasures. Smart cards, mobile and ubiquitous computing systems. Inf Secur Theory
Pract. 2007;4462:215–28.

32. Fan J, Verbauwhede I. An updated survey on secure ECC implementations: attacks, counter-
measures and cost. Crypt Secur From Theory Appl. 2012;6805:265–82.

33. Giraud C. An rsa implementation resistant to fault attacks and to simple power analysis. IEEE
Trans Comput. 2006;55(9):1116–20.

34. Fumaroli G, Vigilant D. Blinded fault resistant exponentiation. In: Breveglieri L, Koren I,
Naccache D, Seifert J-P, editors. FDTC, ser. LNCS, vol. 4236. Springer; 2006. p. 62–70.

35. Fournaris A, Koufopavlou O. Protecting crt rsa against fault and power side channel attacks. In:
2012 IEEE Computer Society Annual Symposium on, VLSI (ISVLSI, Aug. 2012. p. 159–64.

36. Amiel F, Villegas K, Feix B, Marcel L. Passive and active combined attacks: combining fault
attacks and side channel analysis. In: Proceedings of the workshop on fault diagnosis and
tolerance in cryptography, ser. FDTC ’07. Washington, DC, USA: IEEE Computer Society;
2007. p. 92–102.

37. Schmidt JM, Tunstall M, Avanzi R, Kizhvatov I, Kasper T, Oswald D. Combined implementa-
tion attack resistant exponentiation. In: Abdalla M, Barreto P, editors. Progress in cryptology
LATINCRYPT 2010, ser. Lecture notes in computer science, vol. 6212. Berlin, Heidelberg:
Springer; 2010. p. 305–22.

38. Fournaris AP. Fault and simple power attack resistant rsa using montgomery modular multipli-
cation. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS
2010). IEEE; 2010.

39. Kim CH, Quisquater JJ. How can we overcome both side channel analysis and fault attacks
on RSA-CRT?. In: Workshop on fault diagnosis and tolerance in cryptography (FDTC 2007).
IEEE; 2007. p. 21–9.

40. Boscher A, Handschuh H, Trichina E. Blinded fault resistant exponentiation revisited. In:
Workshop on fault diagnosis and tolerance in cryptography (FDTC). IEEE; 2009. p. 3–9.

41. Danger JL, Guilley S, Bhasin S, Nassar M. Overview of dual rail with precharge logic styles to
thwart implementation-level attacks on hardware cryptoprocessors. In: 2009 3rd international
conference on, signals, circuits and systems (SCS). IEEE; 2009. p. 1–8.

42. Moradi A, Shalmani MTM, Salmasizadeh M. Dual-rail transition logic: a logic style for coun-
teracting power analysis attacks. Comput Electr Eng. 2009;35(2):359–69.

43. Yen S-M, Kim S, Lim S, Moon S-J. Rsa speedup with chinese remainder theorem immune
against hardware fault cryptanalysis. IEEE Trans Comput. 2003;52(4):461–72.

Chapter 6
Scan Design: Basics, Advancements,
and Vulnerabilities

Samah Mohamed Saeed, Sk Subidh Ali and Ozgur Sinanoglu

6.1 Introduction

Security of Integrated Circuits (IC) is a major concern. Cryptochips, which apply
encryption and decryption algorithms, are used in many applications such as cell
phones, computers, avionics, smart cards, and medical applications to provide a
secure environment. As any IC should be tested for defects, which are physical
imperfection in the IC, to screened out defective chips, cryptochip can be hacked
using the test features in the chip itself. Thus, cryptochip’s test infrastructure can be
turned into a backdoor to leak secret information of the chip.

Manufacturing test process targets ensuring a high level of quality and reliability
of the chips with a minimum test cost. Providing a high test quality and low test cost is
a major challenge in the test process. Test patterns are applied to detect faults, which
represent defects at an abstracted functional level as a result of defects. To maximize
the fault coverage, and, thus, the test quality, a large number of test patterns can be
applied to detect as much defects as possible resulting in a large test data volume
and, and thus, a long test time. The limited bandwidth as well as number of channels,
which is used to transfer test data between the tester and the chip, can further prolong
the test time. Although increasing the number of test channels can reduce the test
time, it incurs higher tester cost. The end result is a high test cost. These interrelated
challenges need to be tackled to ensure low-cost high-quality test.

S.M. Saeed (B)
University of Washington, Tacoma, WA 98402, USA
e-mail: samahs@uw.edu; sms22@nyu.edu

S.S. Ali · O. Sinanoglu
New York University, 129188 Abu Dhabi, UAE
e-mail: sa11@nyu.edu; subidh.ali@nyu.edu

O. Sinanoglu
e-mail: os22@nyu.edu

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_6

107

108 S.M. Saeed et al.

The semiconductor industry develops and adopts Design for Testability (DfT)
techniques that modify the IC design, while maintaining its functionality. DfT tech-
niques provide internal access to the chip, which includes controlling and observing
the content of the storage elements to ensure a high quality. While DfT methods pro-
vide low-cost high-quality test, the IC is no longer secure against attackers that misuse
the internal access to the IC to leak secret information from the chip. Throughout
this chapter, we highlight the advanced DfT techniques for manufacturing test and
shed light on the vulnerability of these techniques in security critical applications.

6.2 DfT

DfT [1] techniques enable comprehensive testing of the chip, enhancing the test qual-
ity. Unlike combinational circuits, in which a set of input combinations should be
exercised to archive maximum fault coverage, sequential circuits, in addition, need
to be traversed through all possible states. Thus, a sequence of test vectors may be
required to detect any fault in a sequential circuit. However, having access to the
primary inputs and outputs of the chip may be insufficient to cover all the states
of the design, which can reduce the fault coverage, and, thus, the test quality. DfT
modifies the design by adding hardware to enhance the test quality and minimize the
test cost without affecting the functionality of the circuit itself. Testability, which
represents the level of difficulty of testing internal signals in the design, is measured
by controllability and observability of each signal line, where controllability mea-
sures the difficulty of setting a signal line to the required value, while observability
measures the difficulty of propagating the logic value of a signal line to the output.
DfT improves observability and controllability by providing access to the internal
nodes of the design, which enhances the testability at the cost of limited hardware
and performance overhead.

Many DfT techniques have been proposed to address the testing challenges. Struc-
tural DfT techniques, such as scan, partial scan, and boundary scan, are applicable
to any circuit. Scan provides full access to the flip flops, turning them into scan cells,
through the scan input/output pins so that the state of the design can be updated via
shift-in operations. Partial scan provides full access to a selected subset of flip flops,
providing a trade-off between area/performance overhead and testability. Boundary
scan enables the test of the interconnect of logic using scan cells directly connected
to the primary inputs and the outputs of the logical block. Next, we will describe in
detail each one of these DfT approaches.

6.2.1 Scan Design

Scan design [1] is one of the most effective structured DfT solutions. It enables
controlling and observing any internal state of the circuit. The scan design converts

6 Scan Design: Basics, Advancements, and Vulnerabilities 109

Fig. 6.1 Scan design

every flip flop to fully accessible scan cell by adding multiplexers to select either the
output of the previous scan cell or the corresponding output of the combinational
circuit to update each scan cell. All the scan cells, namely registers (flip flops), are
linked together to form a chain, in which the first scan cell is driven by an input pin and
the last scan cell drives an output pin. The scan design is illustrated in Fig. 6.1. If all
the registers have the scan property, the design is considered as full scan. Otherwise, it
is partial scan. While in the normal mode the chip performs its functional operations,
the test mode in the scan design supports two different modes, which are the shift
mode and the capture mode. Scan enable signal can be used to switch between these
two modes. In the shift mode, the test stimulus is shifted into the scan chain through
the scan input pin, while the test response is observed through the scan output pin one
bit at a time. Shifting the test stimulus necessitates activating the shift mode until the
whole pattern is shifted in. In the capture mode, the test stimulus already shifted into
the scan cells is applied to the combinational logic circuit and then the test response
is captured in the same scan cells. The captured test response can be observed, while
shifting in a new stimulus pattern. As a result, sequential logic circuit can be treated
as a combinational circuit, in which each flip flop can be treated as an input and an
output at the same time. Therefore, the test quality is improved.

For larger designs with tremendous number of flip flops, shifting each test stimulus
through a single scan chain results in a long test application time. A scan chain can
be divided into many chains of shorter length as in Fig. 6.2, which can be accessed

Fig. 6.2 Basic scan architecture: an example with 7 scan chains with a scan depth of 4

110 S.M. Saeed et al.

simultaneously. The length of the longest chain represents the scan depth. A group
of scan cells of equal distance to the input/output pins is denoted as a scan slice.
Increasing the number of chains reduces the scan depth, and, thus, the test application
time at the cost of additional channels and pins, that are connected to the scan chains.
Thus, there is a trade-off between the test time and the test cost.

6.2.1.1 Test Data Compression

Although the scan design enhances the testability, the test cost is dramatically
increased for complex designs due to the long test time and the large tester memory
requirement. To ensure high test quality, a large number of test stimulus and response
patterns are stored. They occupy a large space on the external tester’s storage. The
storage capacity should be expanded to accommodate the larger number of patterns.
The limitation of the bandwidth and the number of tester channels to transfer the
test data between the tester and the chip increases the number of test cycles, and,
thus, the overall test time. The test time can be reduced either through the reduction
of the number of test patterns or the increase of the number of channels. However,
the former one results in fault coverage loss, while the latter one is too costly to
implement.

Test data compression [2–4] has been developed to address the problem of large
test data volume and test time. Two components are added to the basic scan architec-
ture, which are the stimulus decompressor and the response compactor. A stimulus
decompressor expands a few number of tester channels into a much larger number
of internal scan chains. A response compactor collects the responses from a large
number of internal scan chains and feeds a small number of tester channels as illus-
trated in Fig. 6.3. Scan depth is reduced due to the increased number of internal scan
chains while retaining the number of channels. As a result, the number of clock
cycles for loading test stimuli and unloading the test responses is reduced, resulting

Decompressor

Compactor

Tester

Compressed test stimulus

Compacted output response

Chip

Fig. 6.3 Test data compression

6 Scan Design: Basics, Advancements, and Vulnerabilities 111

in a reduction in the overall test time. Furthermore, since the size of each test vector
is determined by the number of dedicated tester channels, the required tester storage
is also reduced, resulting in a reduction in the overall test data volume. Therefore,
test data compression reduces the test cost.

Test Stimulus Compression

Each test vector targets a specific set of faults. Only some bits of a test vector are
utilized to activate and propagate the fault effects, while the remaining bits are left
unspecified, referred to as don’t-care bits. Test pattern generation tools can randomly
specify these bits as 0’s and 1’s. A decompressor exploits the high density of don’t-
care bits in a stimulus (test pattern), compressing the test stimuli.

While adding a stimulus decompressor into the scan architecture reduces the
test data volume, this scan architecture can degrade the test quality. The stimulus
decompressor introduces correlation among the delivered bits to the chains, which
depends on the decompressor structure. As a result, a stimulus decompressor maybe
unable to deliver the desired test pattern; if a test pattern does not comply with the
correlation induced by the decompressor, the test pattern is said to be unencodable.
Faults that can only be detected by unencodable test patterns may remain untested in
the presence of a stimulus decompressor. The internal structure of the decompressor
determines the correlation, and, thus, delivery constraints.

A stimulus decompressor can be either sequential, such as Linear-Feedback Shift
Register (LFSR), or combinational, such as fan-out and XOR-based decompres-
sors [5]. An LFSR randomly generates the test pattern. Fan-out decompressors intro-
duce correlation in the form of repeated bits within a slice fragment, whereas XOR-
based decompressors introduce linear correlation among the bits delivered into scan
cells. As shown in Fig. 6.4a, any 0–1 conflict within a slice fragment results in an
unencodable pattern for the fan-out decompressor, as such a pattern fails to com-
ply with the expected correlation. For XOR-based decompressors, the encodability
of patterns is determined via solving a system of linear equations. Figure 6.4b pro-
vides an example of an unencodable pattern by highlighting the bits that result in
unsolvable linear equations. In this figure, x’s denote don’t-care bits.

Typical test application procedures include a second phase, where unencodable
patterns are applied serially by bypassing the decompressor [6]. As the second phase
delivers no compression, every pattern applied in this phase degrades the overall
compression level attained. Targeting an aggressive compression level, by increasing
the number of internal scan chains, can reduce the test data volume per pattern in the
first phase due to reduced scan depth. Yet, having to apply more patterns in the serial
phase may offset the compression benefits of the first phase. A predictive analysis can
help the designer in selecting the best possible configuration for a given compression
technique at an early design stage, in order to find the balance between the test cost
and the test quality.

112 S.M. Saeed et al.

Test Response Compaction

While a stimulus decompressor reduces the test data volume for the input stimuli,
output responses can be similarly compressed by a response compactor. However,
a response compactor may degrade observability. Some information is lost due to
compaction, which can affect the observability and the fault coverage of the circuit.
Some fault effects that were observed in the original circuit maybe masked due to
output response compaction. The main underlying reasons are the unknown values
and the fault aliasing. Unknown values can mask the fault effects captured in scan
cells. Fault aliasing refers to the situation where multiple fault effects mask each other.
An example of fault aliasing is illustrated in Fig. 6.5, where fault effects of f 1 cancel
each other upon getting compacted. Unknown values can be captured in the scan cells
due to many reasons such as uninitialized memory and bus contentions. Unknown
value, denoted by x , can mask the fault effects in the presence of response compactor.
In Fig. 6.5, f 2 is undetected, as its effect goes through the compactor along with an x .
Although fault aliasing is a problem, the biggest concern is the unknown values due
to their severe impact. Unknown values can be either static or dynamic [7, 8]. Static
unknown values are discovered in the design time at the outputs of the un-modeled
blocks (memory (RAM)) or bus contentions. Dynamic unknown values appear later
after the design stage due to timing problems, the impact of operating parameters
(voltage, temperature), and the defects caused during manufacturing.

x 0 1

0 1 x

0 x 1
x x 1
1 x 1

x x 0

x x 0

a
a
a

a

b b
b

c
c
c

Not
encodable

(a)

1 1 0

1 1 0

1 0 1
0 0 1
x 1 0

0 0 1

1 0 x

a
b
c

a
b
c

a
b
c
b c

a c

a b

a b c

Not
encodable

(b)

Fig. 6.4 Encodability problem. a Fan-out. b XOR decompressor

Fig. 6.5 The effect of XOR-compactor on fault coverage: fault cancellation and fault masking

6 Scan Design: Basics, Advancements, and Vulnerabilities 113

Sequential compaction circuitries [9, 10], such as multiple input signature regis-
ters (MISRs), can be utilized for compressing the scan responses into a signature that
is observed at the end of the test application process. The output vectors of the internal
scan chains are compressed during different clock cycles to produce a signature that
represents the output response of a certain pattern. A typical MISR consists of flip
flops and XOR gates connected together into a register. MISR not only compresses
a long scan-out sequence in the absence of unknown values, but also minimizes the
aliasing impact on the fault coverage. However, one or more unknown values will
corrupt the corresponding signature. Also, it is difficult to directly identify the loca-
tion of the scan cell that captured a fault effect from the obtained signature of the
MISR.

Combinational compaction solutions [11, 12], mostly XOR-based, are also uti-
lized for response compaction. Every slice in the scan architecture is compacted
independently. Unknown values may mask some of the captured bits in the same
clock cycle, depending on the tolerance of a space compactor to unknown values per
shift. However, the space compactor is susceptible to the occurrence of aliasing and
offers reduced compaction levels than the time compactor.

Regardless of the compaction methods, unknown values can be handled in a vari-
ety of ways to achieve high fault coverage. Multiple XOR trees can be constructed
that propagate the unknown values to the corresponding compressed response out-
puts, while observing scan cells that are connected to different compressed response
outputs. Furthermore, DFT hardware can block unknown values before reaching the
scan cells [13]. It is also possible to mask the unknown values before reaching the
compactor [3, 14]. The response compactor can also be constructed to adapt to the
varying density of unknown values in the response patterns. For XOR-based com-
pactors for instance, the fan-out of scan chains to XOR trees within the compactor
can be adjusted per pattern/region/slice to minimize the corruption impact of the
unknown values in a cost-effective way [15, 16].

6.2.2 Boundary Scan

Boundary scan (also known as JTAG boundary scan) is a DFT technique, which is
used to test interconnects, clusters of logic, and memory, while selectively overriding
the functionality of each block of the logic circuits. The specification of the boundary
scan was standardized as the IEEE standard 1149.1-1990 [17]. A boundary scan cell
is connected to each input/output pin of a block. All the boundary scan cells in a
block are linked serially to form a long shift register. The input of the shift register is
called Test Data Input (TDI), while the output of the shift register is called Test Data
Output (TDO). TDI and TDO represent the input and the output of a JTAG interface,
respectively. A finite state machine, called Test Access Port (TAP) controller, controls
all the possible boundary scan functions based on three signals, which are the external
clock (TCK) signal, a Test Mode Select (TMS) signal, and an optional Test Reset
(TRST) signal. The boundary scan architecture is illustrated in Fig. 6.6.

114 S.M. Saeed et al.

System logic

TAP

TDI TDO

Boundary scan cell

Input/Ouput
pin

Fig. 6.6 Boundary scan architecture

The main advantage of the boundary scan architecture is the overall reduction
in the number of input/output pins of the chip, as the external tester supports a
limited number of tester channels. A serial two-pin interface helps access all the
internal block inputs/outputs. In the normal mode, the input pins can directly feed
the primary inputs of the logical block, while the primary output can be observed
through the associated output pin. However, in the test mode, there is no longer a
direct connection between the input/output pins of the chip and primary input/output
of the logical block. The input/output pins of the chip are reused in the test mode as
scan pins, which is a typical cost-effective implementation. During the shift mode,
the test vectors can be serially shifted into the shift register through TDI, and response
can be observed through the TDO. During the capture mode, the boundary scan cells
drive the chip input pins and capture the chip output pins.

6.3 Scan-Based Side-Channel Attack

The scan design is an effective DfT technique that enhances the testability by pro-
viding full controllability and observability of the storage elements (flip flops) of the
chip. However, the security may be compromised upon misuse of such capabilities.
Scan design exposes the internal elements of the chip. Although some applications
disable the scan chains after the manufacturing test by blowing fuses for example,
other applications necessitate in-field testing to provide debug capabilities. For cryp-
tochips, the scan design can be misused to leak the secret key of the chip. If the
key register is part of the scan chain, the attacker can retrieve the key by simply
shifting out the content of the scan chain. A good design practice is to exclude the
key register from the scan chain. However, this alone does not guarantee a secure
test environment. Scan-based side-channel attacks have been shown to leak secret
information of the chip.

6 Scan Design: Basics, Advancements, and Vulnerabilities 115

6.3.1 Attack Principle

Scan design can be exploited to circumvent the security of the chip. Some of the
scan cells include secret information of the chip that executes encryption algorithms.
The attacker targets the scan cells that store computation results of intermediate
operations of the encryption algorithm. A scan-based side-channel attack utilizes
the direct access to the primary inputs/outputs, and the scan-in/scan-out pins of
the chip to recover the secret key; It uses the load and unload capabilities of the
scan infrastructure. This attack applies differential analysis on different encryption
algorithms such as Data encryption Standard (DES) [18] and Advanced Encryption
Standard (AES) [19]. We will focus on the AES encryption algorithm throughout this
chapter. However, our analysis can be extended to different encryption algorithms.

6.3.2 Advanced Encryption Standard (AES)

AES [20] is a well-known block cipher that supports block lengths of 128-bits and key
lengths of 128, 192, and 256 bits. The AES algorithm consists of identical operations,
i.e., rounds. The number of rounds depends on the key length; 10 rounds for 128-bit
key, 12 rounds for 192-bit key and 14 rounds for 256-bit key. The AES encrypts the
input, referred to as a plaintext, to the output, referred to as ciphertext after the desired
number of rounds. The 128-bit input plaintext is represented as 4 × 4 matrix of input
bytes, where each column is a separate word. Each round comprises the following
four basic transformations, except for the last round, which omits MixColumns

• SubBytes (SB) is a nonlinear substitution operation. Each input byte to the
SubBytes operation is replaced by another byte using one-byte substitution table,
referred as S-box. This replacement is a one-to-one mapping.

• ShiftRows (SR) is the byte-wise permutation. The second, the third, and the
fourth row of the matrix is cyclically shifted by one, two, and three positions to
the left, respectively.

• MixColumns (MC) is a four-byte mixing operation. A linear transformation is
applied to every column in the matrix, where each input byte in a column affects
all the four bytes in the same column.

• AddRoundKeys (ARK) is XORing the state with the round key. Each output
byte of the MixColumns operation is XORed with the corresponding key byte.

Figure 6.7 shows the structure of first round of AES, which contains an extra key
XORing operation at the beginning. The intermediate results of every round is stored
in the round registers.

116 S.M. Saeed et al.

Fig. 6.7 First round of AES: pi is the plaintext byte, ki is the initial key byte, qi is the SR output
byte, k′

i is the round key byte, and ri is the round output byte

6.3.2.1 Differential Properties of AES [21]

In AES S-box, for an input X and the input difference α, the output difference β is
represented as

β = SB(X) ⊕ SB(X ⊕ α) (6.1)

For a given (α, β) pair, there could be no, two, or four solutions for X [22]. In the
case of two solutions, they will be δ, and δ ⊕ α, where δ is any nonzero solution for
equation (6.1). In case of four solutions, they will be δ, δ ⊕ α, 0 and α.

Lemma 1 For a given input X and two nonzero differences αi and α j , the output
differences βi and β j are

βi = SB(X) ⊕ SB(X ⊕ αi)

β j = SB(X ⊕ α j) ⊕ SB(X ⊕ α j ⊕ αi)
(6.2)

For any value X, βi and β j are distinct.

Proof We prove this by contradiction. Let as assume that there is a value x of X for
which βi = β j . Let’s define y = x ⊕ α j . Then, we have two equations

βi = SB(x) ⊕ SB(x ⊕ αi)

β j = SB(y) ⊕ SB(y ⊕ αi),
(6.3)

where βi = β j implies that x and y are the two solutions of Eq. (6.1) where β = βi =
β j and α = αi . Then either y = x ⊕ αi , or x and y must be zero and αi or vice versa.
In either case, α j = αi contradicting our assumption. Therefore, βi and β j must be
distinct. �

6 Scan Design: Basics, Advancements, and Vulnerabilities 117

6.3.3 Traditional Scan Attack

The traditional scan-based side-channel attack misuses the test infrastructure of the
cipher [18, 19, 23–26]. As the round register is part of the scan chains, by switching
from the normal mode to the test mode to observe the round register, the secret key
can be recovered even if it is not included in the scan chain.

6.3.3.1 Attack Assumptions

The traditional scan attack works under the following assumptions:

• The details of the encryption algorithm running inside the cryptochip is known to
the attacker.

• JTAG port, and, thus, the scan chains and the test capabilities, can be accessed by
the attacker.

• The execution time for one round of the cipher is known to the attacker. Thus, the
attacker can execute only one round operation and switch to the test mode.

• The registers for storing the round register key are not included in the scan chains.

6.3.3.2 Scan Attack on Basic Scan Architecture

With the chip in hand, the attacker can run the cipher in the functional mode with the
desired plaintext for a few cycles, and then by switching to the test mode, he/she can
shift out the content of the internal registers. These registers of the cryptochip hold
the intermediate results of the cipher execution. Thus, the attacker can access the
intermediate results of the cipher, and perform differential analysis on these results
to get the secret key.

In traditional scan attacks on AES [19], the attacker first determines the scan
chain architecture. The attacker identifies which bits belong to the round register as
follows:

1. Apply a plaintext from the primary inputs in the functional mode, run the cipher
for only one round in normal mode, then switch to test mode and shift out the
contents of the scan chain. Let us call this output response f1.

2. Repeat Step 1 for another plaintext with one-bit input difference, resulting in an
output response f2.

3. Compute the output difference of the previous two plaintexts (f1XOR f2). The
flip flops with a value of one correspond to the flip flops in the round register.

4. Repeat Steps 2 and 3 until all the flip flops of the round register are identified.

The previous steps of the attack identify each word of the round register; applying
an input difference to a word affects only one word as per MixColumns properties.

The second step of the attack is to recover the round key. The attacker utilizes the
basic differential property of AES, wherein among all possible S-box input pairs with

118 S.M. Saeed et al.

Table 6.1 The S-box input pair for each unique hamming distance

Unique HD 9 12 23 24

S-box input pair (226, 227) (242, 243) (122, 123) (130, 131)

one-bit difference in the least significant bit of a byte, only four pairs will produce
an output difference of the round register with a unique hamming distance. Unique
hamming distance refers to those hamming distances which correspond to a unique
S-box input pair. These four unique hamming distances are 9, 12, 23, and 24.

Thus, to identify the round key byte, the attacker applies all possible 128 plaintext
pairs with one-bit difference in the least significant bit of a byte, and observes the
hamming distance in the captured round output. If a unique hamming distance is
observed, he/she determines the corresponding unique S-box input pair. Table 6.1
shows the S-box input pair for each unique hamming distance, which is referred to
as HD.

Thus, the corresponding two possible values of the key byte can be determined
by just XORing the plaintext byte with each input of the S-box input pair. The
same technique is applied across all the bytes to determine the final key. For each
byte, attacker will obtain a pair of possible key byte values. Therefore, for all the
sixteen bytes, the attacker will obtain 216 possible 128-bit keys. In the worst case, the
attacker has to apply 128 · 16 = 2048 plaintexts, while on average, 544 plaintexts
are sufficient to retrieve the 128-bit AES key.

6.3.3.3 Scan Attack with Advanced DfT

Improved scan attacks have been proposed to adapt to the advanced DfT techniques
such as partial scan [23], X-masking [24], and X-tolerant architecture [25, 26]. In
the presence of test compression, the attacker may no longer able to observe the key-
related flip flops (kffs) and compute the hamming distance of the output difference.
Key-related flip flops are the flip flops of the round register that can be used to derive
the secret key. Due to the presence of MixColumns operation, any byte of the input
will affect only four bytes of the output. Thus, there are 32 kffs in AES. The effect
of the response compactor on the scan attack depends on the distribution of the kffs
in the scan architecture.

Let us consider a scan architecture with an XOR-compactor, in which each slice is
compacted onto one channel. If each slice contains one kff as illustrated in Fig. 6.8a,
the traditional scan attack can still reveal the secret key. When applying two plaintexts
that differ in one byte, non-key-related flip flops will remain constant. Thus, the parity
bit of each slice will be one if the value of the corresponding kff in the generated
two responses is different and zero otherwise. On the other hand, when the kffs are
distributed over at most 31 slices, at least one slice contains two kffs as shown in
Fig. 6.8b. Thus, the hamming distance of the 32 kffs cannot be directly obtained by
observing the response compactor output. Let us consider the worst case where all

6 Scan Design: Basics, Advancements, and Vulnerabilities 119

Fig. 6.8 Scan architecture with a one kff in each slice, b with more than one kff in some slices

the kffs are in the same slice. The modified scan attack is summarized in Algorithm 1
[25, 26].

Algorithm 1: Secret key recovery in the presence of XOR-compactor

• For each pair of plaintexts a1 and a2 that differ in the least significant bit (a1 = a2 ⊕ 1)

– Compute the output difference of the compacted responses of the two plaintexts
(R1 and R2).

– If R1 ⊕ R2 = 1 (odd), consider the hamming distance 9 and 23. Otherwise, consider the
hamming distance 12 and 24.

– Compute the possible key byte using the corresponding S-box inputs and the plaintexts.
(similar to the traditional attack).

– Discard all the keys except the ones with the maximum occurrence k1 (11 keys).

• Repeat the previous steps for each pair of plaintexts that differ in the second least
significant bit (a1 = a2 ⊕ 2) and compute k2 (13 keys).

• Take the intersection of the two key sets to be the correct key (k1 ∩ k2).

Thus, in the presence of an output response compactor, the modified scan attack
is always able to derive the whole key with a complexity of 16 * (28 plaintexts) =
212 = 4096 plaintexts and scan-out operations.

6.3.4 Test-Mode-Only Scan Attack

In order to retrieve the intermediate results of the cipher, the traditional scan attack
has to rely on the condition that the intermediate results in the round register should be
preserved upon a switch from the normal mode to the test mode. This condition can be
easily eliminated by an automatic reset operation (mode-reset countermeasure) [27]
upon a switch between the normal mode and the test mode. Therefore, all the existing
scan attacks that rely on mode switching will fail in the presence of the reset operation.

120 S.M. Saeed et al.

Fig. 6.9 Test-Mode-Only attack operations

A Test-Mode-Only scan attack [21, 28] has been proposed to circumvent the
mode-reset countermeasure by staying in the test mode throughout the attack. In test
mode, one can apply the plaintext or the intermediate input in the form of a test vector
to the round operation of the target cipher and capture the corresponding response.
This response is the round output corresponding to the applied test vector input. The
test vectors are shifted in and the responses are shifted out through the scan input(SI)
and the scan output (SO) pins respectively; load and unload capabilities of the scan
infrastructure all within the test mode can be utilized for this purpose (Fig. 6.9).

6.3.4.1 Attack Assumptions

In addition to the assumptions of the traditional scan attack, the following are the
assumptions in the Test-Mode-Only attack:

• In test mode, the user key is being used which is either hardcoded in the chip or
stored in the memory.

• The global reset operation brings the chip to the first round by reseting the round
counter.

6.3.4.2 Test-Mode-Only Attack on Basic Scan Architecture

An attacker has to mitigate the following challenges while developing a Test-Mode-
Only attack.

1. Presence of boundary scan cells: In test mode, boundary scan cells drive the
primary inputs. They block the direct access to the primary inputs through the
chip input pins. Therefore, the attacker has only the SI pins to feed the cipher
round.

6 Scan Design: Basics, Advancements, and Vulnerabilities 121

2. Scan cell to round register flip flop mapping: The attacker does not know the
mapping between the scan cells and the round register flip flops, as the physical
placement tools decide how these flip flops are connected. As shown in [18], the
flip flops are almost randomly connected by the physical placement tools. With
an m-bit round register, there could be m! possible mappings. For AES where the
round register is 128 bits wide, the attacker has to try 128! possible mappings.
We refer to the 128 scan cells that are associated with the round register as key
cells.

The attacker utilizes the SI and SO pins to launch the attack. The attack is per-
formed in four steps as the following:

Identifying the Key Cells

If an input difference in the AES round is applied, only the key cells will be affected,
while the other scan cells preserve their content. Thus, the key cells can be distin-
guished from the other scan cells. Suppose we have a scan chain of n scan cells.
We apply two test vectors V and Vi with one-bit difference at the i-th scan cell, and
capture the responses. If we get a hamming distance greater than one in the difference
corresponding to the output responses, then the scan cell i is a key cell. We vary i
from 0 to n − 1, and determine all the 128 key cells.

Partitioning the Key Cells into AES Words

The second step of the attack relies on the fact that for AES, if an input difference
is applied to a word, the bit-flips in the output difference will confine within only
one word. It may be noted that in AES, the bytes in an input word and those in
the corresponding output word are different. The output word bytes are those which
get affected by the applied difference in the input word. In order to group the key
cells into words, we apply two pairs of test vectors (V, Vi) and (V, Vj), where the
one-bit difference is in the i-th and the j-th bit or key cell, respectively. If there is
any common bit-flip in Di and Dj , then i and j correspond to the same word of the
round register. In that case all the bit-flips of Di and Dj are in the same word. On
average, 5 such input pairs are sufficient to determine all the bits of a word.

Partitioning the Key Cells into the AES Bytes

Based on the Differential property of AES S-box in Sect. 6.3.2.1, if we apply two
different S-box input pairs A and B with the same input difference α, the output
difference DA and DB should be different. Thus, we apply two pairs of test vectors,
(V ,Vi) and (Vj ,Vi j) both with one-bit difference in the i-th bit, where Vi j is generated
by flipping bits i and j in V . The output differences of the two pairs are different i

122 S.M. Saeed et al.

and j belong to the same byte. We fix i and vary all the 31 possible choices of j (in a
word), and get the key cells corresponding to the byte of i . We repeat the procedure
for different values of i , and group the key flip flips into the four bytes of the word.

The order of the key cells is unknown to the attacker in the corresponding byte.
Therefore, the key recovery technique in [19] fails to retrieve the secret key.

Key Recovery Technique

The key recovery technique is based on a precomputed signature table. A signature
table is created by applying eight one-bit differences corresponding to the eight bit
positions of a S-box input byte. However, the differences are in the form (00000000,
00000001), i.e., an all-zero vector paired with a one-hot vector. There are eight such
one-bit differences based on the location of the 1. The eight hamming distances at the
one round output corresponding to the eight input differences are computed. These
eight hamming distances are unique for a key byte value. A signature table for all the
possible 256 values of the key byte is created. For each key byte value, each one of
the eight one-bit differences corresponding to eight key cells of a byte is applied and
the hamming distance of the output is computed. We compare the output hamming
distance with each row of the signature table. The correct key is the key associated
with the matching row. This attack requires only 9 test vectors to recover a key byte.

6.3.4.3 Test-Mode-Only Attack with Advanced DfT

In this section, we highlight the test mode-only-attack in the presence of the stimulus
decompressor [29] as an example of a Test-Mode-Only attack in the presence of
advanced DfT.

The stimulus decompressor imposes additional deliverability challenge on the
Test-Mode-Only scan attack. Unlike the traditional scan attack in which the attacker
applies the plaintext through the primary inputs in the normal mode, in the Test-Mode-
Only attack, SI is the only input pin to load data, necessitating the data be loaded
through the decompressor. The stimulus decompressor expands compressed data into
bits delivered into scan cells, complicating the identification of the mapping between
the flip flops and the corresponding inputs to the AES round. Based on the Test-Mode-
Only attack on basic scan architecture, the attacker needs to apply independent bit-flip
to each key cell. However, the stimulus decompressor could unintentionally flip other
scan cells in the same slice which may lead to an erroneous result in the attack. This
is analogous to the test pattern encodablity problem explained in Sect. Test Stimulus
Compression, in which key cells in test patterns can be treated as care bits, while
non-key cells can be considered as don’t cares. Thus, the decompressor with higher
test pattern encodability leads to a scan attack that is more likely to be successful.

For the attack to be successful, the key cells of a word should be distributed such
that

6 Scan Design: Basics, Advancements, and Vulnerabilities 123

• One key byte of the word should be fully controllable, which can take any of the
28 possible values.

• Each one of the remaining three bytes, can take at least two values, while the other
bytes remain constant.

The following subsections describe the attack procedure.

Determining the Mapping with Multiple Correlated Key Cells

In AES, if one byte difference a is applied at the input of MixColumns operation,
the output difference spreads to four bytes, where the output bytes show difference
values of 2a, a, a, and 3a. The byte where the difference is applied will always
receive an output difference of 2a (we refer to this byte as the “2a byte”). Table 6.2
shows the four byte hamming distances in a sorted order; every column in this table
corresponds to one of 256 values of a.

The proposed attack relies on certain properties in this table; this means that
the scan attack should have the capability to apply all possible values of a, which
requires the identification of the controllable and the corresponding key value through
the existing Test-Mode-Only attack [21]. To be able to apply all possible values of
a, we need to apply all possible patterns V from the scan cells corresponding to the
2a byte, as the S-box output difference is given by a = SB(k) ⊕ SB(k ⊕ V), where
k is the key byte value.

Next, we target the other three bytes (a, a and 3a). In this attack, 2a byte captures
responses of the byte with one-bit difference; these are the first seven columns of
Table 6.2, for which Table 6.3 provides the actual difference values for the four bytes
(2a, a, a, 3a). The reason why we focus only on these seven columns of Table 6.2 is
(1) the bytes 2a, a and a all show a single bit-flip, (2) it is easier to distinguish byte
3a from other bytes by observing the bit-flip repetitions (e.g., the repetition of the
bit-flip in the fourth bit from the left in the top two rows of Table 6.3 hint that this bit
must belong to byte 3a). This way, all the bits of the 3a byte except for the leftmost
and the rightmost bits can be identified.

To identify the leftmost and the rightmost bits of the 3a byte, we choose two
values of a such that only one bit (leftmost or rightmost bit of the 3a byte) repeats.
To identify the leftmost bit of the 3a byte, for instance, we first apply the 2a value of
10000000 (fourth row of Table 6.3), followed up by the 2a value of 00010111. This

Table 6.2 Sorted Hamming distances corresponding to four bytes of a word, when one byte dif-
ference a is applied at the S-box output

2a 1 1 1 1 1 1 1 1 2 ... 7 7 8

a 1 1 1 1 1 1 1 1 2 ... 6 7 5

a 1 1 1 1 1 1 1 1 2 ... 6 7 5

3a 2 2 2 2 2 2 2 4 2 ... 3 2 3

124 S.M. Saeed et al.

Table 6.3 Actual difference values for the four bytes corresponding to the first seven columns in
Table 6.2

2a a a 3a

00100000 00010000 00010000 00110000

00010000 00001000 00001000 00011000

00000100 00000010 00000010 00000110

10000000 01000000 01000000 11000000

00000010 00000001 00000001 00000011

01000000 00100000 00100000 01100000

00001000 00000100 00000100 00001100

would result in 11000000 followed by 10010001 in the 3a byte, creating a repetition
that can be used to identify the leftmost bit of the byte. The rightmost bit of the 3a
byte can be similarly identified.

Next, we target the two remaining bytes, a and a, and try to distinguish between
them. As shown in Table 6.3, the two bytes show identical behavior. As the 2a and
3a bytes have already been identified, any remaining bit-flips are known to belong
to one of these two bytes; the position of each of the remaining key bits can also
be discovered, but which one of the a byte they belong to remains ambiguous. For
instance, for 2a = 00100000 (first row), any observed bit-flip in the remaining two
bytes is known to correspond to the fourth bit position from the left; however, there
will be two such bit-flips, and which one of the two a bytes each bit belongs to will
not be known. This way, although the position of all the bits in the a bytes can be
identified, the bits of the two a bytes cannot be differentiated.

Recovering the Key

The key value for the 2a byte was already identified in the first step. Next, the byte
that was identified as the 3a is determined by applying any nonzero difference from
the corresponding scan cells of the byte and observe the output difference in the same
byte as in Sect. 6.3.2.1.

For the remaining two bytes identified as the a bytes, the challenge is that the first
step was not able to accurately classify the 16 bits into these two bytes. Nonetheless,
by applying any nonzero difference as long as the difference is contained in one
of the bytes (second condition of the attack), observing the output difference in the
already identified bytes (2a and 3a bytes) will determine: (1) which of the a bytes
the difference was applied from based on the relationship between the content of the
already identified bytes (they can be either identical, or one can be thrice the other),
and (2) the actual value of the output difference. From the input and the output
differences, and the knowledge of which byte the difference was applied from, the
key value can be recovered for this byte. The same operation can be repeated for the
other a byte to recover its key.

6 Scan Design: Basics, Advancements, and Vulnerabilities 125

For the first step of the attack 32 bits are required to identify the 2a byte. To identify
the mapping of the remaining three bytes 28 test vectors are applied. Therefore, the
time complexity of the first step of the attack is 28, and 256 + 32 = 288 test vectors
are required. To recover the key byte of the rest of the three key bytes, 3 pairs of test
vectors are required. Altogether, we need (288 + 6) · 4 = 1176 test vectors. In the
second part of the attack we know the circular order of the four bytes. Therefore, we
have four possible permutations of the four bytes. The search space of the key word
is 23 · 4 = 25. The search space of the entire key is given by (25)4 · 4! = 224.5, which
is also the time complexity of the attack.

6.4 Summary

The interdependence between testability and security is receiving a lot of attention.
While the manufacturing test necessitates deep access into the IC to enhance its
testability, this can inadvertently threaten the security of the IC in security critical
applications. On the other hand, although black box testing ensures security, it fails
to deliver a high-quality test.

We describe various DfT techniques that address the test challenges. These tech-
niques reduce the tester-induced costs. Then, we show the security vulnerability
of scan-based DfT techniques. We review a few scan attacks that target the basic
scan architecture as well as the compression-based scan architecture. We analyze the
limitations of the proposed attacks, hinting at ways to design testable yet secure DfT.

References

1. Bushnell M, Agrawal V. Essentials of electronic testing for digital. Memory and mixed-signal
VLSI circuits. Springer; 2005.

2. Rajski J, Tyszer J, Kassab M, Mukherjee N, Thompson R, Tsai KH, et al. Embedded determin-
istic test for low cost manufacturing test. In: Proceedings of IEEE international test conference,
2002. p. 301–10.

3. Barnhart C, Brunkhorst V, Distler F, Farnsworth O, Keller B, Koenemann B. OPMISR: the
foundation for compressed ATPG vectors. In: Proceedings of IEEE international test confer-
ence, 2001. p. 748–57.

4. Samaranayake S, Gizdarski E, Sitchinava N, Neuveux F, Kapur R, Williams TW. A recon-
figurable shared scan-in architecture. In: Proceedings of IEEE VLSI test symposium, 2003.
p. 9–14.

5. Touba NA. Survey of test vector compression techniques. IEEE Des Test Comput.
2006;23(4):294–303.

6. Pandey AR, Patel JH. An incremental algorithm for test generation in illinois scan architec-
ture based designs. In: Proceedings of design, automation and test in Europe conference and
exhibition, 2002. p. 368–75.

7. Breuer MA. A note on three-valued logic simulation. IEEE Trans Comput. 1972;21(4):399–
402.

126 S.M. Saeed et al.

8. IEEE standard hardware description language based on the verilog(r) hardware description
language. IEEE Std 1364–1995, 1996. p. 1–688.

9. Savir J. Reducing the misr size. IEEE Trans Comput. 1996;45(8):930–8.
10. Rajski W, Rajski J. Modular compactor of test responses. In: Proceedings of IEEE VLSI test

symposium, 2006. p. 10.
11. Pouya B, Touba NA. Synthesis of zero-aliasing elementary-tree space compactors. In: Pro-

ceedings of IEEE VLSI test symposium, 1998. p. 70–7.
12. Mitra S, Kim KS. X-compact: an efficient response compaction technique for test cost reduction.

In: Proceedings of IEEE international test conference, 2002. p. 311–20.
13. Wohl P, Waicukauski JA, Ramnath S. Fully x-tolerant combinational scan compression. In:

Proceedings IEEE international test conference, Oct 2007. p. 1–10.
14. Chickermane V, Foutz B, Keller B. Channel masking synthesis for efficient on-chip test com-

pression. In: Proceedings of IEEE international test conference, 2004. p. 452–61.
15. Saeed SM, Sinanoglu O. Multi-modal response compaction adaptive to x-density variation.

IET Comput Dig Techniq. 2012;6(2):69–77.
16. Saeed SM, Sinanoglu O. Xor-based response compactor adaptive to x-density variation. In:

Proceedings of IEEE Asian test symposium, 2010. p. 212–17.
17. IEEE standard test access port and boundary scan architecture. IEEE Std 1149.1-2001, July

2001. p. 1–212.
18. Yang B, Wu K, Karri R. Scan based side channel attack on dedicated hardware implementa-

tions of data encryption standard. In: Proceedings of IEEE international test conference, 2004.
p. 339–44.

19. Yang B, Wu K, Karri R. Secure scan: a design-for-test architecture for crypto chips. In:
Joyner Jr. WH, Martin G, Kahng AB, editors. ACM/IEEE design automation conference; 2005.
p. 135–40.

20. Daemen J, Rijmen V. The design of Rijndael. New York: Springer Inc.; 2002.
21. Ali SS, Sinanoglu O, Saeed SM, Karri R. New scan-based attack using only the test mode. In:

Proceeding of IEEE VLSI-SoC, 2013. p. 234–39.
22. Nyberg K. Generalized feistel networks. In: Kim K, Mat-Sumoto T, editors. ASIACRYPT,

volume 1163 of lecture notes in computer science. Springer; 1996. p. 91–104.
23. Kapur R. Security vs. test quality: are they mutually exclusive? In: Proceeding IEEE test

conference, 2004. p. 1414.
24. DaRolt J, Di Natale G, Flottes ML, Rouzeyre B. Are advanced DfT structures sufficient for

preventing scan-attacks? In: Proceedings of IEEE VLSI test symposium, 2012. p. 246–51.
25. Ege B, Das A, Ghosh S, Verbauwhede I. Differential scan attack on AES with X-tolerant and

X-masked test response compactor. In: IEEE DSD, 2012. p. 545–52
26. DaRolt J, Di Natale G, Flottes ML, Rouzeyre B. Scan attacks and countermeasures in presence

of scan response compactors. In: Proceeding of European test symposium, 2011. p. 19–24.
27. Hely D, Bancel F, Flottes ML, Rouzeyre B. Test control for secure scan designs. In: Proceedings

of IEEE European symposium on test, 2005. p. 190–5.
28. Ali SS, Saeed SM, Sinanoglu O, Karri R. Scan attack in presence of mode- reset countermea-

sure. In: Proceeding of IEEE international on-line testing symposium, 2013. p. 230–1.
29. Saeed SM, Ali SS, Sinanoglu O, Karri R. Test-mode-only scan attack and countermeasure for

contemporary scan architectures. In: Proceedings of IEEE international test conference, 2014.
p. 1–8.

Chapter 7
Manufacturing Testing and Security
Countermeasures

Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre
and Paul-Henri Pugliesi-Conti

7.1 Introduction

As described in the previous chapter, manufacturing test is the only process able to
ensure quality and reliability of manufactured integrated circuits. The fastest and best
cost-effective solution for digital testing is based on the use of scan chains. Unfor-
tunately, this solution might allow a malicious user to exploit this test infrastruc-
ture and retrieve secret information stored within the integrated circuit (see previous
chapter). The antagonism between scan-based Design-for-Testability (DfT) and secu-
rity comes from their competing goals: improving controllability and observability
of internal states for increased testability, and preventing control or observation of
these internal states for increased security.

In this chapter, we describe solutions from the literature to counteract pos-
sible attacks targeting malicious usage of scan chains and, more generally, test
infrastructures. Moreover, we present industrial practices and potential downsides
when implementing secure test infrastructures. Because increased security should
not be achieved at the detriment of product quality, we discuss potential testability
loss when secure-test approaches impacts the test procedure and expected feedback
compared to common practices.

Section 7.2 classifies countermeasures to test-based attacks according to the strat-
egy, i.e., using a secure control/usage of the embedded test infrastructure, deleting
the access to the test infrastructure by shifting test resources to the device under test
(DUT), or deleting the test infrastructure itself by changing the test approach from
structural to functional testing. According to this classification, the following sec-
tions provide deeper analysis and implementation details of major countermeasures

G. Di Natale (B) · M.-L. Flottes · B. Rouzeyre
LIRMM (Université Montpellier II/CNRS UMR 5506), Montpellier, France
e-mail: giorgio.dinatale@lirmm.fr

P.-H. Pugliesi-Conti
NXP Semiconductors Caen, Caen, France

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_7

127

128 G. Di Natale et al.

proposed in the literature. In particular, Sect. 7.3 analyzes built-in test solutions where
the totality or only a part of the test resources as test pattern generation and/or test
response analysis are embedded in the DUT instead of being outsourced from/to an
external Automatic test equipment. Section 7.4 reports the major contributions in the
field of secure test access mechanisms in order to provide a comprehensive view
of all solutions. Section 7.5 discusses security and applicability of the DfT of some
selected solutions from an industrial point of view. Eventually, Sect. 7.6 concludes
this chapter.

7.2 Countermeasures to Scan-Based Attacks

Several countermeasures to scan-based attacks have been proposed in the literature
and in the industry. We classify them in the following categories:

1. Functional Test. In this solution, no test infrastructure are embedded in the circuit
and its test is guarantee by applying functional test pattern through the primary
inputs of the circuit. Functional testing approaches are based on a functional model
of the system [1]; they attempt to reduce the complexity of the test generation prob-
lem of structural approaches by using higher level of abstraction. However, model-
ing complex systems at high-level remains difficult. (Pseudo-)Exhaustive testing,
that assumes that any permanent fault is possible (implicit fault model) suits well
with regular structures but not with arbitrary circuits, which requires either long
exhaustive and pseudo-exhaustive sequences or pre-partitioning. Explicit func-
tional fault models are likely to produce prohibitively large set of faults. Implicit
functional fault models have been however successfully used in testing RAMs or
microprocessors where test patterns can be developed as a sequence of instruc-
tions. Nevertheless, implicit fault models cannot be exploited for the generation
of test patterns for generic circuits. Lastly, functional test effectiveness is difficult
to evaluate.

2. Physically disconnecting the test infrastructures. A common technique (espe-
cially adopted by smart card providers) is to disable or disconnect the test circuitry
after manufacturing test by blowing fuses located at the ends of the scan chains
[2], as shown in Fig. 7.1.
The main advantage is that the circuit can be fully tested at manufacturing time,
while the test mode cannot be accessed anymore after it. However, in-field main-
tenance and debug are compromise afterward. Moreover, invasive attacks based
on microprobing can re-build the test connection.

3. Built-In Self-Test. Within this solution, the circuit is self-tested thanks to an extra
test pattern generator (TPG) and an output response analyzer (ORA) embedded
with the DUT. Scan chains still exist in the design for sequential circuits, but Scan-
In and Scan-Out I/Os are not accessible from the DUT interface thus preventing
control and observation of the DUT internal states through the test infrastructure.
This solution can achieve high level of testability with no visible scan chain and

7 Manufacturing Testing and Security Countermeasures 129

Fig. 7.1 Poly Fuse: Detailed
inspection: CMOS090 TEM
top down view

case)

negligible area overhead but it must be set and evaluated on a case-by-case basis.
On the other hand, BIST does not allow diagnosing possible fault location within
the circuit. More details about this solution are provided in Sect. 3.1.

4. On-ChipTestComparison. This approach is based on the concept of withholding
information. Scan-based attacks are based on the observation of the scan chain
content, which is shifted-out after executing a part of the encryption algorithm,
i.e., when the scan chains contains information that can be exploited to retrieve
the secret key. The idea is thus to compare test responses within the chip, so that
no secret information can be observed through scan-out operations. Both input
vectors and expected responses are scanned into the circuit and the comparison
between expected and actual responses is done vector-wise, so that it does not
provide information on the value of each individual scan bit for security purposes.
More details about this solution are provided in Sect. 3.2.

5. Secure Test Access Mechanism. Many related approaches have been explored.
They consider either the use of standard test interface with Scan-In, Scan-Out, and
Scan-Enable signals or with nonstandard scan designs. In the first case, the test
interface is enabled iff an initialization or authentication mechanism is performed
earlier. After the execution of a secure protocol, the access to the scan chain is
granted. In the second case, nonstandard test interfaces are considered, from which
it is not possible to extract useful information and recover the encryption. More
details about these solutions are provided in Sect. 7.4.

7.3 Built-In Self-Test

One approach for providing test solutions at different stages of an IC life cycle
consists in including built-in self-test (BIST) resources into the DUT. Classically,
storage elements are organized into scan chains and additional hardware is used for
feeding the scan chains with pseudorandom test data, and sinking the test responses
before analysis of the compressed signature [3]. Therefore, BIST does not provide

http://dx.doi.org/10.1007/978-3-319-44318-8_3
http://dx.doi.org/10.1007/978-3-319-44318-8_3

130 G. Di Natale et al.

controllability and observability of the internal storage elements from the circuit
interface. However, BIST must be implemented at low cost and its efficiency must
be demonstrated in terms of fault coverage and test duration.

In the next subsections, we propose dedicated built-in self-test solutions for cryp-
tographic cores, as well as partial-BIST solutions, where the test generation is per-
formed by the external tester while the response analysis is performed on-chip.

7.3.1 BISTed Cryptographic Cores

Random pattern testability of crypto-cores has been discussed in [4]. Authors show
how random data and possible errors can be easily propagated through typical oper-
ations involved in encryption algorithms.

Security provided by block cipher algorithms such as DES and AES relies on two
main properties named diffusion and confusion [5, 6]. Confusion refers to making the
relationship between the key and the ciphertext as complex and involved as possible.
Diffusion refers to the property that redundancy in the statistics of the plaintext is
dissipated in the statistics of the ciphertext. For diffusion to occur, a change in a
single bit of the plaintext should result in changing the value of many ciphertext
bits. These properties are supported by the Feistel network [7] for the DES and by
the substitution—permutation network for the AES. AES and DES also have two
common characteristics. First, they are iterative algorithms. DES is composed of 16
rounds while AES is made of 10 rounds. All rounds are (quasi) identical, i.e., the result
of a round is used as the input of the next round. Second, since encryption/decryption
are bijective operations for a given key, each round is a bijective operation too (on a
set of 264 elements for DES on a set of 2128 elements for AES).

The diffusion property is a very interesting feature with regard to the test of
their hardware implementation. It implies that every input bit of the round module
influences many output bits, i.e., every input line of a round is in the logic cone of
many output bits. In other words, an error caused by a fault in the body of the round is
very likely to propagate to the output. Thus, the circuit is very observable. Moreover,
since rounds are bijective, the input logic cone of every output contains many inputs.
In other words, each fault is highly controllable. Therefore, these circuits are highly
testable by nature whatever the implementations.

Example of BIST implementations are provided in [8, 9]. Figure 7.2 (except for
yellow area) presents a generic implementation of either AES [10] or DES [11] sym-
metric cryptographic algorithms. The hardware implementation is mainly composed
of a key-generation module and a Round module. In mission mode, after an initial
operation (XOR between Key and Plaintext for AES, and permutation of the plain-
text for DES), the plaintext block is looped around the Round module several times
(10 for AES, 16 for DES) before the final cipher is loaded into the output register,
possibly after a final operation like the final permutation in DES. The yellow area
in Fig. 7.2 depicts the required modifications to support the built-in self-test of the
module itself.

7 Manufacturing Testing and Security Countermeasures 131

Fig. 7.2 Implementation of
the symmetric cryptographic
algorithm

During the BIST mode, an initial message M1 is encrypted into M2 = Round(M1)

and the process is repeated n times (Mi+1 = Round(Mi), i ∈{1…n}). Finally, the
output data Mn+1 is stored into the output register for comparison with the expected
golden value. Concerning round key generation, either the keys are precomputed and
stored in the circuit or the key generation module calculates the sequence of keys.
For the latter case, AES is modified in such a way that the tenth round key is used as
the primary key for the next round key generation. In this way, during self-test, the
key-generation module receives as many different stimuli as rounds. For DES, this
is not necessary because the key-generation module does not contain any logic. The
round keys are simply formed of subsets of bits of the initial key.

It has been shown that for DES, with several keys and initial input messages,
after 25 encryptions (i.e., 400 clock cycles), the whole circuit (round module and
control module) has always been fully tested [8]. In the same way, for AES the
experiments have been repeated with different plaintexts and secret keys as starting
points, obtaining test sequences ranging from 2100 to 2500 patterns [9].

Following the same principle, in [12] the authors propose a solution for the BIST
of public-key cryptocores. As the modular multiplication is at the heart of many
public-key algorithms, they considered the Elliptic Curve Cryptography (ECC) as
the appropriate choice for the public-key cryptosystem. The key idea is to configure
the multiplier such that it concurrently acts as both a test pattern generator and
signature analyzer. As in the previous solution, the outputs are fed back to the inputs
providing the test patterns. Concurrently, the multiplier compacts its outputs to the
final signature. Experimental results showed that very high fault coverage can be
obtained with a very limited number of clock cycles.

7.3.2 Built-In Test Comparison

Secure on-chip test comparison has been proposed as a solution to eliminate the need
of disconnecting the scan chains [13–15]. This approach is based on the concept of

132 G. Di Natale et al.

withholding information. This approach is not, strictly speaking, a BIST solution
since test patterns are not internally generated. The test procedure consists in pro-
viding both test vectors and expected test responses to the DUT and in performing
the comparison inside the chip.

Methods for on-chip comparison of actual and expected test responses have
already been explored in other contexts [16, 17], mainly to reduce the test data
volume to transfer from DUTs to test equipment. However, none of these solutions
achieves the target security requirements since individual bit values stored in the
scan chains can still be observed or deducted from observed data thanks to the test
circuitry.

In the standard scan-based test mechanism, Flip-Flops (FFs) are replaced by scan
flip-flops (SFF) and are connected so that they behave as a shift register in test mode.
The output of one SFF is connected to the input of next SFF. The input of the first
FF in the chain is directly connected to an input pin (Scan-In) while the output of
the last FF is directly connected to an output pin (Scan-Out). An additional signal
(Scan-Enable) selects whether SFFs have to behave normally or as a shift register.
The test procedure is composed of three steps: first, test patterns are shifted-in via
the scan chain (i.e., by keeping Scan-Enable = 1) for #SFF clock cycles (where #SFF
is the number of SFFs in the chain). Second, one or two functional clocks (i.e., Scan-
Enable = 0) are applied to capture the circuit’s response. Usually, one clock cycle
is used for static faults, while 2 (or even more) clock cycles are used for dynamic
faults. Finally, the content of SFFs is shifted out for #SFF clock cycles (again, with
Scan-Enable = 1) to allow the ATE to compare the obtained values with respect to
the expected ones.

The principle of the approach proposed in this solution is to compare the actual
responses with the expected ones within the chip boundaries instead of scanning-out
the actual responses and comparing it within the ATE. In order to guarantee that
secure data cannot leak outside the chip, the output of the comparison is not bitwise
delivered to the ATE, but only after applying and comparing the whole test vector
(i.e., after comparing the value of each SFF). Therefore, a potential attacker can no
longer observe the FFs content but simply pass/fail information for the whole test
vector.

The general scheme of the proposed secure comparator is shown in Fig. 7.3.
Instead of directly shifting DUT’s responses (Scan-Out) out of the chip, the ATE
also provides the expected responses using the Sexp pin and the actual test response
is on-chip compared with the expected one. After having compared all #SFF bits
captured in the scan chain, the signal TestRes is asserted if the whole test response
matches the one with expected values. Indeed, if the result of the comparison was
accessible at each clock cycle instead of each test vector, an attacker could eas-
ily observe the scan chain content by shifting in “000…000” on the Sexp pin.
Each bit-comparison would then validate that either the actual bit was ‘0’ when
TestRes = 1 and vice-versa.

The Secure Comparator is composed of three parts: the StickyComparator respon-
sible for the comparison between the bitstream coming from the scan chains and the

7 Manufacturing Testing and Security Countermeasures 133

Fig. 7.3 Secure comparator

expected values; the Output Enabler triggering the final comparison result; the I/O
Buffers allow keeping the test pin count as in a classic scan-based approach.

The sticky comparator performs a bitwise serial comparison between the bitstream
coming from Sout and the one from Sexp. A FF (Flag in the figure) is initially reset and
then it rises to ‘1’ whenever one comparison fails. The reset of the flag is performed
when the scan operation is not enabled (i.e., Sen = ‘0’). This means then when the
circuit goes from capture to test mode, the flag becomes meaningful and its value
designates whether the two bitstream are equal or not.

The Output Enabler permits the observation of the TestRes only after comparing
the whole test vector. It is composed of a down counter with parallel load that loads
the value #SFF whenever the scan operation is not enabled. Therefore, when the
circuit goes to test mode, it start counting and after #SFF clock cycles its terminal
count allows outputting the TestRes signal through the AND gate.

The I/O Buffers allow sharing the same pin for Sin and TestRes. The proposed
solution requires, besides Scan-In and Scan-Enable signals (Sin and Sen), the Sexp
signal, which replaces the standard Scan-Out signal, and the additional TestRes.
However, Sin and TestRes are not used at the same time, therefore it is possible to
use bi-directional buffers shared between them, as shown in Fig. 7.3. During the shift
operation the pin can be set as input and used by the tester to feed the circuit with
the input vectors, whereas during the capture operation the pin is activated as output
to deliver the previous comparison result.

The secure comparator does not impact the fault coverage. In fact, each test
response is compared to the expected one as in a classical ATE-based test scheme.
Therefore, the achievable fault coverage is not altered. Test time is not increased
either, since the expected responses are scanned-in at the same time as the next input
vector is scanned-in.

Therefore, the proposed secure comparator allows similar diagnostic resolution
as it can be obtained with the classical scan scheme. The only difference resides
in the matching procedure between the obtained responses and those stored in the

134 G. Di Natale et al.

fault dictionary. In the classic scheme this is done off-line (i.e., after collecting all
responses from the circuit), while in this case all potential faulty responses must
uploaded on the DUT for comparison with the actual faulty response, thus requiring
additional time. The diagnosis is however limited to only modeled faults [13].

7.4 Secure Test Access Mechanism

Solutions presented so far make the assumption that the classical scan chain approach
is either not used (as in the functional test or BIST solutions) or partially used (as
in the on-chip comparison approach). In this section, we analyze all solutions that
consider the use of standard scan chains, with Scan-In, Scan-Out, and Scan-Enable
signals.

The idea in all the following solutions is that the circuit can be either tested or
used in normal mode (test mode vs. mission mode). In normal mode, the scan path is
not supposed to be used for shifting out the device internal state, while in test mode
the circuit can switch from scan mode (i.e., shift mode asserted by the Scan-Enable
signal) to capture mode and vice-versa.

The issues that are solved in all proposed methods are the following:

• How to start the test mode. The test mode can be activated through an addi-
tional signal (besides Scan-Enable), or by using an authentication procedure.
A password-based authentication method is proposed in [18]. In order to pro-
ceed with the standard test procedure, the user has to pass through an initial
authentication phase with several steps. In each step, the user has to insert the
test patterns, which contain a secret key that is compared to a golden one. Only if
the user correctly guesses the different keys in all steps, the test session starts (and
the scan output is observable). In [19], the scan chain contains k spare flip-flops.
When the user enters a test pattern, the values in the k flip-flops are compared
with a hardwired password. Only if all the bits match, then the response vector
can be observed. Similar solutions (also applied to test standards) are described in
[20, 21]. Moreover, in [22, 23], the authentication procedure can be restricted to
some of the cores in the circuit.
In [24] the authors use a finite state machine that observes the Scan-Enable signal.
Whenever the Scan-Enable is asserted (i.e., a scan shift operation is started), the
circuit goes automatically in test mode. The normal mode can be restored only by
resetting the circuit.

• What to do when switching from normal to test mode. As shown in [25],
by resetting all FFs when switching from normal mode to test mode, no secret
information can leak. In [24] the authors propose to flush the content of the scan
chain (by ANDing the Scan-Out with a control signal set to 0) for a number of
clock cycles equal to the number of flip flops in the scan chain, during the first
shift operation performed after switching from normal to test mode. The flushing

7 Manufacturing Testing and Security Countermeasures 135

operation guarantees that any secret will be kept inside the circuit, and any further
scan operation will not reveal then any confidential information.

• What to do in normal mode. When in normal mode, no shift operations on the
scan chain have to be tolerated. Therefore, several solutions have been proposed
to monitor the status of the scan chain in order to be sure that unauthorized shift
operations are not performed, or to scramble the content and the order of the FFs so
that, even in case of observation of the scan chain, no useful data can be obtained.
The hypothesis in all these solutions is that the attacker manages to bypass the
mechanism that allows switching from normal mode to test mode, thus control-
ling the shift operations.
Scrambling countermeasures ensure the confusion of the stream shifted out from
the scan outputs for unauthorized testers [26, 27]. In [28] the authors propose an
obfuscation technique based on the implementation of nonlinear functions between
two FFs in the scan chain, so that to alter the content of the scanned bitstream if a
shift-out operation is performed.
In order to obfuscate the content of FFs, the authors in [29] propose to add a latch
for every FF in the circuit. During shift operations, the content of the FF is XORed
with the content of the latch, which contains a past state of the FF. From the exter-
nal, the scan structure seems to be changed time by time. In [30, 31], the authors
propose to swap the position of the scan cells in a chain, by carefully selecting the
proper FFs to be swapped.
Concerning the intrusion detection (that would happen in normal mode), in [32]
the authors propose to detect unauthorized scan enable settings. This technique
consists of connecting some leafs and the root of the Scan-Enable tree to a com-
parator. When the authentication has been bypassed the Scan-Enable signals on
every SFF is supposed to be disabled, therefore any illegal shift will raise an alarm
by detecting that at least one observed Scan-Enable signal is active. The same
authors propose to add “spy” FFs in the scan-chain to detect unauthorized shift at
mission time. These spy FFs are inserted between actual SFFs and set to a constant
value (for instance 0) in normal mode. Then, the outputs of these FFs are compared
to check if they store the same value. Because illegal shifts will rapidly load these
spy FFs with a different value, intrusion can be detected.

• What to do in test mode. When in test mode, no secrets should be delivered.
Solutions have been proposed in order to mask the actual content of the secret key
and to use a shadow key instead, used only for test purposes [24, 25].

7.5 Industrial Solutions

Semiconductor Industry develops secure Integrate-Circuits (IC) for many different
application domains such as Banking, access enabler, e-government (ID, passport),
medical, communication (mobile, wifi…), Internet of Things. For such products,
security (i.e., Confidentiality, Integrity, Authenticity, Availability) has to be guaran-
teed during the whole lifetime of the product, from development to final application.

136 G. Di Natale et al.

At design time, the security must thus be questioned when implementing Design-
for-Testability features as well.

As detailed in the previous chapter, classical DfT approaches such as scan design
jeopardize data confidentiality, and thus, dedicated DfT solutions and structures have
to be used to ensure compatibility between security and testability. Standard-DfT
weaknesses are discussed from an industrial point of view in Sect. 7.5.1. Section 7.5.2
focuses on industrial constraints when designing a Secure DfT solution. Section 7.5.3
aims at describing generic secure DfT solutions able to be used in a standard design
flow. Section 7.5.4 presents DfT solutions for the particular case of memories (both
RAM and ROM).

7.5.1 Standard DfT Weaknesses

In order to propose efficient secure DfT solutions, “standard” DfT practices have to
be analyzed to better understand potential weaknesses against attacks. In previous
chapters, several attacks have been described showing how DfT structures could
be reused during attacks. As for any real industrial threat, we also need to identify
attackers to better understand their own objectives and capabilities in order to build
adapted protections.

Attackers are classified in the following way (as shown in Fig. 7.4):

• Competitors, whose main objectives are reverse engineering and IPs cloning. We
assume they have high-level competencies in DfT techniques and a utilization
of up-to-date failure analysis tools. We can also assume knowledge from former
employees;

Fig. 7.4 Taxonomy of DfT attackers

7 Manufacturing Testing and Security Countermeasures 137

• Patent troll, whose main objective is to demonstrate patent infringement. Compe-
tencies in DfT are considered medium and they generally do not have access to
advance design analysis tools;

• Academics, whose main objectives are technical challenges resolution and fame.
Academic competencies in DfT are generally high and it is reasonable to consider
a full access to up-to-date failure analysis tools. We can also assume knowledge
from former employees;

• Hackers, whose main objectives are either cheating end user applications or adding
new features/backdoors. Their competencies in DfT are low to medium and they
generally do not have access to advanced IC analysis tools;

• Mafia, which have as main objective to earn money by stealing end user private
information or by selling counterfeit products. Mafia could have a high level of
competency and access to failure analysis tools. We have to assume that mafia has
also access to IC internal knowledge via employees’ intimidation.

• Internet users, who are able to perform only software attacks, do not target DfT
logic as line of attack. Indeed they generally do not have DfT techniques back-
ground and fewer more DfT interfaces cannot be directly controlled by an internet-
controlled functional interface.

Based on the above-described characteristics of possible attackers, we can derive
general recommendations for a Secure DfT:

• Former employees: Secure DfT should respect Kerckhoff’s principle, i.e., full
knowledge of the protection implementation is not enough to “open” the system,
data integrity, and confidentiality must rely on a cryptographic key, not on the
knowledge of the cryptographic algorithm or its hardware implementation;

• Fault Analysis tools: Secure DfT should implement countermeasures to test-based
attacks in such a way that defense might not be disabled by tools, such as micro-
probing, focused ion beam (FIB) or laser beams;

• Side-Channels Attacks: Secure DfT implementation should take care of informa-
tion leakage.

General recommendations, from which we could extrapolate few specifications
for a Secure DfT implementation strategy, are listed in the following:

• Secure DfT should embed a lock mechanism to avoid a direct access to test
infrastructures in any operational mode (test and mission modes);

• Secure DfT should avoid facilities for free switching between mission and test
modes;

• Secure DfT should protect memories contents by avoiding direct read and write
accesses;

• Secure DfT should protect critical sequential elements (flip-flops, latches) contents
during test mode to avoid reverse engineering and application data extraction.

Secure DfT Techniques able to fulfill industrial constraints will be described in
following chapters.

138 G. Di Natale et al.

7.5.2 Secure DfT and Industrial constraints

Several secure DfT solutions have been already published, but almost all proposed
academic solutions target a single attack mechanism while real products have to be
protected against several types of attacks. Moreover, proposed secure DfT solutions
may not be supported by standard design tools used in IC industry and implemen-
tation issues may lead swiftly a secure solution that looks good on paper to turn to
a nightmare on real implementations. From an industrial point of view, a “good”
solution must thus be easily implemented thanks to computer-aided-design (CAD)
tools. In addition to the impact on the development time, the silicon overhead is
another very important criteria that also has to be considered.

To summarize, an effective industrial secure DfT solution should guarantee a high
level of security in parallel to fulfill several industrial constraints:

• Quality: Secure DfT must allow to achieve a high test coverage for targeted fault
models (Stuck-at, Transition, Bridge…) by reusing as much as possible exist-
ing tools capabilities, such as scan insertion and automatic test pattern generator
(ATPG);

• Low Cost: Secure DfT silicon overhead as well as manpower needed to implement
the solution, must be part of the criteria to select an industrial solution;

• Time-To-Market: The secure DfT flow must be inserted in an automated design
flow and its capability to be developed as a generic solution are important criterion
for an industrial Secure DfT solution.

Moreover, it is important to also consider the complete IC manufacturing process
during the DfT secure solution evaluation. Indeed, only a few Semiconductors Com-
panies are able to build an IC from design to final customer deliveries. Most of the
time, third part companies are used to execute parts of the manufacturing flow, such
as mask manufacturing, IC manufacturing, wafer test, wafer grinding and sawing, or
final manufacturing test. In these cases, it is important to review the complete security
concept, including DfT, to ensure that using a third company to execute one or several
manufacturing steps does not break the security concept, by creating a weakness that
could be used by one of the attacker defined previously. Generally, confidentiality
contract and details processes are defined between IC Company owner and third part
companies to reduce information leakage. Such processes are also internally used to
avoid leakage by employees.

7.5.3 Industrial-Constraint-Aware Secure DfT

Manpower resources, time-to-market constraints and incompatibility with industrial
DfT tools often avoid a direct implementation of state-of-the-art and academic secure
DfT solutions. The following subchapters aim at describing generic secure DfT
solutions able to be used in a standard design flow.

7 Manufacturing Testing and Security Countermeasures 139

Before going into details of secure DfT solution, it is important to note that for
a real product, security is never related to a single secure structure. Several secure
solutions are put all together, as several layers, in order to build at the end a robust
secure solution able to protect IC against several attack types. Therefore, while each
individual solution could be assessed as being not as secure against dedicated attack
as a single solution, it must be kept in mind that high security level is reached when
all security layers are implemented.

7.5.3.1 Test interface

In a bank office, security relies on the safe more than into the front door! This example
also applies to industrial test interfaces. The test interface is the main door for all
standard usages of the test structures, and it must be controlled at the different stages
of the product life:

• At die level, for wafer test;
• At package level, for final test;
• During product life, to analyze customer returns.

Except during these steps, the test interface must be locked, especially at end
user site, to avoid any unauthorized usage. Moreover, several solutions can be used
at the same time to protect the test interface. In industrial solutions the following
recommendation are often used:

• Test interface must not use dedicated pad, but must share functional pads to avoid
simultaneous usage between functional and test mode;

• Test interface must not use a standard communication protocol to avoid usage of
commercial tools (probes) to perform complex automatics attacks;

• Test interface must not be easily enabled, to avoid fast switch between test and
functional mode.

From a simple magic sequence detection, used to unlock the test interface, up to
a complex challenge-response authentication mechanism, those three points above
are referring design solutions for which each company should develop their own
solutions. It is important to notice that many test interface lock structures, are relied
on embedded non-volatile contents, which are by construction not known before the
first access. So we can assume that product security will start after the first test, in
which non-volatile elements are initialized.

Several structures can be used to detect wafer test phase, before to be permanently
modified for the next production flow step. The most common structure are:

• OTP (One Time Programmable) memory, Poly Fuse and Laser Fuse. Their imple-
mentation require an important area overhead, and they are easy to localized and
repaired;

• MTP (Multiple Time Programmable) memory, i.e., a non-volatile memory which
needs to be protected to avoid abnormal write access;

140 G. Di Natale et al.

Fig. 7.5 Saw Bow used to detect wafer step during test

• Saw bow (see Fig. 7.5), i.e., an electrical connection based on strong pull-up and
weak pull-down, which are physical interconnected by a metal line across the saw
line of the wafer. Strong pull-up resistance will set the value before sawing the
wafer, while the weak pull-down resistance will set the opposite value after the saw.
Such a technique must be compatible with the production flow and technology.

Those wafer-test-step detection techniques can be associated to additional struc-
tures to build a secure test interface using different access mechanism during wafer
test or final test. In the example of Fig. 7.6, a password (1) has to be sent during the
first clock cycles after the reset (2) to enable the test interface, if wafer-test step is
detected (3). During wafer test or during the sawing, the structure used to detect wafer
level test is permanently disabled, then for all next test steps, a functional authenti-
cation, which could use an embedded encryption module, is required to enable the
test interface.

In order to avoid the usage of wafer test detection, a possible solution is based
on the challenge–response technique. In this case, the same test entry sequence can
be used for all test steps. The basic principle consists in tester authentication. For
example, the DUT can generate a random number and it encrypts this number with
a private key (asymmetric encryption). The encrypted random number is sent to the
tester, decrypted using the public key, then sent back to the DUT to be compared
with the original one. The result of the comparison will be used to enable or disable
the test interface. The main drawback for such implementation is the amount of
functional logic needed to perform the complete test entry sequence. Moreover, if
a fault affects the authentication module, it will be impossible to perform diagnosis
(i.e., fault localization).

7 Manufacturing Testing and Security Countermeasures 141

Fig. 7.6 Secure test interface

7.5.3.2 Test Control Register

Scan based design generally requires the implementation of extra test registers to
control clocks, resets, clock-gating structures, and analog interfaces. A test register
is considered as a standard design implementation without CAD tools limitation.
Because these test registers are good candidates for attack based on fault injections,
or to takeover scan chains control using micro-probing, some secure structures have
to be implemented for these registers. Basic security recommendation are based on
redundancy and control:

• Test control registers must be forced in reset state as long as test interface is locked
• Test control registers must be “write-only” registers
• Test control registers must be protected against fault injections by using Error-

Correcting Code (redundancy bits) to detect invalid register values for instance.

A multitude of design solutions exists to secure usage of a test control registers
using above rules; each company could apply its own techniques.

7.5.3.3 Secure Scan Test Structure

Scan test use a structured methodology supported by commercial tools:

• Scan Design: Scan chain creation (scan insertion) is often embedded into the
synthesis tools (e.g., Cadence RTL Compiler [33] or Synopsys Design Compiler
[34]) or sometime delivered as a standalone tool (e.g., Mentor Graphics Tessent
Scan [35]);

• Test Pattern Generation: test stimuli applied through direct scan chains access
or dedicated test decompression structures are automatically generated thanks to
Automatic Test Pattern Generator (ATPG) tools (e.g., Synopsys TetraMAX [36],
Mentor-Graphics TestKompress [37], Cadence Encounter [38]).

142 G. Di Natale et al.

Complexity of nowadays ICs requires usage of those automatic tools to rapidly
reach an acceptable test efficiency level. A default scan implementation will however
result in a poor implementation with regard to the security of the data processed by
the circuit. On the other side, any deviation from a standard scan structure could
result to a CAD tool blockage. In following paragraphs, we will describe several
tool-compatible secure scan test solutions. These solutions are classified into four
groups related to the scan chains structure, the scan chains usage, the scan chain
compression, and logic BIST.

Scan chains structures
Utilization of the scan chains to identify registers content or to perform reverse
engineering operation is simplified when the scan chain structure is known, i.e. when
the hacker knows the position of each scan flip-flop in the chain. This scan chain
structure can be easily identified when using a standard scan insertion flow. Scan
insertion tools are indeed using by default the flip-flop alphabetic order (including
design hierarchy) to interconnect registers within scan chains. For example the 128 bit
AES key flip-flops are most probably all connected together from bit 0–128 within
the same scan chain (in reality 0, 1, 10, 100, 101, 102, …, 11, 110, 111, …, 12, 120,
121, …, 13, 14, …, 2, 20, 21, 22, …, 30, …, 99).

In order to improve the scan chains security, a proposal consists in scrambling the
scan path by using a standard scan reordering flow for which only the functional paths
constraints are used for place and route, as shown in Fig. 7.7. Scan interconnection
will be then based on flip-flop physical location (interconnected flip-flops which are
close to each other). The first drawback of this approach is that this technique could
generate a lot of hold timing violation that will have to be corrected. Anyhow, this
flow is supported by all scan insertion tools, and will perform a kind a random local
scan chains scrambling. In addition as demonstrated in paper [39], insertion of sev-
eral inverters on scan shift path will improve robustness against reverse engineering

Fig. 7.7 Scrambled scan
registers

7 Manufacturing Testing and Security Countermeasures 143

attacks. After the scan insertion step, you could randomly insert inverter on scan
shift paths (between scan flip flops), using netlist manipulation commands available
in synthesis or scan insertion tools. Those static inverters will be fully transparent for
the ATPG flow, which is already able to deal with scan chain inversion. Please note
that dynamic inverter as proposed in papers [40, 41] are not supported automatically
within an ATPG flow. The second drawback of this approach is that differential scan
chain analysis [41] allows to deal with unknown scan chain implementations and to
perform scan chain attacks anyway at the cost of longer computation time.

Scan chains usage
One of the most common scan chain attack is based on the utilization of the scan
chain to dump flip-flops values through the scan output thanks to the scan shift mode.
Attacks happen during a functional execution, which is stopped at a critical point
to dump, for example, data related to the secret key in a crypto-coprocessor. Micro-
probing techniques could be used to locally force the scan shift mode or to hack the
main test controller to control the whole scan chains. In order to improve the scan
test security, an efficient proposal is to insert sensors to detect abnormal scan shifts,
i.e. scan shift operations during mission mode. Several sensors are proposed in the
literature, but real implementation is not always easily feasible.

First proposal is to monitor the Scan-Enable signal at different locations in the
design, in order to detect a local shift mode by observing a value change on one of
the observed node [42], as shown in Fig. 7.8. Unfortunately, this proposal is not so
easy to implement due to the fact that Scan-Enable signal is automatically connected
to all flip-flops during the scan insertion phase and buffer-tree append only during
Back-End phase which is normally too late to perform netlist manipulation.

A second technique based on the same basic principal is using spy flip-flops [42]
instead of direct observation of the Scan-Enable signal, as shown in Fig. 7.9. The
spy flip-flops’ D inputs are tied to a fixed value, while there are inserted in the scan
chains at random position. All spy flip-flop’s Q outputs are observed and compared
to a central Scan-Enable signal. All those spy signals must be fixed during mission
mode, thanks to the tied flip-flop’ D (functional) inputs, while they will toggle during
scan shift mode allowing to detect an abnormal (local) scan shifts. It is possible to
implement this solution in a generic way, by creating a single “spy flip-flop” as a sub
module (hard macro) instantiated several times in the design to protect. Spy flip-flops
can then be spread over the scan chains using dedicated scan insertion constraints
command.

Fig. 7.8 Scan-enable control

144 G. Di Natale et al.

Fig. 7.9 Spy scan-registers

Fig. 7.10 Scan shift input detection

A third solution to avoid observation of FFs’ functional values is to erase all func-
tional values before allowing any scan shift operation. As described in the previous
section, a generic solution is based on the utilization of a sensor able to detect the scan
mode (scan shift or scan capture) [24]. Scan mode sensor is a simple counter (not
“scanned”) reset thanks to the scan shift enable signal and clocked thanks to the scan
clock signal, as shown in Fig. 7.10. This counter counts scan shifts until a predefined
value, i.e. the number of flip flops in the longest scan chain, before enabling the scan
shift out. So, scan chain outputs are blocked until scan inputs values are replaced
all functional internal values. Meaning that for a standard scan usage, starting by a
complete scan shift input before a first scan shift output this implementation is fully
transparent, while switching from functional mode to scan shift mode is blocked.
This sensor implementation is fully transparent for ATPG or during standard scan
test execution.

A fourth solution is based on a kind of scan pattern watermarking. The solution
described in [43] uses a shift register (few bits) inserted at the end of one scan
chain which have to receive a predefined watermark (hardcoded value) to enable the
scan shift output paths, as shown in Fig. 7.11. Inserting the watermark register at
the end of a scan chain, will ensure a complete scan shift input sequence has been
executed, before allowing any scan shift out. It has a similar objective as the previous
solution; functional values contained in flip-flops are erased by the scan shift input
needed to load the watermark code. The watermark value is validated at the end
of each scan shift input by the scan-enable signal transition (from scan shift to scan

7 Manufacturing Testing and Security Countermeasures 145

Fig. 7.11 Scan watermark detection

capture), in order to validate the following scan shift out. Regarding implementation,
the watermark shift register, has to be scan inserted at the end of the longest scan
chain using scan insertion constraints. Then during ATPG, the watermark code can be
easily forced using ATPG constraints, which allow to predefine scan capture flip-flop
values, even through a scan compression structure.

Scan chains compression
Scan compression structures proposed by standard ATPG tools, provide security, if
well implemented, by applying a one-way function on information. Compression
structure is basically reducing direct scan chain inputs controllability and scan chain
outputs observability, with a minimum coverage impact. However, scan compression
structure used alone is not sufficient to guaranty efficient security as demonstrated
in [41], but associated with others secure scan solution as proposed above, it could
bring security benefit. Anyhow, in order to be useful for security, test compres-
sion structures have to follow some rules regarding their implementation. First it
is important to notice that the 3 main ATPG providers, Cadence, Mentor-Graphics
and Synopsys, are using XOR tree as scan output compactor associated to X mak-
ing structure. XOR tree structure is linked to the selected compression ratio. You
have to select a big enough compression ratio, in order to always have several scan
chains combined together to generate one XOR tree outputs. Author experiments
show that output compression ratio of 20, will guarantee a minimum combination of
3 or 4 scan outputs to generate each XOR tree outputs. Moreover, special care about
X masking logic functionality should be paid, in order to avoid any setting able to
reduce the number of scan chain combination through the XOR compactor. Indeed,
some ATPG provide dedicated X masking mode, in which a single scan is observed
at the time, to improve observability (test coverage). Those modes must be carefully
removed from the design implementation in order to use scan compression structure
as security element. After such modifications, you may have to use dedicated ATPG
commands to avoid usage of those special X Making modes by ATPG during test
stimuli generation.

146 G. Di Natale et al.

Logic BIST
Logic BIST solution as proposed by main CAD tool providers is really attractive
for a security point of view. Few commands are send from outside and as response
the Logic BIST provide PASS / FAIL information. No data leakage, scan chains
are loaded and compared internally. Moreover, BIST can be executed in application
to ensure IC integrity before each usage, feature that could be part of the security
strategy. Main problems for an industrial point of view are the silicon overhead
required by LBIST solutions, especially to test a complete IC, and the fact that
LBIST solution does not provide diagnosis capability. So recommendation is not to
use LBIST as a solution to protection internal data during production test, but as a
test solution to be used in application for an integrity test.

7.5.4 RAM/ROM Test

In secure ICs RAMs and ROMs, contents must be protected against unauthorized
read-out and no functional data must be directly writable. For all RAMs embedded
in a secure IC few DfT rules must be guaranteed:

• Test sequence must start by a complete erase of the functional value;
• RAMs access must be disabled during scan test mode, to avoid data read-out

through scan chains;
• Direct access to RAMs contents from pad level must be avoided.

In order to fulfill those secure requirements, a classical solution is based on the
use of standard March-Test algorithms. March-Test is actually the most common
test method used within semiconductors industry to test RAM. In order to secure the
memory, March-Tests must be associated to isolation structures able to avoid RAM
access during scan test mode.

On the other side, ROMs embedded in a secure IC must also follow few DfT rules
in order to protect their contents against abnormal read-out operations:

• Direct access to ROMs contents from pad level must be avoided;
• ROMs access must be disabled during scan test mode, to avoid data read-out

through scan chains.

In order to fulfill those secure requirements, standard ROM BIST associated to a
MISR (Multiple-Input Signature Register) can be used, to create a signature based on
ROM contents. Such a structure is a standard ROM test solution within semiconductor
industry.

7.6 Conclusions

DfT and security are often presented as antagonist, indeed the DfT has as objective to
maximize internal nodes observability and controllability, while security constraints

7 Manufacturing Testing and Security Countermeasures 147

do not allow any internal information to be controlled or extracted. However, we
showed that DfT can handle security constraints while being supported by com-
mercial tools. We described secure scan test solution and secure RAM/ROM test
techniques. Pro and cons of the insertion of such techniques in a design flow are also
being discussed.

To conclude, DfT and Security could be compatible if carefully implemented.

References

1. Abramovici M, Breuer MA, Firedman AD. Digital system testing and testable design, Revised
Printing, IEEE Press; 1990. ISBN 0-7803-1062-4.

2. Richard A. Wheelus TD, Haverkos KWJ, Integrated circuit memory using fusible links in a
scan chain. U.S. Patent US5677917, issued April; 1996.

3. Bardell PH, McAnney WH, Self-testing of multichip logic modules. In: Proceedings of inter-
national test conference; Nov. 1982. p. 200–04.

4. Schubert A, Anheier W. On random pattern testability of cryptographic VLSI cores. J Elect
Test Theory Appl. 2000;16(3):185–92.

5. Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27(4):379–423.
6. Shannon C. Communication theory of secrecy systems. Bell Syst Tech J. 1949;28(4):656–715.
7. Feistel H. Cryptography and computer privacy. Sci Amer Mag. 1973;228:15–23.
8. Di Natale G, Doulcier M, Flottes ML, Rouzeyre B. Self-test techniques for crypto-devices. In:

IEEE transaction on VLSI systems, vol. 18, Issue 2. p. 1–5, Feb 2010. DOI:10.1109/TVLSI.
2008.2010045.

9. Doulcier M, Flottes ML, Rouzeyre B. AES-based BIST: self- test, test pattern generation and
signature analysis. In: Proceedins of 4th IEEE international symposium electron design, test
applications (DELTA), 2008. p. 314–21.

10. Joan D, Vincent R. The design of rinjael, AES—the advanced encryption standard. 2nd ed.
New York: Springer.

11. Recommendation for the Triple Data Encryption Algorithm (TDEA). Block Cipher, Spe-
cial Publication 800–67, Gaithersburg, MD: National Institude Standards Technology (NIST);
2008.

12. Karaklajic D, Kneževic M, Verbauwhede I. Low cost built in self test for public key crypto
cores. In: Workshop on fault diagnosis and tolerance in cryptography (FDTC). Santa Barbara,
CA. 2010. p. 97–103. doi:10.1109/FDTC.2010.12.

13. da Rolt J, Di Natale G, Flottes ML, Rouzeyre B. Thwarting scan-based attacks on secure-ICs
with on-chip comparison. IEEE Trans Very Large Scale Int Syst. 2014;22(4):947–51. doi:10.
1109/TVLSI.2013.2257903.

14. Sudeendra Kumar K, Lodha K, Sahoo SR, Mahapatra KK. On-chip comparison based secure
output response compactor for scan-based attack resistance. In: 2015 international conference
on VLSI systems, architecture, technology and applications (VLSI-SATA). Bangalore; 2015.
p. 1–6. DOI:10.1109/VLSI-SATA.2015.7050467.

15. Talatule SD, Zode P, Zode P. A secure architecture for the design for testability structures.
In: 19th international symposium on VLSI design and test (VDAT). Ahmedabad. 2015:1–6.
doi:10.1109/ISVDAT.2015.7208090.

16. Wu Y, MacDonald P. Testing ASICs with multiple identical cores. IEEE Trans Comput Aided
Des Int Circ Syst. 2003;22(3):327–36.

17. Poehl F, Beck M, Arnold R, Rzeha J, Rabenalt T, Goessel M. On-chip evaluation, compensation
and storage of scan diagnosis data. IET Comput Dig Tech. 2007;1(3):207–12.

18. Paul S, Chakraborty R, Bhunia S. VIm-scan: a low overhead scan design approach for protection
of secret key in scan-based secure chips. In: Proceedings of 25th IEEE VLSI test symposium,
May 2007. p. 455–60.

http://dx.doi.org/10.1109/TVLSI.2008.2010045
http://dx.doi.org/10.1109/TVLSI.2008.2010045
http://dx.doi.org/10.1109/FDTC.2010.12
http://dx.doi.org/10.1109/TVLSI.2013.2257903
http://dx.doi.org/10.1109/TVLSI.2013.2257903
http://dx.doi.org/10.1109/VLSI-SATA.2015.7050467
http://dx.doi.org/10.1109/ISVDAT.2015.7208090

148 G. Di Natale et al.

19. Lee J, Tebranipoor M, Plusquellic J. A low-cost solution for protecting IPs against scan-based
side-channel attacks. In: Proceedings of 24th IEEE VLSI test symposium, May 2006, p. 1–6.

20. Novak F, Biasizzo A. Security extension for IEEE Std 1149.1. J Elect Test. 2006;22(3):301–3.
21. Chiu G-M, Li JC-M. A secure test wrapper design against internal and boundary scan attacks

for embedded cores. IEEE Trans Very Large Scale Integr Syst. 2012;20(1):126–34.
22. Wang X, Zheng Y, Basak A, Bhunia S. IIPS: infrastructure IP for secure SoC design. IEEE

Trans on Comput. 2015;64(8):2226–38. doi:10.1109/TC.2014.2360535.
23. Dworak J, Conroy Z, Crouch A, Potter J. Board security enhancement using new locking SIB-

based architectures. In: IEEE international test conference (ITC), WA: Seattle; 2014. p. 1–10.
doi:10.1109/TEST.2014.7035355.

24. Da Rolt J, Di Natale G, Flottes ML, Rouzeyre B. A smart test controller for scan chains in
secure circuits. In: Proceedinigs IEEE 19th IOLTS, July 2013. p. 228–9.

25. Yang B, Wu K, Karri R, Secure scan: a design-for-test architecture for crypto chips. IEEE Trans
Comput Aided Des Integr Circ Syst. 2006;25(10):2287–93.

26. Hely D, Flottes ML, Bancel F, Rouzeyre B, Berard N, Renovell M. Scan design and secure
chip [secure IC testing]. In: Proceedings of 10th IEEE IOLTS, July 2004. p. 219–24.

27. Lee J, Tehranipoor M, Patel C, Plusquellic J. Securing scan design using lock and key technique.
In: Proceedings of 20th IEEE international symposium DFT VLSI system, Oct. 2005. p. 51–62.

28. Fujiwara H, Fujiwara K. Strongly secure scan design using generalized feed forward shift
registers. IEICE Trans Inf Syst. 2015;E98-D(10):1852–55.

29. Atobe Y, Shi Y, Yanagisawa M, Togawa N. Dynamically changeable secure scan architecture
against scan-based side channel attack. In: International SoC design conference (ISOCC). Jeju
Island; 2012. p. 155–8. doi:10.1109/ISOCC.2012.6407063.

30. Ali SS, Saeed SM, Sinanoglu O, Karri R. Novel test-mode-only scan attack and countermeasure
for compression-based scan architectures. In: IEEE transactions on computer-aided design of
integrated circuits and systems. 2015;34(5):808–21. doi:10.1109/TCAD.2015.2398423.

31. Saeed SM, Ali SS, Sinanoglu O, Karri R. Test-mode-only scan attack and countermeasure for
contemporary scan architectures. In: IEEE international test conference (ITC), Seattle, WA;
2014. p. 1–8. doi:10.1109/TEST.2014.7035357.

32. Hely D, Bancel F, Flottes ML, Rouzeyre B: Secure scan techniques: a comparison. In: Pro-
ceedings 12th IEEE ISOLT, Jan. 2006. p. 119–24.

33. http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
34. http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/
35. https://www.mentor.com/products/silicon-yield/products/scan
36. http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/

TetraMAXATPG.aspx
37. https://www.mentor.com/products/silicon-yield/products/testkompress/
38. http://www.cadence.com/products/di/edi_system/pages/default.aspx
39. Yang B, Wu K, Karri R. Scan based side channel attack on dedicated hardware implementations

of Data Encryption Standard. In: International test conference, 2004. p. 339–44.
40. Nara R et al. RScan-based attack against elliptic curve cryptosystems. In: ASP-DAC, 2010. p.

407–12.
41. Darolt J, Di Natale G, Flottes ML, Rouzeyre B. Are advanced DfT structures sufficient for

preventing scan-attacks?. In: VLSI test symposium, 2012. p. 246–51
42. Hely D, Bancel F, Flottes M-L, Rouzeyre B. Securing scan control in crypto chips. JETTA.

2007;23(5):457–64.
43. Pugliesi-Conti PH. Circuit for securing scan chain data, patent filed, March 25, 2011, Publica-

tion number: 20120246528.
44. van de Goor AJ. Testing semiconductor memories: theory and practice. John Wiley and Sons,

1991.
45. Zarrineh K, Upadhyaya SJ, Chakravarty S. A new framework for generating optimal march

tests for memory arrays. In: IEEE international test conference, 1998. p. 73–82.

http://dx.doi.org/10.1109/TC.2014.2360535
http://dx.doi.org/10.1109/TEST.2014.7035355
http://dx.doi.org/10.1109/ISOCC.2012.6407063
http://dx.doi.org/10.1109/TCAD.2015.2398423
http://dx.doi.org/10.1109/TEST.2014.7035357
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/
https://www.mentor.com/products/silicon-yield/products/scan
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/TetraMAXATPG.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/TetraMAXATPG.aspx
https://www.mentor.com/products/silicon-yield/products/testkompress/
http://www.cadence.com/products/di/edi_system/pages/default.aspx

Chapter 8
Malware Threats and Solutions
for Trustworthy Mobile Systems Design

Jelena Milosevic, Francesco Regazzoni and Miroslaw Malek

8.1 Introduction

Rapid adoption of mobile devices and their increased usage to perform financial
transactions and to send or store sensitive information, attracted the attention of
criminals and all sorts of trouble makers and increased their interest in tampering
with these devices to gain profit, to collect private and sensitive data, or simply to
cause malfunctioning. To guarantee the security of a mobile device, it is necessary
to provide it with robust and trusted hardware. Trusted hardware means that the used
components should not contain hardware Trojans, which aremaliciousmodifications
of the underlining hardware in order to access maliciously the target device. Robust
hardware means being resistant against physical attacks.

Being mobile and widely present, mobile devices can get into physical possession
of the attacker, which makes them prone, as the large majority of other embedded
systems, to threats caused by physical attacks. Physical attacks are attacks which aim
at gaining access to sensitive information by exploiting the physical leakage of the
implementation of security primitives. The most notable example of these attacks
is by using power analysis [22], where the secret key is extracted by analysing the
dependency of the power consumed by the device and the secret data being processed.
However, using power analysis is not the only physical attack which exists. There
are also other methods that may exploit timing and that were successfully used in
the past: timing difference [21], electromagnetic emissions [29], and deliberate fault
injection [19].

However, state-of-the-art mobile devices are not composed of solely hardware
(including several cores and dedicated accelerators like GPUs) but also a plethora of
software. For this reason, to guarantee the overall robustness of the device, it is not
sufficient to protect only the hardware but also software routines have to be trusted,

J. Milosevic (B) · F. Regazzoni · M. Malek
Advanced Learning and Research Institute, Università Della Svizzera Italiana,
Lugano, Switzerland
e-mail: jelena.milosevic@usi.ch

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_8

149

150 J. Milosevic et al.

since the number of security breach caused by software is significantly growing. This
is indeed visible in the reported number of malicious software or shortly malware,
which is increasing very fast. According to [6], the total number of mobile malware
samples grew 17% in the second quarter of 2015. A different source [3], states that
currently about three over four applications in China are malware.

Malware is software deliberately created to harm the device where it will be
executed. Some of the effects which malware can have are stealing of sensitive
information, the possibility of taking control of the overall operation of the system,
and the damaging till the complete disruption of the device.

The number of encountered attacks onmobile devices is growing, so as the number
of malware samples and malware families. With increased number of mobile fam-
ilies, also the behaviour of malware is changing, progressing and becoming more
difficult to detect. Under these increasingly difficult circumstances, the detection
algorithms have to cope with the variety of malicious behaviour, and be able to pro-
vide an effective detection,without generating an amount of false positives thatwould
disturb users. The way to cope with it, and provide an effective solution, is mostly,
by increasing effectiveness of algorithms that in turn may require higher complexity
and taking into account more parameters about the system. However, mobile mal-
ware detection systems have to be run in resource-constrained and battery-operated
environments that neither have the computational power to run extremely complex
algorithms nor can support algorithms that drain the battery too quickly. Finding an
effective detection algorithm, that is at the same time suitable for battery-operated
mobile devices, is a challenging task.

In view of the increasing relevance that this problem has in mobile devices, and
considering the effect of malware in the whole trustworthiness of a system, this
chapter surveys existing mobile malware detection threats and proposed solutions
and sketches main research trends. The main goal of the work is to evaluate current
approaches with respect to the effectiveness of the solution, and its consumption of
resources.

8.2 Threats in Mobile Devices

For the second consecutive year, mobile devices are perceived as IT security’s weak-
est link [1]. The threats, that were previously mostly concern of governments, finan-
cial institutions, and security vendors, are becoming more relevant in small enter-
prises and in personal lives [6]. The focus of Internet security is shifting from the
desktop and the data centre to the home and Internet of Things, the pocket, the purse,
and, ultimately, devices and infrastructure of the Internet itself [4].

The most severe threat that can affect mobile devices is malware. It is being
able to completely damage a device or enable further attacks on the device that can
performunwanted actions.Most presentmalware types inmobile devices are rootkits,
ransomware, bots, financialmalware, logic bombs, viruses,worms andTrojan horses.

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 151

• Rootkits are a type of malware that is able to access parts of software for which
regularly it does not haveprivileges.The access to privileged area is usually enabled
by performing an attack on the system, either by exploiting systems vulnerabilities
or guessing user’s passwords. Once the attacker has the access to the root privileges
of the system, the system is practically under full control of him or her and is prone
to further manipulation. Due to this, rootkit detection is a challenging task, and
sometimes the only way to cope with it is the replacement of the operating system.

• Ransomware is malware that locks the content of the user’s device, and then asks
the user to paymoney, ransom, in order to enable normal usage. There are different
ways to perform such attack on the system, starting from locking the screen of a
device, or by using fake anti-virus software that, once installed on user’s device,
would prompt the message that the device is under attack and ask for money in
order to remove the discovered infection.More advanced ransomware encrypts the
data stored on the device and asks formoney in order to provide the decryption key.
In the last few years an increased number of ransomware attacks was recorded.
More in detail, in the second quarter of 2015 their number increased by 58%
comparing to the first quarter of the same year [6].

• Bots are self-propagating malware with the goal to infect host machine and later
connect to a server, bot master, and follow the obtained orders from it. Botnet
is a network consisting of many host devices infected with bots, being available
to perform Denial of Service attacks, send spam messages or simply enable fur-
ther infections on host devices. Additionally, bots collect information from host
devices and send it to the bot master. The collected information can be related to
private user’s data, financial transactions, user passwords, etc. Botnets, that until
recently were mostly related to personal computers, since 2010 also attack mobile
devices. One example of mobile bots with a goal to propagate malware is Plankton
that appeared in 2011 and currently has more than 2000 different variants. More
information about Plankton can be found in [37].

• Financial Malware has a goal of collecting accounts credentials and sending
them to the attackers. Current Android malware can intercept text messages with
authentication codes from customer’s bank and forward them to attackers. Also,
fake versions of legitimate banks mobile applications exist, hoping to trick users
into giving up account details. Number of encountered attacks related to financial
malware is increasing. This can be especially seen in the increase of banking
malware, which attacks online banking customers. According to [5], number of
encountered banking attacks increased from 71 to 83% fromfirst to second quarter
of 2015.

• Logic Bombs are pieces of code intentionally inserted into a software system
that set off a malicious function only when specified conditions are met. When
activated, a logic bomb can perform different actions: display spam messages,
delete or corrupt data, execute pieces of malicious code or have other undesirable
effects.

• Viruses are type of malware that propagates by inserting themselves into another
program and spreading together with it. The level of severity of viruses can vary
from low, for example corrupting some files on the system, to very severe that

152 J. Milosevic et al.

can disable and completely damage the operating system. Viruses are spreading
together with the program they are attached to. It can happen by using Wi-Fi
network, Bluetooth, message or email attachments.

• Worms, as opposed to viruses that depend on a host program to spread itself,
operate more independently of other files. Still, same as viruses they are able to
self-replicate and spread. In mobile devices, worms spread without user’s knowl-
edge, by using existing communication channels: SMS,MMS, andBluetooth. First
mobile malware, Cabir, that appeared in 2004, was a worm developed for Symbian
operating system and ARM architecture that was able to spread itself via Blue-
tooth. Since then different variants of worms exist in mobile devices, causing users
information leakage, disruption of services or sending premium rate messages.

• Trojan Horses (Trojans) are type of malware that appears as a legitimate soft-
ware, but actually has malicious intents. Also, they are able to open a backdoor
in a system, thus enabling further attacks. Due to their similarity with legitimate
applications, detection of Trojans is a challenging task. At the same time, they
are one of the most present malware types in mobile devices, especially devices
running on Android operating system. One of the most famous is Spitmo, a Trojan
which steals information from the infected smartphone, monitors and intercepts
SMS messages from banks and uploads them to a remote server [37].

Apart from malware, threats that can also appear in mobile devices are classified
as grayware or madware. According to [4], out of the 6.3million apps analysed in
2014, one million were classified as malware, while 2.3million were classified as
grayware. A further 1.3million apps within the grayware category were classified as
madware.

• Grayware are all the programs that do not contain viruses and are not obvi-
ously malicious but that can be annoying to the user, like for example adware
(advertising-supported software), that automatically delivers advertisements.

• Madware consists of different aggressive techniques developed in order to place
advertisement in mobile devices, for example photo albums and calendar entries
and to push messages to notification bar.

Apart from the listed threats, there are various other forms of malware, grayware,
and madware that have different names and different forms. Some examples are
freeloading that uses other people’s phone by “freeloader” without permission of the
user, phishing is looking for someone to get “hooked” and load malware/grayware
or madware, and spoofing is pretending to be someone else (e.g. user’s bank), win
trust and exploit the credentials. Although the number of all possible threats that can
happen in mobile devices is much higher, in this chapter we focus on and discuss in
more detail the ones related to mobile malware, since it is currently the threat that
can cause the most severe damage to devices, and particularly the ones that currently
exist and are widespread in devices running Android Operating System, since the
Android OS is currently the most used OS for mobile devices. With growing number
of devices the complexity of systems is increasing, causing evenmore security threats
to appear. It is estimated that the number of connected devices will continue to grow

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 153

both in volume and variety, and that by 2020 it may reach 200billion [2]. Although
we have already seen attacks in ATMs, home routers, cars and medical equipment,
these are just beginnings of attacks on IoT [6]. Most of these devices connect via
Bluetooth that is known to suffer from many security flows, as stated in [2]. Apart
from being able to collect data stored on these devices, attackers can also abuse their
connections to smartphones. Symantec in [4] discovered that 20 % of applications
related to health sent personal information, logins, and passwords over the wire in
clear text.

The expansion of existing attacks is expected in the next years, so as appearance
of new ones. According to threats prediction in [7], some of the threats that will
become more aggressive and widespread in coming years are following: the rise of
machine-to-machine attacks, propagation of worms in headless devices, and two-
faced malware.

• Machine-to-Machine Attacks will take advantage of connected systems of
mobile devices like connected medical devices and their host applications, con-
nected home automation, smart TVs, and also connected home routers.

• Worms inHeadlessDevices refer to foreseen spreadofwormswithin less complex
devices, like smartwatches, by means of communication protocols.

• Two-faced Malware is type of malware designed to execute an innocent task to
avoid detection system, and then, once it bypassed security checks, execute its
malicious payload.

8.3 Malware Detection Solutions

With increased number of mobile threats the need to protect from them is growing,
resulting in higher demand for effective detection systems. Reports indicate marked
growth in the usage of anti-virus and anti-malware solutions for mobile platforms,
which went from a 36% rate of use in 2014 to 45% in 2015 [1].

User’s expectation from detection systems are that they are able to detect malware
with high confidence without producing false positives and creating disturbance to
regular usage. Additionally, any security mechanism targeted toward mobile sys-
tems should take their battery-operated characteristics into account as they may
significantly limit the ability to run complex malware detection systems on devices.
Providing detection mechanisms that are at the same time effective, able to detect
variety of malware that exist today, and with low complexity, so that they do not sig-
nificantly affect battery life, is a challenging task, and most of the proposed solutions
are trade-off between these requirements.

Although number of threats is observed in variety of mobile devices, most of
existing malware is targeting mobile phones and tablets. Due to this reason, most of
current solutions are provided for them. In the rest of this section we discuss these
solutions in more detail. Existing detection solutions can be divided in: signature-
based, static, and dynamic.

154 J. Milosevic et al.

8.3.1 Signature-Based Detection

A method that is commonly used in current anti-virus and anti-malware solutions
is based on generation of representative signatures for existing malware samples
and maintenance of a database consisting of them. Once the signature is recognised,
malware is detected with high confidence. Although the number of false positives
with such systems is low, they heavily rely on the maintenance of the database with
signatures. Namely, it has to be frequently updated with new signatures that appear
on the market. In mobile environment, this might be difficult due to the fact that the
device is not constantly connected to the Internet, that sometimes is connected with
mobile data that is charged, or that the device does not contain enough memory to
store all available malware signatures.

8.3.2 Static Detection

These methods are focused on analysis of static features of applications (e.g. granted
permissions, API calls, source code debagging) and discrimination betweenmalware
and trusted based on them.

One approach to static malware detection is proposed in [8] where high detection
accuracy is achieved by using features from the manifest file and feature sets from
disassembled code. Reported overhead is sub-linear. Its performance increases with
O(

√
m), where m is the number of analysed bytes. Also the mechanism presented

in [35] uses static features including permissions, Intent messages passing and API
calls to detect malicious Android applications.

Apple, Google, and Nokia use application permissions and review to protect users
from malware. The effectiveness of these mechanisms against malware in a given
data set is evaluated in [16]. In [16], sending SMS messages without confirmation
or accessing unique phone identifiers like the IMEI are identified as promising fea-
tures for malware detection as legitimate applications ask for these permissions less
often [17]. For example, nearly one third of applications request access to user loca-
tion but far fewer request access to user location, and to launch at boot time. The
authors concluded that although the number of permissions alone is not sufficient
to identify malware, they could be used as part of a set of classification features,
provided that all permissions common to the malware set are infrequent among non-
malicious applications.

In [34], as a feature for detecting susceptibility of a device to malware infection, a
set of identifiers representing the applications on a device is used. The assumption is
that the set of applications used on a device may predict the likelihood of the device
being classified as infected in the future. Nevertheless, observing just this feature is
not enough to give precise answer about device being attacked due to low precision
and recall [34].

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 155

In the nutshell, static detection is an effective approach in terms of resource con-
sumption. However, due to the nature of this approach that analyses the applications
only based on their static features, it is not able to detect malware that appears at
run-time, it is prone to obfuscation [26], and cannot detect variations of existing
malware samples that are easy to create and distribute.

8.3.3 Dynamic Detection

Dynamic detection appears as a promising candidate able to detect variety of mali-
cious samples that currently exist on themarket. Themain advantage of this approach
is that dynamic system features are observed at run-time, such as for example sys-
tem calls and network behaviour, and based on them and previously trained models,
detection is performed. In this way, by observing the behaviour of the system at run-
time, systems are more resistant to variety of existing malware samples and more
difficult to bypass. The reasoning behind is that while attackers can obfuscate the
code itself it is difficult to obfuscate its behaviour.

Dynamic detection mechanisms are used in [10] to detect mobile worms, viruses
and Trojans. The authors start with the extraction of representative signatures. Later
on, a database with malicious patterns is created and Support Vector Machines are
used in order to train a classifier with both trusted and malicious data. The evaluation
of both emulated and real-world malware shows that dynamic detection not only
results in high detection rates but also detects new malware which shares certain
similarity with existing patterns in the database.

Power consumption,monitored through battery usage, also appears to be a promis-
ing approach [9].One of the proposed solutions,VirusMeter [23],monitors and audits
power consumption on mobile devices with a power model that accurately charac-
terises power consumption of normal user behaviours. In [20] creation of a database
with power signatures is proposed, where a new power signature collected while the
system is used is compared with the ones already existing in the database. However,
to what extent malware can be detected on phones by monitoring just the battery
power remains an open research question [9].

SmartSiren, presented in [14], is a collaborative virus detection and alert system
for smartphones. It performs statistical and abnormality monitoring, detects abnor-
malities at both device and network level, and in case alerts being detected issues
alarm to the targeted population. This approach is tested and validated on viruses
spreading via Bluetooth and SMS andWindowsMobile 5.0 Smartphone Edition. The
used dataset consists of three weeks of SMS traces collected from Indian national
cellular service provider. The reported overhead is 33.6% of the total messages.

In [31] the approach to identify the most representative features to be observed
on a phone running on Symbian operating system and then sent to the network
for further investigation is presented. After receiving the information about these
features on the server side it is decided if the phone state is abnormal or within
expectations. Following five features are identified as informative and used: RAM

156 J. Milosevic et al.

Free, User Inactivity, Process Count, CPU Usage, SMS Sent Count. More in detail,
RAM Free indicates the amount of free RAM in kilobytes, User Inactivity tells if
the user was active in the last ten seconds, Process Count indicates the number of
currently running processes, CPUUsage represents the percentage ofCPUusage, and
SMS Sent Count represents the amount of SMS messages in the message directory.
This approach is validated by using as a dataset simulation of normal behaviour of
10 frequently used applications at that time, and one malware sample.

In [36] a probabilistic approach on detection of malware propagating through
Bluetooth and messaging services is presented. It observes unique behaviours of the
mobile applications and the operating users on input and output constrained devices,
and builds a Hidden Markov Model to learn application and user behaviours. Later,
based on this knowledge, it identifies behavioural differences between malware and
human users. The analysis is performed on Linux-based smartphone.

In [32], Andromaly, a framework for detecting malware, is proposed. It uses vari-
ety of features related to: touch screen, keyboard, scheduler, CPU load, messaging,
power, memory, calls, operating system, network, hardware, binder, and LEDs, and
compares False Positive Rate, True Positive Rate, and accuracy of the following
detection algorithms: Bayes Net, Decision Tree J48, Histogram, K-means, Logistic
Regression, and Naive Bayes. The algorithms that outperformed the others in detec-
tion of Android malware were Logistic Regression and Naive Bayes. The results
were obtained using 40 trusted applications and four developed malicious samples,
since no real malicious applications were available at that moment.

In [18] feature selection was performed on a set of run-time features related to
network, SMS, CPU, power, process information, memory and Virtual memory.
As a measure of features importance, Information Gain was used along with four
classification algorithms: Naive Bayes, Random Forest, Support Vector Machines,
and Logistic Regression. Results show that, in this scenario, Random Forest gives the
best performance. Random Forest is a combination of different tree classifiers [11].
Although it is a powerful algorithm in achieving high accuracy of detection, it also
has high complexity. Results have been obtained by considering 30 trusted and five
malicious applications.

In [33] automatic way to detect malware by using combination of static and
dynamic approach towards malware detection is presented. In order to extend cov-
erage of dynamic detection, static detection is used as a first step, where the authors
take into account applications Manifest file, decompiled code and requested permis-
sions. Further, they analyse the application in sandbox tracking native API calls of
the application taken into account. Malware samples taken into account are 136000
applications from Asian and Google Play market and 7500 malicious samples. The
system is accessible via web interface for all the users that would like to test the
suspicious applications.

Work proposed in [12], is a crowdsourcing system that uses real traces of appli-
cation behaviour collected from users. The traces are analysed in the network by
usage of k-means clustering. Malware is detected by investigation of system calls,
and the authors argue that the monitoring system calls are the most accurate way to
detect malicious Android applications, since they provide detailed overview on the

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 157

events. Dataset used is consisting of Trojan samples, more precisely, three samples
of self-written malware and two real malware application samples.

In [15] Madam, a Multi-Level Anomaly Detector for Android Malware, is pre-
sented.Madam is a framework that detects intrusions andmalware actions onAndroid
devices. It does the detection by monitoring system OS events (system calls) and the
user activity/idleness. The evaluation of the system is performed by using 10 real
malware samples on Android Ice Cream Sandwich Version 4.1 Samsung Galaxy
Nexus phone. The reported overhead of the approach is 3% of memory consump-
tion, 7% of CPU overhead, and 5% of battery. In order to use Madam, rooting of a
phone is required.

In [13] another approach that also uses system calls is presented. The approach
uses machine learning to learn connections between malicious behaviour (e.g. send-
ing high premium rate SMS or cyphering data for ransom) and their execution traces
and then exploit obtained knowledge to detectmalware. As opposed to other systems,
where a limited set of system calls is taken into account, in this work, all system calls
are considered so as their sequences. The approach is tested on real device, with a
dataset consisting of 20000 execution traces and 2000 applications.

An approach presented in [25], takes into account dynamic features (memory and
CPU) and their importance in malware detection. It analyses these features and their
significance within the malware families they belong to, and takes into account the
most indicative ones for each family. It concludes that some features appear as good
candidates formalware detection in general, some features appear as good candidates
for detection of specific malware families, and some others are simply irrelevant. For
the analysis of importance of features, the authors use Principal ComponentAnalysis.

A work proposed in [27] consists of two components: a host agent and a network
service. The main purpose of the host agent is to acquire files and send them to
the network service, whereas the network service performs analyses using multiple
detection engines in parallel to determine whether a file is malicious or not.

Another proposed solution is Paranoid Android [28], which uses the anomaly
detection principle. Based on phone execution traces, security checks are performed
on the synchronised copy of the phone that runs on a server. The phone used in the
analysis is HTCG1 phone, and on the server side QEMUwas used. The results show
that battery life is reduced about 30% and CPU load about 15%.

The drawback of dynamic detection methods is that such systems might be too
complex for limited resources of mobile systems. In some cases, as previously men-
tioned, detection engines are offloaded to a cloud or a server, thus imposing new
challenges to the system related to data transmission, communication overhead and
data privacy. Additionally, although the systems based on dynamic detection are
more resistant than the ones based on static, if the detection is based on observance
of representative features, and the attacker develops completely new malware that
does have different behavioural pattern from the learned ones, it might happen that
the system would not be able to recognise it as malicious. Additional drawback is
that while systems are trained only a limited number of execution paths can be taken
into account, thus potentially not triggering the ones with malicious intent, which
might be exposed only later during run-time execution of the application on a device.

158 J. Milosevic et al.

8.4 Discussion

Increased number of mobile devices, together with their increased usage, attracted
also the attacker’s attention and motivated them to abuse these devices and get into
possession of users credentials such as private and sensitive data. As a result of this,
the increase in the number of encountered threats and their variety is observed. This
trend, together with themost representativemobile threats is discussed and explained
in more detail in Sect. 8.2.

Research community, anti-virus and anti-malware providers are trying to cope
with the attacks and provide effective and efficient solutions for detection. The solu-
tions have to be accurate in order not to disturb users with false alarms. Addition-
ally, solutions have to be efficient, and thus suitable for limited resources of mobile
devices. Existing detection methods, with their advantages and disadvantages, are
discussed in Sect. 8.3. Additionally, in Table8.1, tabular representation of state-of-
the-art approaches is given, consisting of their characteristics related to: type of analy-
sis, type of threats, detection technique, operating system, detection side, dataset,
overhead, and publication year. Based on this information, we could spot different
trends and challenges that we discuss in the following part of the section.

8.4.1 Type of Analysis

As discussed in Sect. 8.3, current existing detection methods can be dynamic and
static. In some approaches both of thesemethods are combined. In Fig. 8.1we present
the distribution of existing detection methods with respect to type of used analysis:
dynamic, static, and combined. As we can observe dynamic detection is prevailing.
Due to previously mentioned weaknesses of static detection, reflected mainly in
its inability to detect malicious behaviour at run-time, it is not surprising that the
most research is focusing towards development of dynamic solutions. The main
problem that a designer of a systemmay facewhenproviding anddevelopingdynamic
solutions is the complexity, which might limit their applicability on constrained-
resource devices.

8.4.2 Type of Threats

In Sect. 8.2 different existent threats that can affect mobile devices are discussed.
Among them, as the most dominant and the widespread, malware is identified and
different types of malware that currently exist are explained. In Fig. 8.2 we present
the distribution of threats taken into account in existing detection methods. As we
can see from Fig. 8.2 most of the existing solutions try to provide protection from
malware in general, without particularly focusing on its subgroups. While this trend

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 159

Ta
bl
e
8.
1

Ta
bu
la
r
re
pr
es
en
ta
tio

n
of

st
at
e-
of
-t
he
-a
rt
ap
pr
oa
ch
es

Ty
pe

of
an
al
ys
is

Ty
pe

of
th
re
at

D
et
ec
tio

n
te
ch
ni
qu
e

O
pe
ra
tin

g
sy
st
em

D
et
ec
tio

n
si
de

D
at
as
et

O
ve
rh
ea
d

Pu
bl
ic
at
io
n

ye
ar

R
ef
er
en
ce

St
at
ic

M
al
w
ar
e

Su
pp
or
tv

ec
to
r

m
ac
hi
ne
s

A
nd
ro
id

Ph
on
e

12
3
45
3
ap
ps
,

55
60

m
al
w
ar
e

Su
b-
lin

ea
r
w
ith

re
sp
ec
tt
o
th
e

nu
m
be
r
of

an
al
ys
ed

by
te
s

20
14

[8
]

St
at
ic

M
al
w
ar
e

kN
N
cl
us
te
ri
ng

A
nd
ro
id

Se
rv
er

15
00

tr
us
te
d,

23
8
m
al
w
ar
e

L
in
ea
r
in

th
e

si
ze

of
th
e

pr
ob
le
m

20
12

[3
5]

St
at
ic

M
al
w
ar
e

M
at
ch
in
g
w
ith

cr
ea
te
d

da
ta
ba
se

A
nd
ro
id
,i
O
S

Se
rv
er

10
3
69
5
ap
ps

B
el
lo
w

pr
ec
is
io
n
of

ha
rd
w
ar
e

in
st
ru
m
en
ta
tio

n

20
13

[3
4]

D
yn
am

ic
M
al
w
ar
e

N
ai
ve

B
ay
es
,

lo
gi
st
ic

re
gr
es
si
on
,

ra
nd
om

fo
re
st
,

su
pp
or
tv

ec
to
r

m
ac
hi
ne
s

A
nd
ro
id

Ph
on
e

30
tr
us
te
d

5
m
al
w
ar
e

N
ot

re
po
rt
ed

20
13

[1
8]

D
yn
am

ic
M
al
w
ar
e

Su
pp
or
tv

ec
to
r

m
ac
hi
ne
s

A
nd
ro
id

Ph
on
e

10
00

tr
us
te
d,

10
00

m
al
w
ar
e

N
ot

re
po
rt
ed

20
15

[1
3]

D
yn
am

ic
M
al
w
ar
e

Pr
in
ci
pa
l

co
m
po
ne
nt

an
al
ys
is

A
nd
ro
id

Ph
on
e

10
80

m
al
w
ar
e

N
ot

re
po
rt
ed

20
16

[2
5]

D
yn
am

ic
M
ob

ile
w
or
m
s,

vi
ru
se
s
an
d

T
ro
ja
ns

Su
pp
or
tv

ec
to
r

m
ac
hi
ne
s

Sy
m
bi
an

Ph
on
e

2
m
al
w
ar
e

N
ot

re
po
rt
ed

20
08

[1
0]

(c
on
tin

ue
d)

160 J. Milosevic et al.

Ta
bl
e
8.
1

(c
on
tin

ue
d)

Ty
pe

of
an
al
ys
is

Ty
pe

of
th
re
at

D
et
ec
tio

n
te
ch
ni
qu
e

O
pe
ra
tin

g
sy
st
em

D
et
ec
tio

n
si
de

D
at
as
et

O
ve
rh
ea
d

Pu
bl
ic
at
io
n

ye
ar

R
ef
er
en
ce

D
yn
am

ic
V
ir
us
es

sp
re
ad
in
g
vi
a

B
lu
et
oo
th
,

SM
S
an
d
M
M
S

St
at
is
tic

al
an
d

ab
no

rm
al
ity

m
on
ito

ri
ng

W
in
do
w
s

M
ob
ile

5.
0

Se
rv
er

T
hr
ee

w
ee
k

SM
S
tr
ac
es

co
lle

ct
ed

fr
om

a
In
di
an

na
tio

na
l

ce
llu

la
r
se
rv
ic
e

pr
ov
id
er

33
.6
%

of
to
ta
l

m
es
sa
ge
s

20
07

[1
4]

D
yn
am

ic
Z
er
o
da
y

at
ta
ck
s,
th
e

at
ta
ck
s
th
at
ca
n

be
de
te
ct
ed

w
ith

A
V

sc
an
ne
r

V
ir
us

sc
an
ne
r,

dy
na
m
ic
ta
in
t

an
al
ys
es

A
nd
ro
id

H
T
C

G
1,

Q
E
M
U

Se
rv
er

Ph
on
e
re
pl
ic
as

B
at
te
ry

lif
e

re
du
ce
d
30

%
,

C
PU

lo
ad

15
%

20
10

[2
8]

D
yn
am

ic
M
al
w
ar
e

A
no
m
al
y

de
te
ct
io
n

Sy
m
bi
an

Se
rv
er

10
tr
us
te
d,

1
m
al
w
ar
e

N
ot

re
po
rt
ed

20
08

[3
1]

C
om

bi
ne
d

V
ir
us
es

M
ul
tip

le
de
te
ct
io
n

en
gi
ne
s

N
ok
ia
N
80
0

Se
rv
er

5
m
ill
io
n

si
gn

at
ur
es

N
ot

re
po
rt
ed

20
08

[2
7]

C
om

bi
ne
d

M
al
w
ar
e

St
at
ic
,D

yn
am

ic
A
nd
ro
id

em
ul
at
or

Se
rv
er

13
6
00
0
tr
us
te
d,

75
00

m
al
ic
io
us

sa
m
pl
es

N
ot

re
po
rt
ed

20
13

[3
3]

D
yn
am

ic
T
ro
ja
n
ho
rs
es

k-
m
ea
ns

A
nd
ro
id

Se
rv
er

3
se
lf
-w

ri
tte

n
m
al
w
ar
e
ap
ps
,

2
re
al
m
al
w
ar
e

N
ot

re
po
rt
ed

20
11

[1
2]

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 161

Ta
bl
e
8.
1

(c
on
tin

ue
d)

Ty
pe

of
an
al
ys
is

Ty
pe

of
th
re
at

D
et
ec
tio

n
te
ch
ni
qu
e

O
pe
ra
tin

g
sy
st
em

D
et
ec
tio

n
si
de

D
at
as
et

O
ve
rh
ea
d

Pu
bl
ic
at
io
n

ye
ar

R
ef
er
en
ce

D
yn
am

ic
M
al
w
ar
e

A
no
m
al
y

de
te
ct
io
n

A
nd
ro
id

Ic
e

C
re
am

Sa
nd
w
ic
h,

Sa
m
su
ng

G
al
ax
y
N
ex
us

Ph
on
e

10
m
al
w
ar
e

3
%

of
m
em

or
y

co
ns
um

pt
io
n,

7
%

of
C
PU

ov
er
he
ad
,5

%
of

ba
tte
ry

20
12

[1
5]

St
at
ic

M
al
w
ar
e

PA
R
T,

Pr
is
m
,

ne
ar
es
t

ne
ig
hb
ou
r

A
nd
ro
id

C
ol
la
bo

ra
tiv

e
24
0
m
al
w
ar
e

N
ot

re
po
rt
ed

20
09

[3
0]

D
yn
am

ic
M
al
w
ar
e

pr
op
ag
at
in
g

vi
a
B
lu
et
oo
th
,

M
M
S
an
d

SM
S

A
no
m
al
y

de
te
ct
io
n,

hi
dd
en

M
ar
ko
v

m
od

el
s

L
in
ux
-b
as
ed

Sm
ar
tp
ho
ne

Ph
on
e

34
6
sm

s
no
rm

al
se
qu
en
ce
s,
27

ab
no
rm

al
se
qu
en
ce
s

N
ot

re
po
rt
ed

20
10

[3
6]

D
yn
am

ic
M
al
w
ar
e

A
no
m
al
y

de
te
ct
io
n

W
in
do
w
s

m
ob

ile
Ph

on
e
or

se
rv
er

4
w
or
m
s,

1
ba
tte

ry
-d
ep
le
tio

n
at
ta
ck

N
ot

re
po
rt
ed

20
08

[2
0]

D
yn
am

ic
M
al
w
ar
e

A
no
m
al
y

de
te
ct
io
n

Sy
m
bi
an

N
ok
ia
55
00

Po
w
er

co
ns
um

pt
io
n

da
ta
un
de
r
no
rm

al
op
er
at
io
ns

an
d
un
de
r

m
ed
ia
pl
ay
er

an
d

ca
sh
bo
ok

1.
5
%

po
w
er

co
ns
um

pt
io
n

ov
er
he
ad

20
09

[2
3]

D
yn
am

ic
M
al
w
ar
e

A
no
m
al
y

de
te
ct
io
n,

lo
gi
st
ic

re
gr
es
si
on
,

N
ai
ve

B
ay
es

A
nd
ro
id

D
ev
ic
e

20
tr
us
te
d
ap
ps
,2

0
tr
us
te
d
to
ol
s,
4

de
ve
lo
pe
d
m
al
w
ar
e

ap
ps

8.
5
%

of
R
A
M
,

5.
52

%
of

C
PU

,1
0
%

of
ba
tte

ry

20
12

[3
2]

162 J. Milosevic et al.

Fig. 8.1 Distribution of existing detection methods with respect to type of used analysis

Fig. 8.2 Distribution of threats taken into account in existing detection methods

is understandable and makes used mobile devices more resistant to variety of threats,
it also raises a question of the complexity of the solutions and its applicability on
mobile devices. Namely, with the increased number of threats to protect from and
their variety, also the solutions provided to detect them are increasing in complexity
and computational overhead.

8.4.3 Detection Techniques

In order to detect malware, dynamic and static analysis can be used. In order to
apply these approaches different detection techniques can be considered: anomaly
detection, supervised and unsupervised learning, and clustering.

Anomaly detection is a technique particularly suitable when there are no many
samples of malicious behaviour available. The main idea is to train the system with
expected behaviour (normal or trusted), and then once something that goes out of
ordinary happens, it is declared as an anomaly, outlier, or malicious activity. Mobile
malware detection approaches based on the anomaly detection were particularly
suitable in period when not so many real malicious samples were available.

Another way to detect malicious behaviour is to use unsupervised detection mod-
els. In this case, the developer is acquiring information about differences between

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 163

Fig. 8.3 Distribution of techniques taken into account in existing detection methods

trusted and malicious behaviour based on the information contained in data that can
be reflected in different spacial structure, different values used, or different tempo-
ral characteristics. The most commonly used clustering method is kNN clustering,
where the label of the data is assigned based on the labels of its nearest neighbours.
kNN is a simple model, very suitable for limited resources of mobile systems.

Supervised learning is based on training, testing and development of models,
where data is labelled as malicious or trusted. Once the model is trained and tested, it
is deployed on a device. A variety of supervised learning models exist, both in terms
of their complexity and detection performance. Depending on these parameters,
models are more or less suitable for usage onmobile devices. Some of the supervised
learning models, commonly being used in existing detection methods, are Support
Vector Machines, Naive Bayes, Logistic Regression, and Random Forests.

In Fig. 8.3, distribution of detection techniques taken into account in existing
detectionmethods is presented.As it can be observed, although the anomaly detection
is slightly more used than the other techniques, there is no dominant technique and
different detection algorithms can be suitable for different environments.

8.4.4 Operating System

In Fig. 8.4 distribution of operating systems taken into account in existing detection
methods are illustrated. As we can see the most commonly used operating system
is Android OS. This is due to its open structure and widespread usage that attracts
both malware writers to abuse the systems and researchers to provide efficient and
effective solutions to protect them.

164 J. Milosevic et al.

Fig. 8.4 Distribution of
operating systems taken into
account in existing detection
methods

Fig. 8.5 Distribution of
detection sides taken into
account in existing detection
methods

8.4.5 On Device Versus on Cloud Detection

Further separation of malware detection systems, as it is discussed in more detail in
[24], can be done based on the detection side: on the device or on the cloud. Distrib-
ution of existing works with respect to the detection side is performed and obtained
results are presented in Fig. 8.5. As we can see from Fig. 8.5 there is no dominant
detection side, due to the fact that both approaches have their own advantages and
disadvantages. The advantage of detection of malware on the device is that user
data do not have to be sent into the network and, thus exposed to potential privacy
breaches. Additionally, if the device is under attack a user receives an early notifica-
tion about it, and so has more time to take appropriate countermeasures. However,
computational capabilities of mobile devices sometimes limit the ability to run com-
plex malware detection systems on them. Due to this reason, computations can be
offloaded to the cloud where more sophisticated algorithms are used and detection
is done with higher confidence. One of the drawbacks of this approach is that in case
having no connection, user stays unprotected.

8.4.6 Datasets

Since thebenchmarkdataset forAndroidmalwaredetectiondoes not exist, researchers
use different datasets to report their results. Fact that datasets are not always public is
a significant limitation andmakes comparison of research results difficult. It happens
often that performance of some approaches are tested and reported only once on a
specific dataset.

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 165

8.4.7 Overhead

One aspect of ultimate importance in mobile device detection, that was previously
not a limitation for regular PC detection systems, is resource consumption. However,
resource consumption is often missing in the evaluation of detection methods. This
makes process of design of a suitable detection system difficult, since the designer
cannot estimate in advance how complex the system is and whether scarce resources
of devices are suitable for given applications.

8.5 Conclusions

With ever growing complexity of individual systems andof the entire network, rapidly
increasing number of interconnected devices and continuously growing number of
threats, designing secure and trustworthy mobile systems is a permanent challenge.
In order to design such systems, both hardware and software threats have to be
taken into account, and suitable solutions must be provided. In this chapter, we first
give a short overview of the main hardware threats the system has to be protected
from. Later, we describe and focus more on description of existing software threats,
mostly reflected in malware, that affect mobile devices, as well as currently proposed
solutions to cope with them. Additionally, the chapter discusses the main challenges
and difficulties posed in front of designers during design process.

References

1. 2015 cyberthreat defense report. Tech. rep., CyberEdge Group (March 2015). http://www.
brightcloud.com/pdf/cyberedge-2015-cdr-report.pdf.

2. 2016 threats prediction. Tech. rep., McAfee Labs (November 2015). http://www.mcafee.com/
us/resources/reports/rp-threats-predictions-2016.pdf.

3. 2016 trend micro security predictions: The fine line. Tech. rep., Trend Micro (Octo-
ber 2015). http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/
rpt-the-fine-line.pdf.

4. Internet security threat report volume 20. Tech. rep., Symantec (April 2015). https://
www.symantec.com/content/en/us/enterprise/other_resources/21347933_GA_RPT-internet-
security-threat-report-volume-20-2015.pdf.

5. It threat evolution in q2 2015. Tech. rep., Kaspersky Lab (July 2015). https://securelist.com/
files/2015/08/IT_threat_evolution_Q2_2015_ENG.pdf.

6. Mcafee labs threats report. Tech. rep., McAfee Labs (August 2015). http://www.mcafee.com/
us/resources/reports/rp-quarterly-threats-aug-2015.pdf.

7. New rules: The evolving threat landscape in 2016. Tech. rep., FortiGuard Labs (Novem-
ber 2015). http://www.fortinet.com/sites/default/files/whitepapers/WP-Fortinet-Threat-
Predictions.pdf.

8. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. DREBIN: effective and explainable
detection of android malware in your pocket. In: NDSS; 2014.

http://www.brightcloud.com/pdf/cyberedge-2015-cdr-report.pdf
http://www.brightcloud.com/pdf/cyberedge-2015-cdr-report.pdf
http://www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-fine-line.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-the-fine-line.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/21347933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/21347933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/21347933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf
https://securelist.com/files/2015/08/IT_threat_evolution_Q2_2015_ENG.pdf
https://securelist.com/files/2015/08/IT_threat_evolution_Q2_2015_ENG.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-aug-2015.pdf
http://www.fortinet.com/sites/default/files/whitepapers/WP-Fortinet-Threat-Predictions.pdf
http://www.fortinet.com/sites/default/files/whitepapers/WP-Fortinet-Threat-Predictions.pdf

166 J. Milosevic et al.

9. Becher M, Freiling FC, Hoffmann J, Holz T, Uellenbeck S, Wolf C. Mobile security catching
up? Revealing the nuts and bolts of the security of mobile devices. In: Symposium on security
and privacy. SP ’11, IEEE Computer Society; 2011. p. 96–111.

10. Bose A, Hu X, Shin KG, Park T. Behavioral detection of malware on mobile handsets. In:
6th international conference on mobile systems, applications, and services (MobiSys). ACM;
2008. p. 225–38.

11. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. http://dx.doi.org/10.1023/A:
1010933404324.

12. Burguera I, Zurutuza U, Nadjm-Tehrani S. Crowdroid: behavior-based malware detection sys-
tem for android. In: Proceedings of the 1st ACM workshop on security and privacy in smart-
phones and mobile devices. SPSM ’11. New York, NY, USA: ACM; 2011. p. 15–26. http://
doi.acm.org/10.1145/2046614.2046619.

13. Canfora G, Medvet E, Mercaldo F, Visaggio CA. Detecting android malware using sequences
of system calls. In: Proceedings of the 3rd international workshop on software development
lifecycle for mobile. DeMobile 2015. New York, NY, USA: ACM; 2015. p. 13–20. http://doi.
acm.org/10.1145/2804345.2804349.

14. Cheng J, Wong SH, Yang H, Lu S. Smartsiren: virus detection and alert for smartphones. In:
5th international conference onmobile systems, applications and services.MobiSys ’07, ACM;
2007. p. 258–71.

15. Dini G, Martinelli F, Saracino A, Sgandurra D. Madam: a multi-level anomaly detector for
android malware. In: Kotenko I, Skormin V, editors. Computer network security. Lecture notes
in computer science, vol. 7531. Berlin Heidelberg: Springer; 2012. p. 240–53. http://dx.doi.
org/10.1007/978-3-642-33704-8_21.

16. Felt AP, Finifter M, Chin E, Hanna S, Wagner D. A survey of mobile malware in the wild.
In: 1st ACM workshop on security and privacy in smartphones and mobile devices (SPSM).
ACM; 2011. p. 3–14.

17. Felt AP, Greenwood K, Wagner D. The effectiveness of application permissions. In: 2nd
USENIXconference onwebapplication development (WebApps).USENIXAssociation; 2011.
p. 7.

18. HamHS,Choi,MJ.Analysis of androidmalware detection performance usingmachine learning
classifiers. In: 2013 international conference on ICT Convergence (ICTC). p. 490–5.

19. Kim CH, Quisquater J. Faults, injection methods, and fault attacks. IEEE Des Test Comput.
2007;24(6):544–5. http://doi.ieeecomputersociety.org/10.1109/MDT.2007.186.

20. Kim H, Smith J, Shin KG. Detecting energy-greedy anomalies and mobile malware variants.
In: Proceedings of the 6th international conference on mobile systems, applications, and ser-
vices. MobiSys ’08. NewYork, NY, USA: ACM; 2008. p. 239–52. http://doi.acm.org/10.1145/
1378600.1378627.

21. Kocher PC. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems. In: Koblitz N, editor. CRYPTO ’96, Proceedings of the 16th annual international cryp-
tology conference on advances in cryptology, Santa Barbara, California, USA, August 18–22,
1996. Lecture notes in computer science, vol. 1109, Springer; 1996. p. 104–13. http://dx.doi.
org/10.1007/3-540-68697-5_9.

22. Kocher PC, Jaffe J, Jun B. Differential power analysis. In: Wiener MJ, editor. CRYPTO ’99,
proceedings of the 19th annual international cryptology conference on advances in cryptology,
Santa Barbara, California, USA, August 15–19, 1999. Lecture notes in computer science, vol.
1666. Springer; 1999. p. 388–97. http://dx.doi.org/10.1007/3-540-48405-1_25.

23. Liu L, Yan G, Zhang X, Chen S. Virusmeter: preventing your cellphone from spies. In: 12th
international symposium on Recent Advances in Intrusion Detection (RAID). Springer; 2009.
p. 244–64.

24. Milosevic J, Dittrich A, Ferrante A, Malek M. A resource-optimized approach to efficient
early detection of mobile malware. In: 2014 ninth international conference on Availability,
Reliability and Security (ARES). IEEE; 2014. p. 333–40.

25. Milosevic J, Ferrante A, Malek M. What does the memory say? Towards the most indicative
features for efficient malware detection. In: CCNC 2016, The 13th annual IEEE consumer

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://doi.acm.org/10.1145/2046614.2046619
http://doi.acm.org/10.1145/2046614.2046619
http://doi.acm.org/10.1145/2804345.2804349
http://doi.acm.org/10.1145/2804345.2804349
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://doi.ieeecomputersociety.org/10.1109/MDT.2007.186
http://doi.acm.org/10.1145/1378600.1378627
http://doi.acm.org/10.1145/1378600.1378627
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25

8 Malware Threats and Solutions for Trustworthy Mobile Systems Design 167

communications and networking conference. Las Vegas, NV, USA: IEEE Communication
Society; 2016.

26. Moser A, Kruegel C, Kirda E. Limits of static analysis for malware detection. In: Twenty-Third
annual computer security applications conference, 2007. ACSAC; 2007. p. 421–30.

27. Oberheide J, Veeraraghavan K, Cooke E, Flinn J, Jahanian F. Virtualized in-cloud security
services for mobile devices. In: 1st workshop on virtualization in mobile computing. MobiVirt
’08, ACM; 2008. p. 31–5.

28. Portokalidis G, Homburg P, Anagnostakis K, Bos H. Paranoid android: versatile protection for
smartphones. In: 26th Annual Computer Security Applications Conference (ACSAC). ACM;
2010. p. 347–56.

29. Quisquater J, Samyde D. Electromagnetic analysis (EMA): measures and counter-measures
for smart cards. In: Attali I, Jensen TP, editors. Proceedings of the smart card programming and
security, international conference on research in smart cards, E-smart 2001, Cannes, France,
September 19–21, 2001. Lecture notes in computer science, vol. 2140. Springer; 2001. p.
200–10. http://dx.doi.org/10.1007/3-540-45418-7_17.

30. Schmidt AD, Bye R, Schmidt HG, Clausen J, Kiraz O, Yuksel K, Camtepe S, Albayrak S. Static
analysis of executables for collaborative malware detection on android. In: IEEE international
conference on communications, 2009. ICC ’09; 2009. p. 1–5.

31. Schmidt AD, Peters F, Lamour F, Albayrak S. Monitoring smartphones for anomaly detection.
In: 1st international conference on MOBILe wireless MiddleWARE, operating systems, and
applications. MOBILWARE ’08, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering); 2007. p. 40:1–40:6.

32. Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y. “Andromaly”: a behavioral malware
detection framework for android devices. J Intell Inf Syst. 2012;38(1):161–90. http://dx.doi.
org/10.1007/s10844-010-0148-x.

33. Spreitzenbarth M, Freiling F, Echtler F, Schreck T, Hoffmann J. Mobile-sandbox: having a
deeper look into android applications. In: Proceedings of the 28th annual ACM symposium on
applied computing. SAC ’13. New York, NY, USA: ACM; 2013. p. 1808–15. http://doi.acm.
org/10.1145/2480362.2480701.

34. Truong HTT, Lagerspetz E, Nurmi P, Oliner AJ, Tarkoma S, Asokan N, Bhattacharya S. The
company you keep: mobile malware infection rates and inexpensive risk indicators. CoRR
abs/1312.3245; 2013.

35. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP. Droidmat: android malware detection through
manifest and API calls tracing. In: 2012 seventh Asia joint conference on information security
(Asia JCIS). p. 62–9.

36. Xie L, Zhang X, Seifert JP, Zhu S. PBMDS: A behavior-based malware detection system for
cellphone devices. In: Proceedings of the third ACM conference on wireless network security.
WiSec ’10. New York, NY, USA: ACM; 2010. p. 37–48. http://doi.acm.org/10.1145/1741866.
1741874.

37. Zhou Y, Jiang X. Dissecting android malware: characterization and Evolution. In: Proceedings
of the 2012 IEEE symposium on security and privacy. SP ’12. Washington, DC, USA: IEEE
Computer Society; 2012. p. 95–109.

http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/1741866.1741874
http://doi.acm.org/10.1145/1741866.1741874

Chapter 9
Ring Oscillators and Hardware Trojan
Detection

Paris Kitsos, Nicolas Sklavos and Artemios G. Voyiatzis

9.1 Introduction

The integrated circuit (IC) supply chain was considered as well protected for a long
time now being constrained in one geographical location or even in one company.
The trustworthiness of integrated circuits manufactured in remote silicon foundries
with components sourced from parties spread around the world raises lately a lot of
concern [1, 20, 27].

A hardware Trojan horse1 is a modification of the original IC design by a malev-
olent actor aiming to exploit hardware characteristics or hardware mechanisms in
order to access and manipulate information stored or processed on the chip. Trojans
are not anymore a hypothesized threat but rather a realistic one.

In this chapter, we review the characteristics of hardware Trojans, taxonomies to
classify their behavior and risks, and detectionmethods (Sect. 9.2). Then,we describe
two novel Trojan works based on ring oscillator constructs. The first one focuses on
true random number generators (TRNGs), commonly used in cryptographic hard-
ware, and how a Trojan can interfere with their hardware implementation when ring
oscillators are used as source of entropy. The second one explores a novel use of

1Herein, we will use the terms “Trojan” and “hardware Trojan” as synonyms for this term.

P. Kitsos (B)
Computer and Informatics Engineering Department, TEI of Western Greece,
Antirio, Greece
e-mail: pkitsos@ieee.org; pkitsos@eap.gr

N. Sklavos
Computer Engineering and Informatics Department, University of Patras,
Patras, Greece
e-mail: nsklavos@ceid.upatras.gr

A.G. Voyiatzis
SBA Research, Vienna, Austria
e-mail: avoyiatzis@sba-research.org

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_9

169

170 P. Kitsos et al.

transient-effect ring oscillators (TEROs), as an on-chip mechanism to detect the
contamination of a cryptographic algorithm with a Trojan (Sect. 9.3). Finally, we
conclude by discussing an outlook for the future of hardware Trojans and detection
techniques (Sect. 9.5).

9.2 Trojans and Trojan Detection Techniques

In this section, we describe the characteristics of hardware Trojan horses, taxonomies
that have been proposed to classify themand design defenses.We also review selected
defense methodologies that are proposed in the literature.

9.2.1 Trojan Characteristics

A first step toward estimating the risk of a hardware Trojan horse insertion and
designing efficient and appropriate defenses is to consult a classification of Trojans.
The engineering challenge is rather big, as malevolent actors can use a multitude of
methods to modify the functionality of their target for their own benefit.

One classification is based on the characteristics of the Trojans [21]. As depicted
in Fig. 9.1, the characteristics of Trojans are the type, the payload, the trigger, the
size, and its communication protocol.

• The type of the Trojan is the kind of the attack to the pointed circuit. Based on
that, the Trojan can be functional or parametric.

• The payload is the effect that the Trojan will have to the system, the gain that the
attacker with have from that attack. For most of the Trojans, the primary point is
to steal the secret information that the system is designed to securely send to the
outside world.

• The size of the Trojan is another important factor. The area that can cover could
be from a small wire to a large gate. Of course, it is more usual and efficient to
the attackers to use small sized Trojans, while it will benefit them to make the
exposure of the Trojan more difficult.

• The communication protocol is the way the Trojan will communicate and affect
the circuit. It could be stored to a peripheral device or directly inside the chip.

• Last but not least is the trigger point of the Trojan. Trigger refers to the way
the Trojan will be activated. Some of the most common activation ways include
changes to the temperature or the voltages of the system. Another way is related to
changes on the logic of the circuit. For example the data on an input, an unexpected
interrupt or changes at the clock of the system. Of course there are systems that
they do not have a trigger point, which means that the Trojan can be triggered at
any time.

9 Ring Oscillators and Hardware Trojan Detection 171

Fig. 9.1 Characteristics of hardware Trojans

9.2.2 Trojan Taxonomies

Many taxonomies for hardware Trojans are proposed in the literature, each shedding
light from a different angle on the issue of coping with the effects of contaminated
chips and malicious functionality [13, 18, 35]. Trust-HUB is an online resource for
hardware security research and provides a rich taxonomy of Trojans too.2

An important part of the taxonomies is that they encompass information about the
application scenario for a Trojan. Such information, beyond theTrojan characteristics
themselves, are useful toward understanding themotivation of amalevolent actor, the
possible stages of the supply chain where one might try to contaminate the hardware
design, and the associated risks. These parameters are crucial into evaluating and
quantifying the cost and the benefit (resp. damage) of an attack and thus, justify the
resource investment toward designing and implementing appropriate technical and
organizational countermeasures.

There is a general agreement in the available literature that the most concerning
motivations for an attack based on hardware Trojans are the information leakage from
the circuit and the denial-of-service against a device. In that sense, cryptographic

2https://www.trust-hub.org/resources/benchmarks.

https://www.trust-hub.org/resources/benchmarks

172 P. Kitsos et al.

primitives realized in hardware are an attractive target of a Trojan due the critical
information they process and the enormous state space that must be searched for
detecting it. A rather complete list of attack motivations is provided in [15].

9.2.3 Detection Techniques

There is a large number of works and a large variety of proposed methods and
techniques focusing on detecting the presence of a hardware Trojan. Here, we sum-
marize a selected few and the readers interested for a recent survey on the topic can
consult [18] or [13].

A novel sustained vector methodology is presented in [2]. The design allows to
expose the presence of a Trojan based on the power consumption deviation between
the unmodified (golden) and the modified circuit. A careful selection of appropriate
input vectors allows to magnify this deviation beyond the process variation level.
The proposed technique further allows to identify the regions of the circuit that are
more susceptible to contain the malicious circuitry. This methodology requires zero-
overhead silicon. However, it requires access to the design of the circuit for the analy-
sis phase and availability of trusted (golden) circuits to compare against (Fig. 9.2).

Measuring global, chip-wide quantities, such as the overall power supply current
(IDDQ) or the total execution time, can be a quite inefficient side-channel analy-
sis approach. This is due to the low signal-to-noise ratios. More fine-grained mea-
surements can provide better evidence, assuming that you can control the points
of measurement on a chip. A region-based transient power signal analysis method
leveraging statistical processing can reduce the impact of process variations and
leakage currents and assist detection efforts [24]. A similar approach replaces tran-
sient power signal analysis with path delay information using shadow registers and a
skewed shadow clock, once more leveraging statistical processing to reduce process

Fig. 9.2 A hardware Trojan horse taxonomy (Source [35])

9 Ring Oscillators and Hardware Trojan Detection 173

variation [25]. However, it should be noted that the malicious actors can spread their
Trojan in multiple regions and can avoid areas that are covered by the transient power
analysis.

The use of dummy scan flip-flops is presented in [29]. This methodology adds
extra (dummy) scan flip-flops in the circuit with the aim to increase the switching
activity. The motivation is that with increased switching activity, the time to acti-
vate a Trojan that uses a rare signal transition will drop sufficiently enough. Thus, it
becomes feasible to activate the hidden Trojan within the testing time envelope. The
proposed methodology incurs a negligible area overhead for its implementation and
supports a configurable threshold on the number (or percentage) of aimed transitions.
We note that more advanced Trojans can use as an activation signal a rare combina-
tion of equiprobable transitions on the expense of more complex circuitry and thus,
overcome the protection offered by this methodology [31]. Also, more advanced
Trojans can use the scan signals themselves so as to hide its presence while on test
mode [26]. This concept shares a lot of common ground with malicious software
(malware) techniques used to detect that the software is executing inside an analysis
environment and then adjusts its behavior accordingly [22, 34].

The voltage inversion technique to Ascertain Malicious Insertions in ICs (VITA-
MIN) is another approach to detect a malicious design embedded into an integrated
circuit [3]. It utilizes the work in [2] and proposes an inverted voltage scheme, aiming
to increase the frequency of gate transitions and thus, the activations of the Trojan.
As it was noted earlier, this extended method also requires access to trusted circuits
to compare against.

The secure heartbeat and dual-encryption (SHADE) architecture uses a different
starting point [4]. SHADE assumes that the fabricated chips are already infected
with a Trojan and builds a combined compiler-and-hardware system so as to provide
a secure execution environment. This is achieved by preventing and by detecting a
series of Trojans (mainly information leakage and DoS ones) in the expense of addi-
tional hardware modules for encrypting and decrypting on-the-fly memory contents
and compiler instrumentation.

Hardware devices based on the USB interface can also be an attractive point for
Trojan insertion, as they can infiltrate information from a computer on other network
endpoint devices while leaving no traces in the network traffic. A proof-of-concept
implementation of a fake USB device is described in [8, 9]. The associated risks and
potential defenses are then discussed in [10]. The ability of self-reporting capabilities
for USB devices is an inherent feature of the USB specification and thus, it is unclear
how appropriate defenses can be devised without altering the specification.

The first in-silicon defense is reported in [14]. There, the attack model assumes
that a hardware Trojan leaks information from an IC performing cryptographic oper-
ations. The information are leaked through a side-channel, namely the carrier mod-
ulation at the wireless interface of the IC. The proposed countermeasure monitors
the transmission power and other parameters of the transmission signal; statistical
processing of the collected information can reveal deviations that result in the expo-
sure of the Trojan’s presence.

174 P. Kitsos et al.

The aforementioned Trojan attack scenarios and countermeasures indicate the
need to design defenses that match the operating environment of a device and its
envisioned function. In the next two sections, we focus on the use of ring oscillators as
both a Trojan attack and defense vectors against secure hardware functions, namely,
random number generation and stream encryption/decryption.

9.3 Trojan Detection in True Random Number Generators

The randomnumber generators, either pseudo (PRNG) or true (TRNG), are an impor-
tant component of modern security and cryptographic operations. This source of
randomness is often used as a starting point for generating ephemeral or long-term
cryptographic keys, for ensuring freshness of computed cryptographic tokens, and
for protecting against replay attacks. As such, a TRNG can be an attractive target for
hardware Trojan infection.

9.3.1 TRNG Design

TRNGs commonly use some kind of physical phenomenon as a source of entropy.
Typically, these phenomena are analog. Therefore, an extraction mechanism is
needed in order to convert the analog values into digital ones. Once the entropy
source has been digitized, the statistical properties of the digitized signal will be
evaluated with the purpose of establishing the TRNG quality. After this first eval-
uation, it is often conclude that a post-processing block is required to correct the
output distribution. Finally, due to the importance of the TRNGs in security systems,
it is recommendable to check the quality of the random output during its generation.
Often, embedded (online) tests are employed to set an alarm when the generated out-
put does not comply with some statistical requirements. Some well-known battery
of tests used to assess the quality of a TRNG’s output include DIEHARD,3 ENT,4

AIS31 [30], and NIST [28]. The typical blocks of an embedded TRNGs are depicted
in Fig. 9.3.

9.3.2 Trojan Characteristics

The idea of embedding statistical tests as the last block of a TRNG design is rather
interesting from a security point of view. This block acts as a guard that can detect
deviations and manipulations of the input in the previous steps and raise an alert.

3http://stat.fsu.edu/pub/diehard.
4http://www.fourmilab.ch/random/.

http://stat.fsu.edu/pub/diehard
http://www.fourmilab.ch/random/

9 Ring Oscillators and Hardware Trojan Detection 175

Fig. 9.3 General scheme of an embedded TRNG

Amalevolent actor wishing tomanipulate the operation of the TRNGmust overcome
this alert generation in order to launch a successful attack. There are four points of
concern, which are analyzed in the following paragraphs.

9.3.2.1 Payload

We begin our analysis with the Trojan payload. This part performs the malicious
action envisioned by the malevolent actor. As discussed in Sect. 9.2.2, the main lines
of attacks are: denial-of-service (DoS), functionality changes, information leakage,
and performance degradation. ADoS Trojan or a Trojan that introduces functionality
changes should be easy to detect, once it is activated. This can be achieved by means
of functional testing or even by the online tests that monitor TRNG’s output quality.

The information leakage relates to the exfiltration of some secret information
through a communication channel (side or not). In the case of a TRNG, this can
relate to the transmission of a random number used afterwards as a cryptographic
key or a nonce for a security protocol. We consider such kind of payloads beyond
our scope. The TRNG cannot distinguish per se the envisioned use of its output; in
order for an attacker to leak information by attacking the TRNG output, they would
have to integrate such a large amount of semantic information so that it should be
rather easy to detect the manipulation of the circuitry.

The performance degradation can be considered in two components. The first
relates to the physical degradation caused by ageing effects. This can be achieved for
example by supplying more current to the device or operating the device in higher
temperature environments. Such kinds of physical rather than logical payloads are
beyond our scope. The second component relates to the degradation of the TRNG
output, lowering its statistical quality.

In the following, we will focus on Trojans, which aim to lower the statistical
quality of the TRNG in a subtle way so that they remain undetectable by the online
tests. We will use the notation of T4RNG instead of “Trojan-targeting-the-TRNG”
for the sake of readability.

176 P. Kitsos et al.

9.3.2.2 Activation

We safely assume that a T4RNG will not be always on. Rather, it will adjust its
operation so as to attack the output of the TRNG at a specific point of time, where
some critical information is to be generated (e.g., a new cryptographic key). Should
the Trojan is always on, it would be easier to detect it during functional testing and
through the embedded tests. Thus, T4RNGwill be classified as trigger-basedTrojans.

We consider both internally and externally triggered mechanisms in our study. In
principle, a TRNG integrates some analog circuitry that interfaces with the environ-
ment and uses some physical quantities as entropy sources. Thus, it is possible to
include external triggers so as to activate the Trojan, without injecting new compo-
nents in the design that could be easily detected even by visual inspection (e.g., an
extra antenna).

9.3.2.3 Physical Characteristics

The physical characteristics of aTrojan is an important consideration froman attacker
point of view. The major concerns relate to the size and the power consumption of
a Trojan. We discussed in the previous paragraph the issues of external triggers that
require additional components. In more general terms, the overall size of the Trojan
compared to the size of the original, unmodified IC is very crucial to avoid detection.
There are TRNG designs with a really low number of logic gates (e.g., using only
nine inverters and size registers) [5]. There, it is almost impossible to pass undetected.
There are also many TRNG designs with many more logic gates [7]. In principle,
one should not only consider the TRNG circuitry, but also the whole design of the
TRNG, as depicted in Fig. 9.3.

Also, the power consumption of the malicious circuitry must be negligible com-
pared to the overall power consumption. In the case of the TRNGs, this is not a great
concern, as the TRNGs consume a lot of power for their operation. For instance,
TRNGs often use jittery clocks as an entropy source. These clocks mainly comprise
ring oscillators (ROs), self-timed rings (STRs), or phase-locked loops (PLLs). Such
constructs are power hungry. Thus, the power consumption of an additional T4RNG
would be rather small and indistinguishable in the process variation envelope of
power traces.

9.3.2.4 Area of Injection

AT4RNGwill be successful if it succeeds in lowering the quality of the TRNGoutput
while at the same time it succeeds to pass the embedded statistical tests. Revisiting
Fig. 9.3, we identify three points in space (zone 1, 2, and 3 respectively) for injecting
the malicious functionality.

The effect of aTrojan thatmanipulates the entropy source (zone 1)will be probably
canceled out or even detected by the embedded, online tests. For example, a simple

9 Ring Oscillators and Hardware Trojan Detection 177

and precise method to correlate the size of the jitter and the entropy of the generated
but stream is presented in [12].

A T4RNG targeting the post-processing step (zone 2) will have an even harder
task, as it needs to overcome two embedded tests, before and after the post-processing
occurs. Also, it is possible that the post-processing algorithms nullify the Trojan’s
effect before the latter reaches the output.

There are two points that the T4RNG can target in the last block (zone 3). The
first is to let the Trojan shut down (conditionally or not) the alarm signal. This should
be easily detectable with conventional testing, as it resembles a “stuck-at” fault. The
second option is to overcome the one last embedded test. As there is only one test to
bypass, it might be possible to succeed. We explore the feasibility of this approach
in the next section.

9.3.3 Feasibility of a T4RNG

We present a T4RNG design that fulfills the aforementioned characteristics. Our
example consists of one XOR gate, one AND gate, and two ROs shifted in phase
by 180◦, as depicted in Fig. 9.4. The example draws from the frequency-injection
attack against RO-based TRNGs of [23]. There, the authors can control the phase of
several ROs placed in the same device by injecting a sine wave in the power supply.
Here, we exploit the same mechanism as a trigger for our Trojan. While the Trojan
is not triggered, the complementary outputs of the two ROs are XOR’ed together to
produce a logical one. In this case, the TRNG output is not altered. When the Trojan
is triggered, the two ROs are in phase and their XOR’ed output produces a logical
zero. In this case, the TRNG output is discarded.

It is very important to affect only a few bits so as to pass the statistical tests.
We evaluated this through simulations in the MathWorks Simulink environment.
The ring oscillators were simulated using pulse-generator blocks. As a TRNG,
we used a random-source block that passes already the statistical tests. Figure9.5
depicts the unaltered bitstream generated by the random-source block. Figure9.6
depicts the bitstreamgeneratedwhilemultiple Trojan activations occurred. The effect
of the Trojan is evident in the minor diagonal. However, this bias goes undetected
by the statistical testing: the manipulated output still passes the online tests.

We realized an RO-based TRNGon aXilinx Spartan-3E FPGA board. The TRNG
incorporates 511 stages, as proposed in [7]. Our aim was to showcase the light-
weightness of the exampleT4RNG. Figure9.7 depicts theTrojan-free design, Fig. 9.8

Fig. 9.4 Proposed Trojan

178 P. Kitsos et al.

Fig. 9.5 Trojan-free TRNG
output

Fig. 9.6 Trojan-infected
TRNG output

Fig. 9.7 Trojan-free TRNG

9 Ring Oscillators and Hardware Trojan Detection 179

Fig. 9.8 Trojan-infected
TRNG

Fig. 9.9 Trojan part
highlighted

depicts the design with the Trojan integrated, and Fig. 9.9 highlights the malicious
part. It is evident that the malicious circuit consumes indeed a tiny space compared
to the overall TRNG implementation.

In the best of our knowledge, this is the first report in the literature5 that describes
a hardware Trojan horse against a hardware implementation of a true random number
generator. The Trojan design exploits the ring oscillators used as a source of ran-
domness and succeeds in bypassing the embedded statistical testing albeit inserting a
clearly identifiable bias in the output of the TRNG. It is evident that additional blocks
for protection and detection must be incorporated in the TRNG hardware designs
if used in critical environments such as for generating cryptographic key material.
Toward this direction, we explore in the next sections the applicability of the ring
oscillators which construct as a defense mechanism, for detecting the presence of
hardware Trojans in a cryptographic-oriented hardware designs.

5An early version of this work was presented and discussed in TRUDEVICE 2015, a workshop
collocated with DATE 2015, in Grenoble, France on March 2015.

180 P. Kitsos et al.

9.4 Transient-Effect Ring Oscillators for Hardware
Trojan Detection

The transient-effect ring oscillator (TERO) is a circuit that oscillates due to its inher-
ent logic. The oscillation frequency depends on the exact components and the size
of a circuit similarly to the case of a ring oscillator (RO). TERO was initially pro-
posed for implementing a true random number generator (TRNG) [33]. Recently, it
was proposed for implementing also a physically uncloneable function (PUF) [6].
In this section, we propose a novel use of TERO for hardware Trojan detection and
we explore its applicability and efficiency as a extra tool for hardware Trojan horse
detection. In the best of our knowledge, this is the first report in the literature6 to
explore the use of TERO for hardware Trojan detection.

A transient-effect ring oscillator (TERO) comprises an SR flip-flop implemented
with two XOR gates and two AND gates [33]. This architecture has two control
signals, for start and reset. The correct place-and-routing for a TERO is important
so as to ensure the same length of the interconnections between the XOR gates.

Here, we use a simpler TERO architecture, where the XOR and AND gates are
merged into NAND gates with some inverters in the feedback loop, as depicted in
Fig. 9.10. The advantage of this approach is that only one control signal is used either
for resetting or oscillating the TEROcircuit. The reset occurswhen the control signal,
ctrl, is set to “0” and drives the loop to the same initial conditions before generating
its output. When the control signal changes from “0” to “1”, the TERO circuit starts
to oscillate. An asynchronous counter (counter) is used in order to measure the
TERO frequency.

9.4.1 Experimental Setup

In order to investigate the effectiveness of the TERO, we realized three hardware
Trojan horses. The three Trojans target the SNOW3G stream cipher [32]. We briefly
describe the SNOW3G algorithm and the Trojan designs used in our experiments.

Fig. 9.10 TERO circuit

6An early version of this work was presented and discussed in TRUDEVICE 2015, a workshop
collocated with DATE 2015, in Grenoble, France on March 2015.

9 Ring Oscillators and Hardware Trojan Detection 181

9.4.1.1 The SNOW3G Stream Cipher

SNOW3G is a word-oriented stream cipher that generates a sequence of 32-bit words
under the control of a 128-bit key and a 128-bit initialization variable. At first, a
key initialization process is performed and the cipher is clocked without producing
output. Then, the cipher operates in the key-generation mode and it produces a 32-
bit ciphertext/plaintext word output in every clock cycle. The architecture of the
SNOW3G cipher is depicted in Fig. 9.11.

9.4.1.2 Trojan Designs

The first one (T1), a combinational circuit, is formed as a tree of AND gates and the
output of the tree is fed into a XOR gate that drives the system reset signal. T1 reads
bits 24–31 of the output. If the bits are equal to 0xFF, then T1 deactivates the reset
signal.

T2 is a time bomb. It consists of a simple counter and an AND tree that reads bits
13–16 of the cipher’s output. The tree output drives the enable signal of the Trojan
counter. If the AND tree counts 100 sequences of “111” at the cipher’s output, then
T2 deactivates the SNOW3G reset signal.

T3 consists of two AND trees and two asynchronous counters. The first AND tree
monitors input values at bits 13–16 of the cipher output and it is used so as to activate
the first counter (counter1). If a sequence of “1111” occurs, then counter1 is
activated. Every second activation of counter1, T3 outputs and activation signal
(tmp_load) that is used so as to trigger the second counter (counter2). The
tmp_load signal is combined with three internal bits and, through the second
AND tree, it is used to activate the second counter. After 62 pulses, counter2
deactivates the cipher’s reset signal.

Fig. 9.11 SNOW3G hardware architecture

182 P. Kitsos et al.

9.4.2 Experiments

A Xilinx Spartan 6 (XC6SLX75-2CSG484C) FPGA, the base of the SAKURA G
board, was used in our experiments. The setup consists of the design of SNOW3G
cipher enhanced with TERO and the circuits of the hardware Trojan horses. We
used the implementation file extracted by the PleanAhead tool and especially the
VHDL code of the Post-Place andRoute simulationmodel. Themodel was simulated
in order to derive the TERO oscillation frequency.

In our experiments, we used TEROs of different lengths so as to explore the
optimal length for detecting the Trojan. The motivation for this comes from [17].
There, it is shown that the detection sensitivity is affected by the length of the RO
used. The hardware Trojan horses occupied a small percentage of the available area
and the TERO was placed in the circuit in a controllable fashion. In order to insert
the hardware Trojan horses in a design implemented on FPGA, we use the hardware
description language (HDL). While this method can be used to create many types of
hardware Trojan horses, it is impossible to guarantee the exact place for the hardware
Trojan horse insertion. If two systems are synthesized on the same FPGA board and
they differ only to one hardware resource, the synthesis procedure will probably
devise a completely different placing and routing.

In order to achieve efficient, fair, and most importantly, accurate measurements,
one must build designs with the same place and route for a Trojan-free and for a
Trojan-infected SNOW3G. This can be accomplished using BEL and LOC place-
ment constraints. For the case of TERO,we have used parameterized area constraints.
There are four designs: (a) a Trojan-free, containing SNOW3G and TERO, (b) the
Trojan-free plus T1, (c) the Trojan-free plus T2, and (d) the Trojan-free plus T3.
Snapshots of the four layouts are depicted in Figs. 9.12, 9.13, 9.14 and 9.15. In
all cases, the TERO layout is shown as a white trace. It can be seen that the same
layout for the circuits SNOW3G and TERO were created. This means that the hard-
ware resources of the identical circuits are placed and routed on the same locations
on the FPGA.

We decided to diffuse the Trojans around the cipher circuit and implement TERO
in between the SNOW3G cipher and Trojans so as to better “sense” the process
variations. This means that the greater distance between the counts means better

Fig. 9.12 Trojan-free
SNOW3G and TERO

9 Ring Oscillators and Hardware Trojan Detection 183

Fig. 9.13 SNOW3G, TERO,
and T1

Fig. 9.14 SNOW3G, TERO,
and T2

Fig. 9.15 SNOW3G, TERO,
and T3

reliability and detection sensitivity of designs with hardware Trojan horses. The best
metric for this is the absolute difference of oscillation counts between the Trojan-free
and the infected circuits.

9.4.3 Results and Discussion

Table9.1 summarizes the performance of TERO. It is clear that TERO is more sen-
sitive when small lengths are used. Its sensitivity decreases as the lengths increase.
In the case of T1, it cannot reliably detect the Trojan presence.

The results presented here are in accordance with the ones in [19]. In both cases,
smaller lengths of TERO designs result in increased oscillation frequency and thus,
detection sensitivity. Also, they confirm the result predicted by the theoretical work
of [33]: the TERO designs oscillate at least the double frequency of equivalent
RO designs. Thus, TERO designs with appropriate length are better than RO into

184 P. Kitsos et al.

Table 9.1 Absolute differences for TERO counts

TERO length TF1a TF2a TF3a

TERO 4 99 99 165

TERO 8 29 99 66

TERO 12 9 67 51

TERO 16 2 40 41

TERO 20 0 66 66

TERO 24 4 48 48
aTFx: Difference between Trojan-free and Tx, respectively

detecting hardware Trojans. However, it will be beneficial to further explore in the
future the applicability of this result using more complex Trojans and testing against
other cryptographic algorithms and security constructs.

9.5 Conclusions and Outlook to the Future

Malicious hardware is not anymore a hypothesized but rather a realistic threat. It is
possible to inject a hardware Trojan horse in one of the many stages of the hardware
design and fabrication flow. Malevolent actors become more and more sophisticated
and improve their capabilities. Applying a process of secure development and rig-
orous testing at each production stage, such as the one proposed in [11], can reveal
circuit manipulations early enough so as avoid disastrous effects after fabrication.
Yet, the possibility of receiving a chip with hidden Trojan functionality cannot be
excluded.

Detecting the presence or the operation of a hardware Trojan horse requires an
arsenal of tools, methods, and techniques. Each of them may be able to conclude
that a given parameter or characteristic of an IC under test is within the acceptable
limits of operation. Yet, even then, it is not sufficient so as to ensure the absence of a
hardware Trojan inside the tested IC that operates under the radar or that is activated
under a specific pattern. This discloses nothing more for the rest of the chips that
are on the same production batch but was not feasible to test due to budget and time
constraints.

From an attacker point of view, the two major obstacles to overcome for inserting
a Trojan relate to the moment of the insertion during the design and fabrication
workflow and to the controllability of the Trojan activation while remaining hidden
during the various tests of the circuits.

The required infrastructure for testing and the increasing sophistication of the
techniques indicate that it may not be possible to collect all resources under the same
roof. Rather, a collaborative approach, such as the one pursued in the context of
the TRUDEVICE network (http://www.trudevice.com/) may be preferable, where
research teams and institutions with different skills and equipment combine forces

http://www.trudevice.com/

9 Ring Oscillators and Hardware Trojan Detection 185

as to achieve economies of scale, reproducibility of the experiments, and detection
techniques using different equipment.

In this context, we presented two novel hardware Trojan works that target cryp-
tographic constructs implemented in hardware. The focus of our contribution is on
the use of ring oscillators as an attack and as a defense vector. The first relates to
the manipulation of the ring oscillator output when used as a source of entropy for
implementing in hardware a true random number generator (TRNG).We showed that
it is possible to bypass embedded online testing of conformance and produce out-
put patterns with detectable patterns. Such patterns can be a stepping stone toward
launching more complex attacks on cryptographic algorithms. Even the slightest
knowledge of key bits produced by a TRNG can be beneficial for an attacker.

The second relates to the use of ring oscillators for detecting the presence of a
hardware Trojan. We showed that transient-effect ring oscillators (TERO) can have
further uses than those proposed already in the literature as constructs of TRNGs or
PUFs: TERO can also be used to detect the presence of a hardware Trojan. Further-
more, we showed that the length of a TERO affects its oscillation frequency and that
shorter TEROs exhibit higher frequencies thus, they are more sensitive compared to
conventional ROs to the presence of Trojans.

Drawing the experience of the software world, malware is still an unsolved prob-
lem after 40years of existence. It would be unrealistic to expect a solution for the
hardware malware immediately. However, we should aim for appropriate proactive
and reactive defenses, as well as testing methodologies and practices, such as the
one proposed in [16]. These can reduce the risk of hardware Trojan injection in first
place and increase our trust on these devices that they operate as specified, without
hidden functionality that can harm any part of our society.

Acknowledgements Thisworkwas supported in part by the EUCOSTAction IC1204Trustworthy
Manufacturing andUtilization of Secure Devices (TRUDEVICE), the GSRTAction “KRIPIS”with
national (Greece) and EU funds, in the context of the research project “ISRTDI” while P. Kitsos and
A.G. Voyiatzis were with the Industrial Systems Institute of the “Athena” Research and Innovation
Center in ICT andKnowledge Technologies, and the COMETK1 program by theAustrian Research
Promotion Agency (FFG), while A.G. Voyiatzis was with SBA Research.

References

1. Adee S. The hunt for the kill switch. IEEE Spectrum. 2008;45(5):34–9.
2. BangaM, HsiaoMS. A novel sustained vector technique for the detection of hardware Trojans.

In: 2009 22nd international conference on VLSI design. IEEE; 2009. p. 327–32.
3. Banga M, Hsiao MS. VITAMIN: voltage inversion technique to ascertain malicious insertions

in ICs. In: HOST’09, IEEE international workshop on hardware-oriented security and trust,
2009. IEEE; 2009. p. 104–7.

4. Bloom G, Narahari B, Simha R, Zambreno J. Providing secure execution environments with a
last line of defense against Trojan circuit attacks. Comput Secur. 2009;28(7):660–9.

5. Böhl E, Ihle M. A fault attack robust TRNG. In: 2012 IEEE 18th international on-line testing
symposium (IOLTS). IEEE; 2012. p. 114–7.

186 P. Kitsos et al.

6. Bossuet L, Ngo XT, Cherif Z, Fischer V. A PUF based on a transient effect ring oscillator and
insensitive to locking phenomenon. IEEE Trans Emer Top Comput. 2014;2(1):30–6.

7. Cherkaoui A, Fischer V, Fesquet L, Aubert A: A very high speed true random number generator
with entropy assessment. In: Cryptographic hardware and embedded systems-CHES 2013.
Springer; 2013. p. 179–96.

8. Clark J, Leblanc S,Knight S.HardwareTrojan horse device based on unintendedUSBchannels.
In: NSS’09, third international conference on network and system security, 2009. IEEE; 2009.
p. 1–8.

9. Clark J, Leblanc S, Knight S. Compromise through USB-based hardware Trojan horse device.
Future Gener Comput Syst. 2011;27(5):555–63.

10. Clark J, Leblanc S, Knight S. Risks associated with USB hardware Trojan devices used by
insiders. In: 2011 IEEE international systems conference (SysCon). IEEE; 2011. p. 201–8.

11. DabrowskiA,HobelH,Ullrich J,KrombholzK,WeipplE:Towards a hardwareTrojandetection
cycle. In: 2014 ninth international conference on availability, reliability and security (ARES);
2014. p. 287–94.

12. Fischer V, Lubicz D. Embedded evaluation of randomness in oscillator based elementary
TRNG. In: Cryptographic hardware and embedded systems-CHES 2014. Springer; 2014. p.
527–43.

13. Jin Y. Introduction to hardware security. Electronics. 2015;4(4):763–84.
14. Jin Y, Makris Y. Hardware Trojans in wireless cryptographic ICs. IEEE Des Test Comput.

2010;27(1):26–35.
15. King ST, Tucek J, Cozzie A, Grier C, JiangW, Zhou Y. Designing and implementing malicious

hardware. LEET. 2008;8:1–8.
16. Kitsos P, Simos D, Torres-Jimenez J, Voyiatzis A. Exciting FPGA cryptographic Trojans using

combinatorial testing. In: 26th IEEE international symposium on software reliability engi-
neering (ISSRE 2015), IEEE CPS (2015). Gaithersburg, MD, USA, November 2–5, 2015. p.
69–76.

17. Kitsos P, Voyiatzis A. FPGA Trojan detection using length-optimized ring oscillators. In: 17th
EUROMICRO conference on digital system design (DSD 2014). Verona, Italy: IEEE CPS;
2014.

18. Kitsos P, Voyiatzis A. Towards a hardware Trojan detection methodology. In: 2nd EUROMI-
CRO/IEEE workshop on embedded and cyber-physical systems (ECYPS 2014). Budva, Mon-
tenegro; 2014.

19. Kitsos P, Voyiatzis A. A comparison of TERO and RO timing sensitivity for hardware Trojan
detection applications. In: 18th EUROMICRO conference on digital system design (DSD
2015). Madeira, Portugal: IEEE CPS; 2015.

20. Lee W, Rotoloni B: Emerging cyber threats report 2013. Georgia Tech Cyber Secur Summit.
2012.

21. Lin L, Kasper M, Güneysu T, Paar C, Burleson W. Trojan side-channels: lightweight hardware
Trojans through side-channel engineering. In: Cryptographic hardware and embedded systems-
CHES 2009. Springer; 2009. p. 382–95.

22. Lindorfer M, Kolbitsch C, Comparetti PM. Detecting environment-sensitive malware. In:
Recent advances in intrusion detection. Springer; 2011. p. 338–57.

23. Markettos AT, Moore SW. The frequency injection attack on ring-oscillator-based true random
number generators. In: Cryptographic hardware and embedded systems-CHES 2009. Springer;
2009. p. 317–31.

24. RadRM,WangX, TehranipoorM, Plusquellic J. Power supply signal calibration techniques for
improving detection resolution to hardware Trojans. In: Proceedings of the 2008 IEEE/ACM
international conference on computer-aided design. IEEE Press; 2008. p. 632–9.

25. Rai D, Lach J. Performance of delay-based Trojan detection techniques under parameter vari-
ations. In: HOST’09, IEEE international workshop on hardware-oriented security and trust,
2009. IEEE; 2009. p. 58–65.

26. Ray S, Yang J, Basak A, Bhunia S. Correctness and security at odds: post-silicon validation of
modern SoC designs. In: Proceedings of the 52nd annual design automation conference, DAC
’15. New York, NY, USA: ACM; 2015. p. 146:1–146:6.

9 Ring Oscillators and Hardware Trojan Detection 187

27. Rogers M, Ruppersberger CD. Investigative report on the US national security issues posed by
Chinese telecommunications companies Huawei and ZTE: a report. US house of representa-
tives; 2012.

28. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E. A statistical test suite for random and
pseudorandom number generators for cryptographic applications. DTIC document: Tech. rep;
2001.

29. Salmani H, Tehranipoor M, Plusquellic J. A novel technique for improving hardware Trojan
detection and reducing Trojan activation time. IEEE Trans Very Large Scale Integr VLSI Syst.
2012;20(1):112–25.

30. Schindler W, Killmann W. Evaluation criteria for true (physical) random number generators
used in cryptographic applications. In: Cryptographic hardware and embedded systems-CHES
2002. Springer; 2003. p. 431–49.

31. Sreedhar A, Kundu S, Koren I. On reliability Trojan injection and detection. J Low Power
Electron. 2012;8(5):674–83.

32. UEA2&UIA I. Specification of the 3GPP confidentiality and integrity algorithms UEA2&
UIA2. Document 2: SNOW 3G specifications. Version: 1.1. ETSI; 2006.

33. Varchola M, Drutarovsky M. New high entropy element for FPGA based true random number
generators. In: Cryptographic hardware and embedded systems, CHES 2010. Springer; 2010.
p. 351–65.

34. Vidas T, Christin N. Evading android runtime analysis via sandbox detection. In: Proceedings
of the 9th ACM symposium on information, computer and communications security. ACM;
2014. p. 447–58.

35. Wang X, Tehranipoor M, Plusquellic J. Detecting malicious inclusions in secure hardware:
challenges and solutions. In: HOST 2008, IEEE international workshop on hardware-oriented
security and trust, 2008. IEEE; 2008. p. 15–9.

Chapter 10
Notions on Silicon Physically Unclonable
Functions

Mario Barbareschi

10.1 Introduction

The opportunity of extracting physical characteristics from fabric-induced variability
for integrated circuits (ICs) has been representing the most important breakthrough
for the semiconductor security. Like human fingerprints, retina blood vessels and
DNA, which are the main identification means in the biometrics field, physically
imprinted randompatternswere adopted for the identification of serialmanufacturing
products [36, 42]. Such a technological innovation led to formally define the Physical
Random Function [14], and then the physical(ly) unclonable function, or PUF, which
are able to identify a silicon device by means of random manufacturing variability.

During last years, PUF has begun a hot topic in the field of hardware security and
trust, in fact countless PUF circuits and architectures have been proposed in the liter-
ature. Actually, more and more proposed secure infrastructures and applications rely
on the adoption of PUFs, specially because they guarantee extremely attractive prop-
erties, such as uniqueness, unclonability, anti-tamper, and intrinsically randomness,
without requiring any modification to the classical photolithography manufacturing
process.

The goal of this chapter is to collect most of concepts related to PUFs which have
been divulged in scientific papers, trying to give a uniform view of formal notions
and qualitymetrics. Furthermore, some pointers regarding the security and reliability
issues are summed up, covering indispensable aspects to implement any PUF-based
application

This chapter is structured as follows. Section10.2 gives a formal characterization
of PUFs and related terminology; and lists PUF properties, mostly covering what
has been introduced in the literature. Moreover, it contains the related terminol-
ogy, necessary to comprehend further notions and concepts. Section10.3 concertizes

M. Barbareschi (B)
DIETI—Department of Electrical Engineering and Information
Technologies, University of Naples Federico II, Via Claudio, 21 - 80125 Naples, Italy
e-mail: mario.barbareschi@unina.it

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_10

189

190 M. Barbareschi

previously defined properties by means of quality parameters (such as uniqueness,
Sect. 10.3.1, and reliability, Sect. 10.3.2), which are used to compare and analyze
available PUF architectures. Section10.4 classifies existing PUF architectures by
means of the source of randomness that their exploit.

10.2 A Formal Perspective on PUF

This section introduces the definition of a PUF and the properties which characterize
almost every PUF implementation [14, 29]. Let a PUF be a mathematical application
which associates inputs to outputs. Ideally such application is a function:

θ ∈ Θ : C → R|θ (c) = r, c ∈ C, r ∈ R. (10.1)

The domain of θ (·), the C set, is defined as the allowable inputs set, normally
defined as challenges set, while the codomain, the R set, is called responses set. Θ
includes all the produced PUF instances. The definition of θ (·) does not contain other
properties of the input–output mapping as, from the end-user point of view, any detail
or physical parameter is hidden (cannot be known) and generated by manufacturing
variability (cannot be controlled). Indeed, the mapping process which characterizes
θ (·) is constrained by parameters of gates and interconnections that determines the
physical value exploited by the circuit. This means that each response is strictly
correlated with a challenge trough physical quantities.

The pair (c, θ (c)) = (c, r) is defined as challenge/response pair (CRP). The PUF
can be considered as a circuit which is able to provide a CRPs set which is unique
for each device.

Being electrical, the relation among challenges and responses might turn out to
be not a function in the mathematical sense: thermal noise, voltage fluctuations, tem-
perature variations, and so on, making the physical parameters time variant. Such
variability can be taken into account by substituting the response r with a random
variable χr in definition (10.1). The distribution of χ depends on the manufactur-
ing and implementation technology, on the PUF architecture and on the considered
environmental conditions. From the probability point of view, r is the most probable
response that can be generated from the PUF by stimulating it with the same chal-
lenge c, hence the challenge–response relation is substituted by θ (c) ≈ r. Higher is
the probability to have χr = r as response from c, more reproducible, i.e., stable, is
the PUF.

10.2.1 Unclonability

The main property of a PUF is the unclonability, that can be formally described
as the impossibility to obtain a PUF θ′ which is identical to θ, such that the latter

10 Notions on Silicon Physically Unclonable Functions 191

can replace the former. Being a physical object, the unclonability can be considered
in a mathematical or physical manner. Mathematical unclonability implies that it is
hard to find a mathematical procedure that is able to provide the same CRPs set of
θ (10.2a), while the physical unclonability indicates that it is hard to reproduce a
device with a PUF θ′ which can be recognized as θ (property 10.2b).

�f : θ (c) = f (c) = r, ∀c ∈ C. (10.2a)

�θ′ : θ (c) = θ′ (c) = r, ∀c ∈ C. (10.2b)

How these properties are guaranteed is determined by the manufacturing process
and by the internal PUF design. The mathematical unclonability is guaranteed by the
non-feasibility of modeling the manufacturing variability process and its impact on
each physical parameter which determines the PUF behavior. The impossibility of
producing two identical devices, even with the best knowledge on physical parame-
ters affected by variability, is given by the noncontrollability of the manufacturing
variability.

10.2.2 Uniqueness

The PUF uniqueness property is formulated as:

�θ̃ ∈ Θ : θ̃ (c) = θ (c) = r, ∀c ∈ Ĉ ⊆ C. (10.3)

The definition could be interpreted in an ambiguous way, since it seems to be over-
lapped, or at least very similar, to unclonability statements (Eqs. 10.2a and 10.2b).
However this is not true, because the requirement to be unique for a θ is the nonex-
istence of another θ′ that specifically belongs to Θ , unlike the unclonability that
requires the nonexistence of a generic function that is able to substitute θ. Moreover,
the uniqueness requires to be valid only for a subset of C.

Apart from the theoretical meaning, the uniqueness has a practical usefulness.
Indeed, let ċ ∈ C be a random picked value and ṙ = θ (ċ). The pair (ċ, θ (ċ)) induces
a partition into Θ such that Θ̇ ∪ Θ̄ = Θ and θ̇ (ċ) = ṙ, ∀θ̇ ∈ Θ̇ and consequently
θ̄ (ċ) 	= ṙ, ∀θ̄ ∈ Θ̄ . A successive picking of c̈ ∈ C defines another pair (c̈, θ (c̈))
which causes a partition in Θ̇ , and so on. By nesting this approach, so successive
applications of other c values on θ, the picked CRPs set Ψ = {(ċ, θ (ċ))} will cause
increasingly smaller partitions, to have a singleton set in which only one function, θ,
is characterized by such CRPs. The success of this procedure and the required steps
to complete it depends on the Θ cardinality, the characteristics of the PUF θ and on
the picked c.

192 M. Barbareschi

10.2.3 Unpredictability

The unpredictability property can be directly inherited from the definition of math-
ematical unclonability, Eq. 10.2a.

Ψ = {(c, θ (c))} , �Φ : Φ
(
Ψ, cp

) = θ
(
cp

) = rp, ∀cp ∈ C. (10.4)

What is requested to be unpredictable for a function is the inability to create a
procedure Φ that, having a certain amount of challenge-response pairs Ψ for a PUF
θ, is able to provide the same output of θ for a generic challenge c. The existence
of this procedure is in direct contrast with the unclonability because Φ represents
a mathematical clone that can predict the θ responses. Moreover, in the degeneracy
case when Ψ = ∅, the statement 10.4 is equivalent to the Eq.10.2a

10.2.4 One-Way Property

Formally θ is a one-way function ⇐⇒ given r = θ (c) it is hard to find λ : λ (r) = c̄
and θ (c̄) = r,∀c̄ ∈ C̄ ⊆ C. As for hash functions, in this definition “hard” is meant
in the computational theory sense, so that given one output r of a PUF θ, it is very
expansive, in terms of computation resources and time, to find one input c̄ such that
θ (c̄) = r.

10.2.5 Feasibility

Being an integrated circuit, a PUF inevitably introduces an overhead in area and
time. As for the occupied area, the circuit has to extract the physical information and
maybe implementing the challenge/response mechanism. As for the time overhead,
the response extraction could require a significant amount of time, especially when
the architecture is providedwith a post-processing algorithm that has to be ran. Given
θ ∈ Θ and c ∈ C, θ is feasible if it is not hard to evaluate θ (c).

10.2.6 Tamper-Evident

The PUF θ is tamper-evident if any attempt to tamper the circuit permanently changes
its CRPs set, obtaining a new PUF θ′ : θ′ (c) 	≈ θ (c) ,∀c ∈ C.

10 Notions on Silicon Physically Unclonable Functions 193

10.3 Quality Measurement on Silicon PUFs

In the literature, many silicon PUF architectures have been introduced and each one
tries to enhance one of the properties illustrated in the Sect. 10.2. To compare them
with objective measurements, some metrics have been introduced [31, 47]. The need
for fair metrics to compare the quality of PUF proposals has generated some quality
parameters.

10.3.1 Uniqueness

Ideally, due to the manufacturing variability, devices are unique in terms of phys-
ical quantities which characterize them. Silicon PUFs discretize such physical
quantity to extract bit strings as responses from provided challenges, hence the
uniqueness can be estimated trough responses comparison. Having a pair of PUF
instanceswhichprovideN-bit responses, respectively ri = (ri,0, ri,1, . . . ri,N−1) and
rj = (rj,0, rj,1, . . . rj,N−1), the uniqueness can be estimated as the fractional Ham-
ming distance between ri and rj. The Hamming distance (HD) is a function computed
over two binary strings of equal length which returns the number of homologous bits
that differ, or, in other words, the minimum amount of substitutions needed to change
one string into the other. The fractional HD (fHD) normalizes the distance value on
the string length and can be formalized as:

fHD(ri, rj) = 1

N

N−1∑
n=0

(
ri,n ⊕ rj,n

)
(10.5)

It returns a value in the range [0, 1], yielding the value 0 if ri = rj and the value 1 if
ri = rj.

Globally, for a population of R devices, we can estimate the uniqueness, also
called inter-chip HD, averaging fHD calculated for all

(R
2

)
responses pairs:

Uniqueness = 2

R(R − 1)

R−1∑
i=1

R∑
j=i+1

fHD(ri, rj) × 100% (10.6)

If PUFs provide uniformly distributed and independent response bits, the global
uniqueness turns out to be close to 50% on average. Values higher or lower than
50% are symptoms of lower chip distinguishability.

10.3.2 Reliability

Ideally, a PUF should always be able to exactly reproduce the same response when
the same challenge is applied. However, as anticipated before, since PUFs are based

194 M. Barbareschi

on variations of electrical characteristics, a number of response bits might change
under either stable or variable environmental conditions, such as temperature and
power supply. To this aim, the stability metric can be used to estimate the percentage
number of bits in a response which change value among responses obtained from a
repeatedly applied challenge. For a device d, letM be the number of measurements
of N-bit responses, r′

d,j (j = 1, 2, . . . ,m), and rd be the baseline reference response
of the d-th device. The stability, also called as intra-chip Hamming Distance or
Steadiness in [16], can be estimated as:

Stability (i) = 1

M

M−1∑
j=0

fHD
(
ri, r

′
i,j

) × 100%. (10.7)

For a population of R devices, it can be averaged as

Stability = 1

R

R−1∑
i=0

Stability (i) . (10.8)

Alternatively, we can express the reliability value, which is the percentage number
of bits which keep the value stable over time

Reliability (d) = 100 − Stability (d) =
⎛
⎝1 − 1

M

M∑
j=1

fHD
(
rd, r

′
d,j

)
⎞
⎠ × 100%.

APUFwith stable responses achieves a high value of reliability, thus its value should
be as close as possible to 100%.

10.3.3 Uniformity

A PUF is expected to generate responses containing ideally the same number of
logic-0s and logic-1s. Therefore, the uniformity metric (also called randomness by
Yu et al. in [47]) can be exploited to estimate the distribution of logic-0 and logic-1
in PUF responses. Let N be the number of response bits, the percentage measure for
uniformity of response ri = (ri,0, ri,1, . . . ri,N−1) can be defined as

Uniformity (i) = 1

N

N−1∑
n=0

ri,n × 100%. (10.9)

A value of 100% means that all ri response bits are logic-1. For true random bits,
uniformity should be as close as possible to its ideal value of 50%. Let R be the
number of responses, resulting from the product between the amount of different

10 Notions on Silicon Physically Unclonable Functions 195

PUF instances and input challenges (if any). The average uniformity for a population
or R devices can be calculated as

Uniformity = 1

R

R∑
i=1

Uniformity (i) (10.10)

10.3.4 Bit Aliasing

The uniformity metric is not enough to qualify the randomness of PUFs responses.
Indeed, even with a best value of bit uniformity, some homologous bits could turn
out to be biased among the responses of the PUF population. This could happen
whenever the manufacturing process introduces static variations which compromise
all the homologous bits in the responses, causing a fixed preferred value. To this aim,
we can compute the bit aliasing [30] (also called bias in [47]) as

Bit-Aliasing (n) = 1

N

R−1∑
i=0

ri,n × 100%, ∀n (10.11)

If some homologous bits are biased, the bit-aliasing results in a value far from 50%.

10.4 Categories of PUFs

This section tries to cover all architectures of intrinsic silicon PUFs which have
been proposed in the literature, giving a complete overview trough a categoriza-
tion. The adjective intrinsic specifies that the PUF and related measurement circuits
are manufactured on the same chip and using technological primitives which are
inherently available in the target implementing technology. Mainly we can list PUFs
by their operational mechanism, being some architectures based on a delay mea-
surement (Sect. 10.4.1) and the others based on the start-up value of memory cells
(Sect. 10.4.2).

10.4.1 Delay-Based PUF

PUFs which exploit delay measurement to extract responses are categorized as delay
based. We can figure out a delay-based PUF as a digital contest between two paths
which have to be resolved by a circuit, so-called arbiter, which decidedwhich path has
won the contest. Paths need to be designed symmetrically such that they ideally are
characterized by the same delay. This way, the winner cannot be early established,

196 M. Barbareschi

but only once the chip is manufactured. Indeed, variations introduced during the
production process modify the physical parameters of the chip in a random fashion
and decide the exact delay that characterizes each path and, hence, the outcome of
each PUF circuit.

10.4.1.1 Arbiter PUF

The arbiter PUFwas introduced byLimet al. in [25] and itsmechanism is based on the
previously introduced delay contest. To have more paths available for a comparison,
authors proposed a scheme composed of a cascade of switch blocks, reported in
Fig. 10.1. Each switch block can propagate an input signal through two configurable
path, i.e., connected straight or switched. A configuration bit establishes in which
configuration of the block has to work. An arbiter, namely a flip-flop, produces an
output which depends on the difference between the two propagation delays: logic-1
if the signal which drives the data input (D) is faster than the clock signal, otherwise
logic-0. The challenges set cardinality exponentially increases with the number of
switch blocks: with N switch blocks, the circuit is able to compare 2N different paths
pairs.

The circuit could suffer from metastability condition if the offset between delays
is close to be 0: such time violation will cause random behavior because the output
is not deterministic.

10.4.1.2 Ring Oscillator PUF

Differently from the Arbiter PUF, the ring oscillator PUF (RO PUF) evaluates delay
differences through frequency measurements exploiting asynchronous oscillating
loops [41]. Each loop contains an odd number of inverting stages, such that, once
the circuit is powered on, it starts to indefinitely oscillate. A generic controlled ring

D Q

c[0] c[1] c[N-1]

0

0

1

1

0

0

1

1

0

0

1

1
Arbiter

Switch Block

Fig. 10.1 Schematic of the arbiter PUF, originally proposed in [25]

10 Notions on Silicon Physically Unclonable Functions 197

Fig. 10.2 Controlled ring
oscillator schematic

enable output

control

Fig. 10.3 Controlled ring
oscillator schematic RO0

RO1

RON−1

Counter

≤

challenge

Counter

oscillator is reported in Fig. 10.2: the output of the last stage of the ring is fed back
into a control gate, together with the enable signal. If the number of inverting stages
in the loop is even, the control gate is an and, otherwise is a nand. The loop can
be also composed by only one inverting stages and other delay elements, such as
non-inverting buffers [5].

Contrary to the arbiter PUF, which requires a perfect symmetry of two delay lines,
the RO PUF requires ring oscillator circuits equally laid-out. For this reason, the RO
PUF can be easily realized on every silicon technology, including FPGA.

The RO PUF is composed of N identically laid-out ring oscillators, two multi-
plexers that select a pair among them, and two counters that measure frequencies
of the pair. Due to the manufacturing imperfections, the frequency of oscillations of
each loop is random and device dependent, hence it slightly differs from the ideal
frequency value. The frequency measurement also involves another counter, driven
by the system clock, which establishes the time window in which the oscillations
edges have to be counted.

A challenge decides which pair of ring oscillator has to be measured. Once the
frequencies are extracted, a circuit compares them giving logic-1 or logic-0. The
full pairing strategy allows to get N(N−1)

2 distinct ring oscillator pairs to compare,
however the entropy that the circuit is able to generate is less than N(N−1)

2 , since some
bits obtained by frequencies comparisons are correlated. To maximize the entropy,
the pairing strategies has to pick only N

2 (Fig. 10.3).
In [48], Yu et al. have introduced the ring oscillator sum PUF, which exploits

k ring oscillators pairs, each one characterized by a specific frequency difference.

198 M. Barbareschi

Once delays are measured, they are summed and the challenge bits determine the
sign of each delay.

Amore complex pairing strategy has been introduced byYin andQu in [45],which
exploits a sequential pairing algorithm that generates reliable bits. In particular, the
proposal gives N

2 responses bits from N ring oscillators Another pairing strategy,
the chain-like neighbor coding, has been proposed in [46]. It consists of two design
principles:

1. ROs have to be placed as close to each other as possible to minimize systematic
variations effect;

2. pairing has to consider only adjacent ring oscillator, hence it generates onlyN − 1
bits.

Testing this strategy on the FPGAs leads to an improvement in uniqueness.
Besides the pairing strategy and challenge size, the ring oscillator frequency is

characterized by a high susceptibility to environmental changes, such as die tem-
perature and working voltage, that could cause instability in responses, especially
for pairs which frequencies are really similar (Fig. 10.4). So far this problem has
arosed and it has been addressed with a 1-out-of-k masking scheme [41], that has
the aim of picking pairs whose distance is the maximum one among k pairs. The
overhead introduced can be estimated as 2

k · 100%, since the architecture requires
only 2 of k pairs to extract a response bit. Such a redundancy can be implemented on
a Xilinx FPGA maintaining the same area overhead by using the configurable ring
oscillator [31]. In the configurable structure the loop contains six inverters selected
by thre multiplexers, which are able to define eight different ring oscillators. The
area overhead of this configuration is the same of a normal ring oscillator, since the
configurable architecture occupies the whole CLB.

Furthermore, it has been proven that the logic which surrounds ring oscillators is
able to alter frequencies values.Merli et al. in [35] empirically demonstrated a relation
between the spatial frequency distribution and the position and shape of surround
logic, synthesized to read out the frequency of ring oscillator, using Xilinx Spartan-
3E and 2712 ring oscillators instantiated by means of hard macro. In particular, due
to local effect, such as different current flows and temperature, can be changed by
other active logic which is working on chip together with ring oscillator. Moreover,
for a single ring oscillator, the other ones represent surrounding logic, hence the
authors proposed to enable/disable them in order to have only one working at time.

Fig. 10.4 Frequencies
variation against temperature
when they are enough far
apart and when they are
close each other

Temperature

Fr
eq
ue

nc
y

Temperature

Fr
eq
ue

nc
y

fa fb> fa fb> fa fb>
fa
fb

10 Notions on Silicon Physically Unclonable Functions 199

Other measurement campaigns have been reported in [13, 30], respectively, on
Altera Cyclone IV and Xilinx Spartan-3E.

10.4.1.3 Anderson PUF

The Anderson PUF, introduced the first time in [2], is a PUF architecture devised to
be synthesized on Xilinx Virtex-5 devices, as primitives which exploits are specific
for this technology. The Anderson PUF is a composition of basic elements, defined
as Anderson cells, and each one outputs only 1-bit PUF response. The cell contains
two shift registers, two 2-to-1 multiplexers and one D flip-flop. The 0 data input of
multiplexers is stuck to logic-0, the select input is driven by the outputs of shift regis-
ters, which are synchronous with the same clock signal and generate a counterphase
logic-1 and logic-0 sequences. Multiplexer B has its 1 data input tied to logic-1 and
its output N1 is connected to the 1 data input of the multiplexer A. Figure10.5 details
all the connections within the Anderson PUF cell. Due to manufacturing variation,
outputs of shift registers are not perfectly in counterphase, but there are some over-
laps during the switching that generate positive glitches. As be changed to logic-1
from logic-0 by a positive glitch that appears on the preset port. Furthermore, the
flip-flop is configured as one-catcher.

Shift operations of the Anderson PUF are implemented using two SLICEM LUTs,
configured as 16-bit shift registers. The twomultiplexers are interconnected using the
carry chain, and the flip-flop can be located in the same slice of the other elements.
Therefore, the Anderson PUF cell could be theoretically implemented using only one
slice, but glitch modulation has to be considered. To this aim, Anderson increased
the glitch pulse width by varying the distance between the two multiplexers. The
best configuration in terms of responses quality was composed of five intermediate
carry chain multiplexers.

0 1
A

B

shift in

shift in

clock

clock

preset
D Q

clock
DFF

0’’

Shift
Register

A

Shift
Register

B

N1

N2

0 1

0’’ 1’’

010101 . . .

101010 . . .

Fig. 10.5 Logic schematics of the Anderson PUF cell

200 M. Barbareschi

Experimental results showed that the PUF responses have a good behavior when
the working temperature changes, i.e., the PUF stability has good value to be used
as a secure primitive on the FPGA.

The original proposal on the Virtex-5 has been implemented also on other Xil-
inx devices family. In [18] Huang and Li proposed an implementation on the Xilinx
Virtex-6, integrating also a mechanism to provide one challenge bit in the cell. More-
over, the authors configured the shift registerswith a different initialization sequences
(0x8888 and 0x4444 instead of 0xAAAA and 0x5555). In [49] Zhang et al. detailed
an implementation of the Anderson PUF on Xilinx Zynq-7000.

10.4.1.4 ALU PUF

TheALUPUF, introduced in [21] byKong et al., is a delay-based PUFwhich exploits
two symmetric arithmetic logic units (ALUs).Due to delaymismatches introducedby
manufacturing variability, ALUs execute operations with different time. This is also
true for the carry chain of ripple carry adders, a fundamental circuit for ALUs. A high
level architectural schematic of a 4-bit ALU PUF is pictured in Fig. 10.6. Querying
ALUs with same operands (challenge x0, . . . , x7) and evaluating the differences
in propagation delay, make possible to generate response bits (y0, . . . , y3) with a
minimal hardware overhead, namely synchronization logic, to ensure that inputs

x0
x1
x2
x3

x4
x5
x6
x7

o0

o1

o2

o3

Arithmetic
Logic Unit

x0
x1
x2
x3

x4
x5
x6
x7

Arithmetic
Logic Unit

Synchronization
Logic

o′
0

o′
1

o′
2

o′
3

Arbiter

Arbiter

Arbiter

Arbiter

y0

y1

y2

y3

Fig. 10.6 Schematic of the ALU PUF architecture

10 Notions on Silicon Physically Unclonable Functions 201

reach both the ALUs at the same time, and arbiters, which evaluate mismatches in
signal delays to extract one response bits.

Depending on the bit-operand parallelism, the ALU PUF can be realized with an
arbitrary number of response bits.

10.4.2 Memory-Based PUF

A memory-based PUF uses the random initial state of a memory cell on a device
start-up to extract a signature which is device dependent. Contrary to the previous
introduced delay-based PUFs, memory PUFs do not require specific design to gen-
erate a signature, but they work with standard memory cell.

10.4.2.1 SRAM PUF

The static randomaccessmemory (SRAM)PUF, exploits the start-up value of SRAM
cells, which are memory blocks realized with two cross-coupled inverters, to gen-
erate a unique and unclonable fingerprint [23]. In CMOS technology, as shown in
Fig. 10.7a, each cell requires six transistors and the structure is symmetrically real-
ized with two halves. During the start-up, each cell reaches and keeps the initial state
even if the transistors are nor directly driven by external signals. Once powered, the
two halves are characterized by an unstable voltage point and, due to small varia-
tions introduced by manufacturing process, they force each other to reach one of two
possible stable points, low or high state, by amplifying the differences of voltages,
as depicted in Fig. 10.7. As discussed in [10], there are three types of SRAM cells:
(i) non-skewed cells, that are characterized by a random behavior, since the effect
of manufacturing variations on the two halves turn out to be mutually neutralized;

Vdd

Word Line

(a) (b)

Bit LineBit Line

VOH

VOL

Low

High

V1

V2

v
State

Fig. 10.7 Details on SRAMcell. aTransistor-level schematic of a SRAMcell inCMOS technology.
b Input–output voltage graph of cross coupled inverting stages

202 M. Barbareschi

(ii) partially skewed cells, that have a mismatch between the two inverters such that
they have a preferred state, but external conditions might provoke a state flip; (iii)
fully skewed cells, like the partially skewed, are characterized by a preferred state
which does not change, even under different external conditions. Maes et al. in [28]
illustrated an approach to implement a low-overhead algorithm to obtain high SRAM
PUF response stability.

Guajardo et al. adopted the SRAMof an FPGAwith embedded block RAMmem-
ories to extract unique and unclonable responses. The main problem with the FPGA
technology is the programming phase, since when the configuration phase initialized
the memory block to fixed values. In [44] the authors reported the power gating fea-
ture of Xilinx FPGAs to extract the start-up value from block RAM exploiting the
dynamic partial reconfiguration. Other non-FPGA SRAM tests have been reported
in [4, 39, 40].

10.4.2.2 Butterfly and Flip-Flop PUF

In order to have available memory-based PUF on FPGA and address the drawback of
the SRAM PUF, Kumar et al. introduced the butterfly PUF, which is a PUF based on
cross-coupled memory elements [22]. In particular, they adopted two cross-coupled
transparent latches configured as reported in Fig. 10.8. Each latch has a preset and a
clear input, that work asynchronously. Preset of one latch and clear of the other one
are driven by the same signal, called excite, while the D input is driven by the Q of
the other latch. When the excite signal is asserted, the circuit is in an unstable state
due to the latches that have opposite states. Ideally, the circuit should indefinitely
retain this state, but once the excite is set to low, the circuit tends to one of the two

Fig. 10.8 Schematic of the
butterfly PUF

Latch A

Preset

Clear

D Q

Preset

Clear

D Q

0

0

Latch B

excite

out

10 Notions on Silicon Physically Unclonable Functions 203

stable states due to physical mismatches. The reached states can be used as a bit of
PUF response.

Equivalently to the SRAM PUFs, Maes et al. proposed to read the start-up values
of flip-flops on FPGAs in [27]. The flip-flop initialization value is established by
the configuration contained in the bitstream: this value is not immediately loaded
into the flip-flops, but only after the complete loading of the new configuration onto
the FPGA. Indeed, once the configuration is accomplished, the global restore line
is asserted, causing the reset of flip-flops to the value specified in the bitstream.
Basically, the idea of the Flip-Flop PUF is based on the disabling of the reset logic
of regular flip-flops when the device is programmed.

10.4.2.3 STT-MRAM PUF

SRAM PUFs are one of the most investigated solutions, since, as anticipated before,
they do not require additional hardware overhead to extract unique and unclonable
fingerprints from integrated circuits. Moreover, the quality and stability of responses
makes them really attractive, compared with other PUF architectures. Recently, the
focus is moving toward emerging memory technologies, such as magnetic resistive
memories. Vatajelu et al. proposed an innovative PUF architecture in [43], which
exploits the manufacturing variability of Spin-Transfer Torque Magnetic RAM.
Indeed, the electrical resistance of magnetic tunnel junction in antiparallel mag-
netization highly suffer from imperfection induced by the manufacturing process.

The Fig. 10.9 details a STT-MRAM cell circuit and the configuration in which it
stores the logic-0 and the logic-1 value. To extract the stored value, hence to evaluate
the MTJ resistance, a reference current involves in the process and it is generated by
reference cells. Active and reference cells are identically manufactured.

Sense
Amplifier

Bit Line

W
or
d
L
in
e

Source Line

RMTJ

+

−

Reference
Bit Line

IMTJ

Magnetic
Pinned
Layer

Magnetic
Free
Layer

Tunnel Barrier
Magnetic
Pinned
Layer

Magnetic
Free
Layer

Tunnel Barrier

High Resistance

(a) (b) State/Logic-1
Low Resistance
State/Logic-0

Anti-Parallel
Configuration

Parallel
Configuration

Fig. 10.9 The STT-MRAM cell. a Electrical equivalent circuit of a one transistor and one MTJ
structure.b MTJ configurations of logic-0 and logic-1 states

204 M. Barbareschi

The PUF takes advantage of the variability of MTJ resistances in antiparallel
configuration. To extract a unique fingerprint, all cells are configured in antiparallel
state (writing logic-1 values) and the active ones are read through the sense amplifier,
comparing their current with the current of reference cells. The state of active cells
will be interpreted as logic-0 if IMTJ > IRef, otherwise as logic-1 if IMTJ < IRef. Even
if all the cells are configured in logic-1 state, being the MTJ resistances normally
distributed, statistically half of them will be interpreted as logic-0.

10.5 Post-Processing Techniques

Unclonability and unpredictability properties turn PUFs really sound for key mate-
rial provider and key storage circuit. Indeed, keys are the critical point for any
crypto-system and they must be protected against unauthorized accesses. Contrary
to memory registers, PUFs can provide keys on demand and only when the circuit is
powered up, so keys reside nowhere. Moreover, they cannot be cloned and predicted,
and are safeguarded against physical attacks thanks to the anti-tamper properties of
PUFs [24].

Despite such advantages, PUF responses cannot be directly used as cryptographic
keys due to the noise generated by changes in environmental conditions. Therefore, a
reliability algorithm is added as post-processing technique to the PUF architecture to
deal with responses noise, generated when working conditions, such as temperature,
voltage, and device aging, change between the provisioning reference, i.e., during
the enrollment phase, and the conditions during the regeneration phase, which occurs
in field.

Post-processing technique also accounts for other quality parameters, such as
uniformity of information entropy.

10.5.1 Majority Voter

Majority voting is an effective technique when PUF responses are characterized by
low or transient noise. It is realized through the collection of a significant number
of responses: if they are repeatedly extracted from the same PUF, the technique is
defined as temporal majority voting, vice versa if they are taken from multiple PUFs
at once, the method is defined as spatial majority voting [27].

As for the spatial majority voting, its discrete nature impedes to reach good values
of bits uniformity in responses. As for the temporal majority voting, the technique
needs for a number of repeated measures which exponentially increase with the
desired noise reduction, due to the Chernoff bound.

To be used as keys, PUF responses have to guarantee perfect distribution of bits
and noise-free responses.

10 Notions on Silicon Physically Unclonable Functions 205

10.5.2 Fuzzy Extractor

Contrary to majority voting algorithms, fuzzy extractor schemes involve an error-
correction code algorithm to set PUF responses free from the noise and require to
collect only one sample per single response [12, 26]. Typically, a fuzzy extractor
scheme requires two main phases. The first one, namely generation phase, the PUF
is enrolled and the obtained response is securely stored. Moreover, an additional bit
string, called helper data, is generated. The second one, called reproduction phase,
exploits the previously defined helper data in order to recover noisy version of the
enrolled response, The helper data are not critic for the scheme and can be publicly
exchanged, as they do not weaken secrecy of the PUF response. If the noise which
affects the response is small enough, the reproduction phase guarantees that the
reproduced response perfectly matches the PUF response extracted in the first phase.
In particular, depending on the error-correction design parameters, fuzzy extraction
is able to recover a response if the amount of error bits is under a certain threshold.
Figure10.10 illustrates every step for generation and reproduction phases.

Besides the error correction, a fuzzy extractor scheme comprises also an additional
step, called privacy amplification. First of all, it is used to extract random bits such
that the PUF response turns out enhanced in uniformity (see Sect. 10.3.3), gaining
information entropy,which is necessarywhenever responses have to be used as secure
keys [1, 15].

PUF
Response

Secret

(a)

(b)

Symbol Encode Helper
Data

Privacy
Amplification

Key

PUF
Response

Helper
Data

Error
Correction

Privacy
Amplification

Key

Fig. 10.10 The fuzzy extraction algorithm scheme. a Generation phase, to accomplish during the
PUF enrollment in order to extract the key and the helper data. bReproduction phase, which recover
a noise version of the response and outputs the same key extracted in generation

206 M. Barbareschi

10.6 Attacks Against PUF

The adoption of a PUF as key storage and generator avoids some of the shortcomings
of memory-based approaches. It is generally harder to perform an attack aimed to
read out, predict, or derive responses from a PUF than to gain access to a nonvolatile
memory. However, PUF implementations may be subject of attacks. They could
exploit either the working model of a PUF circuit or post-processing algorithms.

10.6.1 Model Based Attack

Themodel building attack can be accomplished by collecting a large number of CRPs
that lead to extraction of a mathematical function of the PUF under attack, such that
an attacker is able to predict responses generated by arbitrary-defined challenges [3,
14, 24, 38]. Only PUFs with a large set of CRPs, namely, strong PUF [15], are prone
to such attack.

Modeling attacks may involve machine learning algorithms, which are suitable to
extract enough knowledge from a subset of CRPs and to generalize, i.e., predict, the
mapping mechanism behind a PUF. The extracted model is a digital clone of the PUF
and violates the mathematical unclonability property (see Eq. 10.2a). Anyway, to be
successful the machine learning tool has to determine a polynomial-sized timing
model which is as much as possible accurate in predict responses.

Without loss of generality, we can consider a delay PUF. Assuming that each
element delay that belongs to a path add up itself to the total path delay, an adversary
can apply a sequence of inputs (challenges) to the PUF and obtain a system of equa-
tions, which expresses the linear model behind the mapping mechanism. Whenever
the system turns out linear, solving this system is relatively simple, since it is a set
of linear equations in the continuous domain, and consequently the support vector
machines are a good machine learning tool candidate to be used. Otherwise, a more
complex set of nonlinear equations has to be considered. Their complexity depends
on the fact that the delay of each element delay is a nonlinear function of the pre-
vious element delay, whose delay strongly depends on the order of the transitions
converging on it. Machine learning techniques can still be used, however the training
set is nonlinearly separable, hence other algorithms have to be adopted.

As amatter of fact, Arbiter PUF implementations showan additive linear behavior,
which makes them vulnerable to modeling attacks [17, 32, 38].

10.6.2 Side-Channel Attack

Side-channel attack exploits the non-primary outputs of an algorithm to gather infor-
mation not available as primary output [19, 20]. Such information are leaked during

10 Notions on Silicon Physically Unclonable Functions 207

the execution of the algorithm by measuring power consumption, execution time,
emitted electromagnetic field, temperature, and so on.Attacks based on the side chan-
nel technique can be performed to extract PUF responses when they are processed to
remove noise and recover quality parameters. Authors of [33, 34] successfully per-
formed and documented two types of side-channel attacks to a RO PUF by exploiting
the fuzzy extractor which was implemented to post-process the responses. Similarly,
authors of [11] accomplished an attack against an error-correction code for a weak
PUF (a PUF that is not strong).

10.7 Conclusion

In this chapter, we tried to give a rigorous overview on the PUF research field, with
particular attention to existing architectures and adopted quality metrics. Indeed,
as PUF is a concept which has been formed during time, we gave a collection of
functional aspects with a formal notation. On the pragmatic level, we included in the
chapter an exhaustive list of proposed PUF architectures in the literature, illustrating
their strong points and main characteristics. Moreover, we briefly reported some
attacks against PUFs, covering all categories of attacks.

References

1. Amelino D, Barbareschi M, Battista E, Mazzeo A. How to manage keys and reconfiguration in
WSNs exploiting sram based PUFs. In: Intelligent interactive multimedia systems and services
2016. Springer International Publishing; 2016. p. 109–19.

2. Anderson JH. A PUF design for secure FPGA-based embedded systems. In: Proceedings of
the 2010 Asia and South Pacific design automation conference. IEEE Press; 2010. p. 1–6.

3. BarbareschiM, Bagnasco P,MazzeoA.Authenticating IOT devices with physically unclonable
functions models. In: 2015 10th international conference on P2P, parallel, grid, cloud and
internet computing (3PGCIC). IEEE; 2015. p. 563–7.

4. Barbareschi M, Battista E, Mazzeo A, Mazzocca N. Testing 90 nm microcontroller SRAM
PUF quality. In: 2015 10th international conference on Design and Technology of Integrated
Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1–6.

5. Cheri Z, Danger J-L, Guilley S, Bossuet L. An easy-to-design PUF based on a single oscillator:
the loop PUF. In: 2012 15th euromicro conference on Digital System Design (DSD). IEEE;
2012. p. 156–62.

6. Cilardo A. Efficient bit-parallel GF(2m) multiplier for a large class of irreducible pentanomials.
IEEE Trans Comput. 2009;58(7):1001–8.

7. Cilardo A. New techniques and tools for application-dependent testing of FPGA-based com-
ponents. IEEE Trans Ind Inform. 2015;11(1):94–103.

8. Cilardo A, Barbareschi M, Mazzeo A. Secure distribution infrastructure for hardware digital
contents. IET Comput Digit Tech. 2014;8(6):300–10.

9. Cilardo A, Mazzocca N. Exploiting vulnerabilities in cryptographic hash functions based on
reconfigurable hardware. IEEE Trans Inform Forensics Secur. 2013;8(5):810–20.

208 M. Barbareschi

10. Cortez M, Dargar A, Hamdioui S, Schrijen G-J. Modeling sram start-up behavior for physical
unclonable functions. In: 2012 IEEE international symposium on defect and fault tolerance in
VLSI and nanotechnology systems (DFT). IEEE; 2012. p. 1–6.

11. Dai J,Wang L. A study of side-channel effects in reliability-enhancing techniques. In: DFT’09.
24th IEEE international symposium on defect and fault tolerance inVLSI systems, 2009. IEEE;
2009. p. 236–44.

12. Dodis Y, Reyzin L, Smith A. Fuzzy extractors: how to generate strong keys from biometrics
and other noisy data. In: Advances in cryptology-eurocrypt 2004. Springer; 2004. p. 523–40.

13. Feiten L, Spilla A, Sauer M, Schubert T, Becker B. Analysis of ring oscillator PUFs on 60 nm
FPGAs. In: European cooperation in science and technology.

14. Gassend B, Clarke D, Van Dijk M, Devadas S. Silicon physical random functions. In: Pro-
ceedings of the 9th ACM conference on computer and communications security. ACM; 2002.
p. 148–60.

15. Guajardo J, Kumar SS, Schrijen G-J, Tuyls P. Physical unclonable functions and public-key
crypto for FPGA ip protection. In: International conference on field programmable logic and
applications, 2007. FPL 2007. IEEE; 2007. p. 189–95.

16. Hori Y, Yoshida T, Katashita T, Satoh A. Quantitative and statistical performance evaluation of
arbiter physical unclonable functions on FPGAs. In: 2010 international conference on recon-
figurable computing and FPGAs (ReConFig). IEEE; 2010. p. 298–303.

17. Hospodar G, Maes R, Verbauwhede I. Machine learning attacks on 65 nm arbiter PUFs: accu-
rate modeling poses strict bounds on usability. In: 2012 IEEE international Workshop on
Information Forensics and Security (WIFS). IEEE; 2012. p. 37–42.

18. Huang M, Li S. A delay-based PUF design using multiplexers on FPGA. In: 2013 IEEE
21st annual international symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE; 2013. p. 226.

19. Kocher P, Jaffe J, Jun B. Differential power analysis. In: Advances in CryptologyCRYPTO99.
Springer; 1999. p. 388–97.

20. Kocher PC. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems. In: Advances in CryptologyCRYPTO96. Springer; 1996. p. 104–13.

21. Kong J, Koushanfar F, Pendyala PK, Sadeghi A-R,Wachsmann C. PUFatt: embedded platform
attestation based on novel processor-based PUFs. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE; 2014. p. 1–6.

22. Kumar SS, Guajardo J, Maes R, Schrijen G-J, Tuyls P. The butterfly PUF protecting ip on every
FPGA. In: IEEE international workshop on hardware-oriented security and trust, 2008. HOST
2008. IEEE; 2008. p. 67–70.

23. Layman PA,Chaudhry S,Norman JG, Thomson JR. Electronic fingerprinting of semiconductor
integrated circuits, May 18 2004. US Patent 6,738,294.

24. Lee JW, Lim D, Gassend B, Suh GE, Van Dijk M, Devadas S. A technique to build a secret key
in integrated circuits for identification and authentication applications. In: 2004 symposium on
VLSI circuits, 2004. Digest of technical papers. IEEE; 2004. p. 176–9.

25. Lim D, Lee JW, Gassend B, Suh GE, Van Dijk M, Devadas S. Extracting secret keys from
integrated circuits. IEEE Trans Very Large Scale Integr VLSI Syst. 2005;13(10):1200–5.

26. Linnartz J-P, Tuyls P. New shielding functions to enhance privacy and prevent misuse of bio-
metric templates. In: Audio-and video-based biometric person authentication. Springer; 2003.
p. 393–402.

27. Maes R, Tuyls P, Verbauwhede I. Intrinsic PUFs from flip-flops on reconfigurable devices. In:
3rd Benelux workshop on information and system security (WISSec 2008), vol. 17; 2008.

28. Maes R, Tuyls P, Verbauwhede I. Low-overhead implementation of a soft decision helper data
algorithm for SRAM PUFs. In: Cryptographic hardware and embedded systems-CHES 2009.
Springer; 2009. p. 332–47.

29. Maes R, Verbauwhede I. Physically unclonable functions: a study on the state of the art and
future research directions. In: Towards hardware-intrinsic security. Springer; 2010. p. 3–37.

30. Maiti A, Casarona J, McHale L, Schaumont P. A large scale characterization of RO-PUF. In:
2010 IEEE international symposium on Hardware-Oriented Security and Trust (HOST). IEEE;
2010. p. 94–9.

10 Notions on Silicon Physically Unclonable Functions 209

31. Maiti A, Schaumont P. Improved ring oscillator PUF: an FPGA-friendly secure primitive. J
Cryptol. 2011;24(2):375–97.

32. Majzoobi M, Koushanfar F, Potkonjak M. Testing techniques for hardware security. In: IEEE
international test conference, 2008. ITC 2008. IEEE; 2008. p. 1–10.

33. Merli D, Schuster D, Stumpf F, Sigl G. Semi-invasive em attack on FPGA ro PUFs and coun-
termeasures. In: Proceedings of the workshop on embedded systems security. ACM; 2011.
p. 2.

34. Merli D, Schuster D, Stumpf F, Sigl G. Side-channel analysis of PUFs and fuzzy extractors.
In: Trust and trustworthy computing. Springer; 2011. p. 33–47.

35. Merli D, Stumpf F, Eckert C. Improving the quality of ring oscillator PUFs on FPGAs. In:
Proceedings of the 5th workshop on embedded systems security. ACM; 2010. p. 9.

36. Naccache D, Fremanteau P. Unforgeable identification device, identification device reader and
method of identification, July 18 1995. US Patent 5,434,917.

37. Rampon J, Perillat R, Torres L, Benoit P, DiNataleG, BarbareschiM.Digital rightmanagement
for IP protection. In: 2015 IEEE computer society annual symposiumonVLSI (ISVLSI). IEEE;
2015. p. 200–3.

38. Rührmair U, Sehnke F, Sölter J, Dror G, Devadas S, Schmidhuber J. Modeling attacks on
physical unclonable functions. In: Proceedings of the 17th ACM conference on computer and
communications security. ACM; 2010. p. 237–49.

39. Schrijen G-J, van der Leest V. Comparative analysis of SRAM memories used as PUF primi-
tives. In: Design, Automation Test in Europe conference exhibition (DATE); 2012. p. 1319–24.

40. Selimis G, Konijnenburg M, Ashouei M, Huisken J, De Groot H, Van der Leest V, Schrijen
G-J, Van Hulst M, Tuyl P. Evaluation of 90 nm 6T-SRAM as physical unclonable function for
secure key generation in wireless sensor nodes. In: 2011 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE; 2011. p. 567–70.

41. Suh GE, Devadas S. Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of the 44th annual design automation conference. ACM; 2007.
p. 9–14.

42. Tolk KM. Reflective particle technology for identification of critical components. Technical
report, Sandia National Labs., Albuquerque, NM (United States); 1992.

43. Vatajelu EI, Natale GD, Barbareschi M, Torres L, Indaco M, Prinetto P. STT-MRAM-based
PUF architecture exploitingmagnetic tunnel junction fabrication-induced variability. J. Emerg.
Technol. Comput. Syst. 2016;13(1):5:1–5:21. http://doi.acm.org/10.1145/2790302.

44. Wild A, Guneysu T. Enabling SRAM-PUFs on xilinx FPGAs. In: 2014 24th international
conference on Field Programmable Logic and Applications (FPL). IEEE; 2014. p. 1–4.

45. Yin CED, Qu G. LISA: maximizing RO PUF’s secret extraction. In: 2010 IEEE international
symposium on Hardware-Oriented Security and Trust (HOST). IEEE; 2010. p. 100–5.

46. Yin C-E, Qu G. Improving PUF security with regression-based distiller. In: Proceedings of the
50th annual design automation conference. ACM; 2013. p. 184.

47. Yu M-D, Sowell R, Singh A, M’Raihi D, Devadas S. Performance metrics and empirical
results of a PUF cryptographic key generation ASIC. In: 2012 IEEE international symposium
on Hardware-Oriented Security and Trust (HOST). IEEE; 2012. p. 108–15.

48. Yu MDM, Devadas S. Recombination of physical unclonable functions; 2010.
49. Zhang J, Wu Q, Lyu Y, Zhou Q, Cai Y, Lin Y, Qu G. Design and implementation of a delay-

based PUF for FPGA IP protection. In: 2013 international conference on Computer-Aided
Design and Computer Graphics (CAD/Graphics). IEEE; 2013. p. 107–14.

http://doi.acm.org/10.1145/2790302

Chapter 11
Implementation of Delay-Based PUFs
on Altera FPGAs

Linus Feiten, Matthias Sauer and Bernd Becker

11.1 Introduction

Altera is—besides Xilinx—the largest manufacturer of field-programmable gate
arrays (FPGAs) and their devices are widely used. Over the years, there have
been several variants of the Cyclone FPGA series. The first version based on
130nm process technology was introduced in 2002, followed by the Cyclone II
(90nm, 2004), Cyclone III (65nm, 2007), Cyclone IV (60nm, 2009) and Cyclone V
(28nm, 2011). Despite advancements from version to version, general architectural
concepts are sustained, setting Altera FPGAs apart from the Xilinx architecture. In
the course of this chapter, the reader will be introduced to the Cyclone architecture
and be enabled to put the concepts of delay-based PUFs [16] into practice. This
is done using the Altera design software Quartus II and the hardware description
language VHDL. The communication between the FPGA and a PC is done via the
JTAG interface using the scripting language TCL and custom commands provided
by Altera SignalTap II. Beforehand, however, a short summary of delay-based PUFs
is given and their application in FPGAs as opposed to application-specific integrated
circuits (ASICs) is put into context.

The purpose of a PUF is to have a unique signature (typically in form of a binary
number) associated with each device, that is generated from the device’s unique
physical characteristics. This signature can be used to tell the device apart from
other devices or even be part of a cryptographic protocol to allow only the device

L. Feiten (B) · M. Sauer · B. Becker
University of Freiburg, Chair for Computer Architecture,
Georges-Koehler-Allee 51, 79110 Freiburg, Germany
e-mail: feiten@informatik.uni-freiburg.de

M. Sauer
e-mail: sauerm@informatik.uni-freiburg.de

B. Becker
e-mail: becker@informatik.uni-freiburg.de

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_11

211

212 L. Feiten et al.

owner access to certain resources. Instead of a PUF generating such signature, it
could simply be stored in the non-volatile memory of a device. However, an attacker
might physically access this memory with comparatively little effort (e.g. [6, 17]).
The advantage of a PUF is that the signature is only generated when needed and
stored temporarily, making an attack much more difficult. Furthermore, as the PUF
signature is generated from physical characteristics, an invasive attack on the device
is likely to disturb these characteristics such that the signature is altered.

Whether the PUF signature can be read-out directly from the device or whether
it remains concealed within it depends on the implementation. In the former case,
an attacker might read-out the signature and possibly forge a device with the same
signature; in the latter case—if the signature is only used inside of the device, e.g. as
the seed for an asymmetric cryptographic key pair [18]—an attacker has to go through
much greater efforts to possibly obtain the secret signature. Using the PUF output
as a cryptographic seed, however, requires perfect reliability, because just a single
bit-flip in the seed leads to a completely different key. As perfect reliability is hardly
achieved in any PUF, error correction schemes [22] must be used. If the signature
is read-out directly, non-perfect reliability can be compensated by considering a
signature as “correct” when enough signature bits have their expected values.

To prevent an attacker from learning thewhole signature of a device—intending to
forge an identical device—so-called strongPUFs [15] have the potential of generating
a signature of exponential length. To identify a device, only a subset of the whole
signature is sampled, depending on a challenge. An attacker is hampered, because
there are too many challenges to read out the complete signature, and he does not
know which challenges are used by the legitimate owner to identify the device.
Weak PUFs on the other hand, only generate a manageable amount of signature
bits which could—if the signature is not concealed—be read out and stored by an
attacker. Whether an attacker is able to forge the signature of a device depends on
the technology and the PUF. Mostly, this will prove rather difficult as the physical
device characteristics depend on uncontrollable variances in the production process.
Only with extensive effort would it be possible to, e.g. alter the capacitances of single
transistors that a PUF yields its responses from.

The implementation of PUFs on FPGAs—as opposed to ASICs—brings some
peculiarities with it as their functionality is not hardwired. Instead, their reconfig-
urable hardware is configured to realise any feasible functionality being encoded in
a so-called bitstream file. The bitstream is loaded to volatile memory elements of
the FPGA any time it is powered up. We call such an FPGA configuration an FPGA
design. During the creation of a design, the designer uses a hardware description
language like VHDL or Verilog to describe the netlist defining all gates, memory
elements and interconnects. The FPGA vendor’s design software then maps those
elements to the configurable FPGA hardware and compiles the distributable bit-
stream.

While the netlist and its mapping to the FPGAhardware is still “human-readable”,
the bitstream is definitely not. In fact, it is considered a security feature when the
netlist cannot be reverse-engineered from the bitstream. FPGA vendors therefore
make it a secret how their bitstream compilers really work and try to obscure how

11 Implementation of Delay-Based PUFs on Altera FPGAs 213

the bitstream relates to the actual FPGA configuration. However, there have been
attempts to break this kind of “security by obscurity” [14], which is why some
newest FPGA types provide bitstream encryption, where the bitstream is encrypted
with a secret key that is also stored in a battery-powered memory of the FPGA.

There are several reasons why the bitstream should not be reverse-engineerable.
The first being that the copyright owner of an FPGA design put a lot of research
and development costs into its creation. While the netlist can be kept as a business
secret, the bitstream cannot as it must be distributed in a file or non-volatile memory
connected to the FPGA. Both can be easily accessed. When a business competitor
manages to reverse-engineer a regularly purchased bitstream, he could reuse it for
his own products evading the expensive research and development costs. Another
scenario in which the bitstream should not be reverse-engineerable is the implemen-
tation of PUFs. Because if all placement and routing details of the PUF circuitry
are known to an attacker, it is a lot easier for him to manipulate only the relevant
hardware components to make the PUF produce another signature. Furthermore—in
case of a concealed weak PUF—he could compile an FPGA design with just the
same but non-concealed PUF.

Given that the bitstream cannot be reverse-engineered, a customer is able to pro-
grammean arbitrary amount of FPGAswith it. Such “overproduction” can be harmful
to the business of an FPGA design vendor, who might want to sell bitstreams with
licenses for limited usage. Bitstream encryption alone does not prevent this, as the
customer must also possess the key to decrypt the bitstream. With a PUF, however,
the vendor can link bitstreams to specific FPGAs by encoding the expected PUF sig-
nature into the logic of the design. Thus, the implemented hardware will only start
functioning on an FPGA where the PUF produces the expected signature [23]. To
link a bitstream to an FPGA, the vendor must have access to the customer’s FPGA
once in order to sample its unique signature.

∗

There are many different kinds of PUF implementations on FPGAs; e.g. arbiter
PUFs [9], butterfly PUFs [8], TERO-PUFs [2] or SRAM-PUFs [1, 7]. This chapter
focuses on delay-based PUFs in general and how to implement them on Altera
Cyclone FPGAs. The output of a delay-based PUF is determined by the delays of
certain circuit lines. The delay determines how long a change from high voltage
(logic 1) to low voltage (logic 0) or vice versa takes to travel through a conducting
circuit line. In the production process of integrated circuits, unavoidable process
variations lead to slightly different delays on each individual chip. For instance, the
higher the resistance of a line, the greater its delay. Thus, these delays can be used as
device-specific physical characteristics from which the PUF signature is generated.
The delays are also highly dependent on operating temperature and voltage. Delay-
based PUFs generally compensate such fluctuations by using the relative differences
between circuit lines instead of absolute measurements.

A very popular kind of delay-based PUFs is the ring oscillator PUF (RO-PUF) that
has received much research attention due to its relative simplicity and stability (e.g.

214 L. Feiten et al.

Fig. 11.1 A single ring
oscillator (RO)

Fig. 11.2 An RO-PUF with
m ROs, multiplexers,
counters and comparators

[5, 10, 19–21]). We will therefore take it as the running example for this chapter, but
the demonstrated methods can be used to implement any kind of delay-based PUF.
The core of an RO-PUF is a set of ring oscillators (ROs). Figure11.1 shows the circuit
diagram of an RO consisting of a single NAND gate and a number of delay elements
(e.g. buffers). The delay elements are just passing on the signal. Sometimes also an
odd number of inverters is used as delay elements. When the enable input is set to
1, the RO starts oscillating; i.e. a constant alternation between 1 and 0 is observable
at the output. The oscillation frequency depends on the delay of the circular path,
which is different for each device.

Figure11.2 shows the diagram of a classical RO-PUF circuit [19]. The challenge
selects two ROs for comparison and passes their oscillating signals to the counters.
The counterfed by the faster RO eventually holds the greater value and the compara-
tor returns 1 or 0 as the PUF response for this particular challenge. If the relative
differences between the ROs are different on each device, each device has its unique
signature.

As each response bit is created by comparing two ROs, there is a total of p·(p−1)
2

bits. But because there are only p! possibilities for p ROs to be ordered by their fre-
quencies, the entropy of the RO-PUF’s signature is in fact log2(p!) [19]. The authors
of [10] introduced a post-processing procedure to generate even more signature bits
from the same amount of ROs, but for simplicity we regard the standard method
here. Thus, the RO-PUF belongs to the class of weak PUFs, as it does not generate
an exponential amount of response bits. The term weak does not imply that the PUF
is security-wise broken but rather implies that the PUF response should be concealed
and impossible to be read out directly; otherwise an attacker might copy all the values
and forge a device with the same response.

The remainder of this chapter is organised as follows. Section11.2 introduces
the Altera Cyclone FPGA architecture and explains how ROs are mapped to it.
Section11.3 describes in a step-by-step manner how to implement all parts of a
functioning RO-PUF using the Quartus II design software and VHDL. It furthermore
explains how the placement and routing of the RO circuitry must be enforced instead

11 Implementation of Delay-Based PUFs on Altera FPGAs 215

of leaving it to the compiler. Section11.4 shows how to establish the communication
between the FPGA and a computer via the JTAG interface. In Sect. 11.5, we share
what furthermore has to be taken care of to ensure the PUF quality before Sect. 11.6
concludes the chapter.

11.2 Altera FPGA Architecture

The basic building blocks of an FPGA are its look-up tables (LUTs). An LUT is
a circuit that can mimic any logic gate—up to a certain number of input signals—
depending on its configuration. This is achieved by storing the gate’s desired output
value for each possible input assignment in volatile memory cells. Figure11.3 shows
an LUT with four input signals (A, B, C, D) that is configured to mimic a four-input
xor gate. The internal architecture of anLUT is as if the input signals are connected to
the select inputs of multiplexers, such that for each input assignment the appropriate
stored value is passed to the LUT’s output. For a four-input LUT, there are 24 = 16
possible input assignments and hence output values.When these 16 output values are
concatenated, they form the so-called LUT mask. For the configuration in Fig. 11.3,
the LUT mask is 0110100110010110 or 6996 in hexadecimal.

To realise gates with less inputs, the unnecessary inputs are neglected by storing
the same LUT output values regardless of whether these inputs are 0 or 1. Figure11.4
shows two LUT configurations both realising a two-input nand gate. For A nand
B (left), the same values are stored regardless of C and D. Likewise, for C nand D
(right), A and B are disregarded.

The Altera FPGAs Cyclone I, II, III and IV provide LUTs with four inputs. In
the specification of these devices you will most prominently find a figure stating
the number of logic elements (LEs). Each LE contains a four-input LUT. There are
also registers in the LEs to realise sequential circuits, but to implement delay-based
PUFs the main effort is in “manually” configuring the LUTs to comprise the delay

Fig. 11.3 A look-up table
mimicking a 4-input xor
gate

216 L. Feiten et al.

Fig. 11.4 Two different look-up table configurations, both realising a 2-input nand gate

Fig. 11.5 The left shows the
floorplan of a Cyclone IV
FPGA. The right shows the
LEs of some LABs and how
an RO can be implemented
in them

!"

!"

paths. Sequential logic is needed in the PUF evaluation logic, which can be left to
the compiler. Depending on the FPGA type, a certain number of LEs is grouped in
a collective called logic array block (LAB). On the Cyclone I, one LAB comprises
10 LEs; on the Cyclone II, III and IV it comprises 16 LEs. The Cyclone V has a
slightly different architecture, in which the basic building blocks are called adaptive
logic modules (ALMs). The Cyclone V’s ALMs hold several LUTs that can be
used as either two four-input LUTs or combined as one eight-input LUT. For the
remainder of this chapter, our running example will assume an implementation on a
Cyclone I–IV architecture. The used methods, however, can easily be adapted for a
Cyclone V implementation as well.

Figure11.5 (left) shows the floor plan of a Cyclone IV FPGA as viewed in the
Chip Planner of Altera’s Quartus II design software. Each little rectangle in the full
view stands for one LAB. The right shows a zoomed-in view in which the single LEs
of some LABs are visible. The routing between the LEs within an LAB is shorter
than the routing from one LAB to the other. This has severe implications for the
implementation of delay-based PUFs, because to elicit the subtle device-specific
delay differences, delay differences shared by all devices must be avoided. In [5] we
showed that ideal PUF uniqueness and reliability is achievedwhen all LEs of an LAB
are used to build one RO. The arrows in Fig. 11.5 (right) show how the topmost LUT
implements the RO’s nand gate (cf. Fig. 11.1) and the remaining LUTs implement
the delay elements. The next section we show this is put into practice.

11 Implementation of Delay-Based PUFs on Altera FPGAs 217

11.3 Implementing the PUF

This section details how to use the Altera Quartus II software to design a delay-based
PUF. Our running example is the implementation of a basic RO-PUF as described
in the previous sections. The purpose of Quartus II is to make the task of creating an
FPGA design easier for the designer by automatising the mapping, placement and
routing to the FPGA hardware. When fine-tuning a delay-based PUF, however, it is
necessary to prevent or undo some of these automatisms.

The currently newest version of Quartus II is 15.0 but the instructions of this
chapter are applicable for any version. Notice that some employed functionalities—
e.g. Feature Incremental Compilation or LogicLock Regions—are only available in
the Quartus II Subscription Edition, not in the free Quartus II Web Edition. For
academic research, a license for the Subscription Edition can be acquired without
charge through the Altera University Program. For this running example, we assume
that the name of theQuartus project ismyPUF and that a Cyclone IVEP4CE22F17C6
on a Terasic DE0 Nano development board is used.

11.3.1 Defining the Hardware Components

The hardware components of our example are mainly defined in VHDL. For the
communication between the FPGA and a PC we shall use the predefined Virtual
JTAG component provided by Quartus (see Sect. 11.4), as for the n-bit multiplexers
we also use one of Quartus’Megafunctions. All these components are then combined
in a Block Diagram/Schematic File. Starting bottom-up though, we first define the
ROs themselves.

WhenQuartus compiles a design, an analysis for logical redundancies ismade and
nodes just passing on a value like the RO’s delay elements (cf. Fig. 11.1) are removed
automatically. To prevent the compiler from “optimising away” the delay elements,
they have to be defined as low-level primitives called LCELLs. Listing 11.1 shows
the VHDL code for an RO. Line 5 sets the amount of delay elements (including the
RO’s nand gate) as a generic variable. Line 6 defines the input and output as Lines 10
and 11 define the internal signals. In Lines 12 and 13, the LCELL component is
stated to be used in Lines 17 and 19, where the first delay element after the nand gate
(lc_0) and the remaining delay elements (lc_i) are defined.

Listing 11.2 shows how an arbitrary number of ROs (given as a generic variable
in Line 5) is defined reusing the RO definition (Lines 10–13). The ros component
has one output for each of its ROs (Lines 6 and 18). In this example, the number of
ROs is 16. For simplicity, all ROs are permanently activated (Line 17). In a more
elaborate implementation, there could be individual input ports to activate only the
desired ROs. Activating all ROs, even though only two are sampled at a time, is a
waste of energy but might also be considered a countermeasure against side-channel
attacks that extract RO frequencies through electromagnetic emissions [12]. Because
when all ROs oscillate, it is more difficult to single out individual RO frequencies.

218 L. Feiten et al.

Listing 11.1 ro.vhd
1 LIBRARY IEEE;
2 USE IEEE.STD_LOGIC_1164.ALL;
3

4 ENTITY ro IS
5 GENERIC (length : INTEGER := 16);
6 PORT (enable : IN STD_LOGIC; output : OUT STD_LOGIC);
7 END ro;
8

9 ARCHITECTURE arch OF ro IS
10 SIGNAL path : STD_LOGIC_VECTOR(length DOWNTO 1);
11 SIGNAL nand_out : STD_LOGIC;
12 COMPONENT LCELL PORT (a_in : IN STD_LOGIC; a_out : OUT STD_LOGIC);
13 END COMPONENT;
14 BEGIN
15 nand_out <= enable nand path(length);
16 output <= path(length);
17 lc_0 : LCELL PORT MAP (a_in => nand_out , a_out => path (1));
18 lc_gen : FOR i IN 1 TO (length -1) GENERATE
19 lc_i : LCELL PORT MAP (a_in => path(i), a_out => path(i+1));
20 END GENERATE;
21 END arch;

Listing 11.2 ros.vhd
1 LIBRARY IEEE;
2 USE IEEE.STD_LOGIC_1164.ALL;
3

4 ENTITY ros IS
5 GENERIC (ros_number : INTEGER := 16; ros_length : INTEGER := 16);
6 PORT (ros_out : OUT STD_LOGIC_VECTOR(ros_number -1 downto 0));
7 END ros;
8

9 ARCHITECTURE arch OF ros IS
10 COMPONENT ro
11 GENERIC (length : INTEGER);
12 PORT (enable : IN STD_LOGIC; output : OUT STD_LOGIC);
13 END component;
14 BEGIN
15 ro_gen: FOR i IN 0 TO ros_number -1 GENERATE
16 ro_i: ro GENERIC MAP (length => ros_length) PORT MAP (
17 enable => ’1’,
18 output => ros_out(i)
19);
20 END GENERATE;
21 END arch;

After creating a new Block Diagram/Schematic File in Quartus
(e.g. myPUF.bdf), a Symbol File for ros.vhd can be created by right-clicking
it in the Project Navigator window and selecting “Create Symbol Files for Cur-
rent File”. Afterwards, the block symbol of ros can be selected with the Symbol
Tool in the view of myPUF.bdf. Figure11.6 shows the complete myPUF.bdf
file. So far, we have only placed the ROs. Next come the 16-bit multiplexers

11 Implementation of Delay-Based PUFs on Altera FPGAs 219

Listing 11.3 counter.vhd
1 LIBRARY IEEE;
2 USE IEEE.STD_LOGIC_1164.ALL;
3 USE IEEE.STD_LOGIC_UNSIGNED .ALL;
4

5 ENTITY counter IS
6 PORT (
7 osc : IN STD_LOGIC;
8 run : IN STD_LOGIC;
9 reset : IN STD_LOGIC;

10 result : OUT STD_LOGIC_VECTOR (63 DOWNTO 0)
11);
12 END ENTITY counter;
13

14 ARCHITECTURE arch OF counter IS
15 SIGNAL count : STD_LOGIC_VECTOR (63 DOWNTO 0);
16 BEGIN
17 result <= count;
18

19 PROCESS(osc , run , reset)
20 BEGIN
21 IF reset = ’1’ THEN count <= (OTHERS => ’0’);
22 ELSIF run = ’1’ THEN
23 IF RISING_EDGE(osc) THEN count <= count + 1;
24 END IF;
25 END IF;
26 END PROCESS;
27 END ARCHITECTURE arch;

(MUXs) (one bit for each RO), which can be found in the Symbol Tool under
.../quartus/libraries/megafunctions/gates/mux.

To count the oscillations of the ROs, simple sequential counters can be used as
defined in Listing 11.3. The counter value is stored in an internal 64-bit register
(Line 15), that is connected to the counter’s output result (Line 10 and 17). The
input signal osc is connected to the output of an RO selected by a MUX. At each
rising edge of osc, the counter value is incremented by one (Line 23), given that
the run input signal is set to 1 (Line 22). By setting the reset input signal to 1,
the counter value is reset to zero (Line 15).

Here, a counter width of 64 bits suffices. Depending on how long the RO oscilla-
tions are counted and on how fast they oscillate, a smaller or greater number of bits
is required. Notice that for very fast ROs, a sequential counter might not be able to
capture all rising edges. For such high-frequency RO-PUFs, we recommend using
ripple counters instead.

Each RO-PUF response bit is created by comparing the results of two counters
with a comparator logic as defined in Listing 11.4. Block symbols for counter and
compare can be generated the same way as described above for ros. After con-
necting the MUXs’ outputs to the counters’ inputs and the counters’ outputs to the
comparator’s input (cf. Fig. 11.6), the remaining unconnected signals are the select
inputs of the MUXs, the run and reset inputs of the counters, and the result

220 L. Feiten et al.

Listing 11.4 compare.vhd
1 LIBRARY IEEE;
2 USE IEEE.STD_LOGIC_1164.ALL;
3

4 ENTITY compare IS
5 PORT (
6 a : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
7 b : IN STD_LOGIC_VECTOR (63 DOWNTO 0);
8 result : OUT STD_LOGIC
9);

10 END ENTITY;
11

12 ARCHITECTURE arch OF compare IS
13 BEGIN
14 result <= ’1’ WHEN a > b ELSE ’0’;
15 END arch;

output of the comparator. These are the signals thatwewant to access fromoutside the
FPGA via the JTAG interface. Details about the communication between the FPGA
and aPCare given in Sect. 11.4 togetherwith a description of thecontroller logic
and its VHDL code (Listing 11.7). The controller is connected to aVirtual JTAG
component that can be generated in Quartus using the MegaWizard Plug-In Man-
ager. Chose “Create a new custom megafunction variation” and then Installed
Plug-Ins/JTAG-accessible Extensions/Virtual JTAG. As file
type and filename chose VHDL and vjtag. Next, the instruction register width
can be defined. As we do not need more than eight different instructions, three bits
are enough. Before finishing the generation of the Virtual JTAG module, check that
the symbol file vjtag.bsf is automatically created. Otherwise, it can also be gen-
erated afterwards like we have generated symbols from VHDL files before and like
we are generating one from controller.vhd. It is only necessary to manually
add the newly created vjtag.vhd file to the project files in the Project Navigator.
After placing and connecting all block symbols correctly, the complete design in
myPUF.bdf looks like the one in Fig. 11.6.

This design can be compiled already. However, there will be several compiler
warnings like “Found combinational loop”. As this is exactly what was intended
with the ROs, though, these messages may be suppressed for future compiler runs.
Even a first test of the PUF is possible. Among the generated signature bit values
there should be an almost equal amount of 1s and 0s. An examination of several
FPGAs, however, will show that many signature bits are the same for all FPGAs,
which is bad PUF uniqueness.

The reason for this can be identified in the Quartus Chip Planner, where the
mapping of the design components to the FPGA hardware is visualised. For now,
the compiler was free to decide how to place the components, which is in most cases
not ideal for the quality of delay-based PUFs. The following sections show how to
enforce the placement and routing such that the PUF quality is greatly improved.

11 Implementation of Delay-Based PUFs on Altera FPGAs 221

challenge[3..0]

challenge[7..4]

challenge[7..0]

ros_out[ros_number-1..0]

ros

ros

data[]

sel[]

result

MUX

mux0

data[]

sel[]

result

MUX

mux1

osc

run

reset

result[63..0]

counter

counter0

osc

run

reset

result[63..0]

counter

counter1

a[63..0]

b[63..0]

result

compare

compare

ir_out[2..0]

tdo

ir_in[2..0]

tck

tdi

virtual_state_cdr

virtual_state_cir

virtual_state_e1dr

virtual_state_e2dr

virtual_state_pdr

virtual_state_sdr

virtual_state_udr

virtual_state_uir

vjtag

vjtag

ir_in[2..0]

tck_in

tdi_in

cdr_in

sdr_in

uir_in

compare_in

tdo_out

run_out

reset_out

challenge_out[2*select_width-1..0]

controller

controller

Fig. 11.6 The Quartus block diagram of the complete design

11.3.2 Defining the LUT Placement

One LCELL is always synthesised in one logic element (LE) (cf. Fig. 11.6). The
Quartus compiler in normal operation places the LEs as it deems best according to
timing and power supply considerations. This, however, can lead to the delay of one
wire being smaller than that of another wire on all devices. For good uniqueness
properties of delay-based PUFs it is necessary that the delays between sampled
components (e.g. ROs) are as homogeneous as possible. To fine-tune a delay-based
PUF, it is necessary to take control of this placement; at least for the relevant PUF
components. This can be achieved in the following twoways, both ofwhich are suited
for different scenarios. Method 1 is practical for large-scale customisations of many
LCELLs at once. However, a greater one-time effort is necessary to write a script
producing the required file entries. Method 2 is practical for punctual customisations
via graphical user interface but therefore very arduous for large amounts of LCELLs.

Method 1: Customising the Quartus Settings File

One way to define the placement is by custom entries in the Quartus Settings File.
A great advantage of this method is that it can be achieved with the free Quartus
Web Edition. It is most practical, when a script is used to generate the custom entries
automatically. The Quartus Settings File with the .qsf extension is found in the
Quartus project’s root directory. Here, the location of each individual LCELL can

222 L. Feiten et al.

be defined. To do so, the “Full Name” of the “Node” must be known by which the
respective LCELL is identified in Quartus. It can be found under “Node Properties”
in the Quartus Chip Planner when clicking on the LE of an LCELL. In the case of
our running example, those “Full Names” would be, e.g.

|myPUF|ros:ros|ro:\ ro_gen :9: ro_i|lc_0

for the first LCELL of RO 9, and

|myPUF|ros:ros|ro:\ ro_gen :9: ro_i|\ lc_gen :1: lc_i
|myPUF|ros:ros|ro:\ ro_gen :9: ro_i|\ lc_gen :2: lc_i
...

for the second and third LCELL of RO 9, and so forth. Notice, that myPUF corre-
sponds to the name of the Quartus project as ros and ro correspond to the VHDL
entities described in Listings 11.1 and 11.2. The identifiers ro_gen and ro_i are
the ones used in the GENERATE command of ros, as lc_gen and lc_i are those
from ro (cf. Listings 11.1 and 11.2).

Thus, to place for example all LCELLS of RO 9 into the LAB with the floorplan
coordinates (26, 5), the following lines are added to the qsf file. The expressions N0
to N30 designate, which LE of that LAB should be used; N0 is the topmost LE, N30
the bottommost.

set_location_assignment LCCOMB_X35_Y31_N0 -to "ros:ros|ro:\\ ro_gen :9: ro_i|lc_0"
set_location_assignment LCCOMB_X35_Y31_N2 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :1: lc_i"
set_location_assignment LCCOMB_X35_Y31_N4 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :2: lc_i"
set_location_assignment LCCOMB_X35_Y31_N6 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :3: lc_i"
set_location_assignment LCCOMB_X35_Y31_N8 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :4: lc_i"
set_location_assignment LCCOMB_X35_Y31_N10 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :5: lc_i"
set_location_assignment LCCOMB_X35_Y31_N12 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :6: lc_i"
set_location_assignment LCCOMB_X35_Y31_N14 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :7: lc_i"
set_location_assignment LCCOMB_X35_Y31_N16 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :8: lc_i"
set_location_assignment LCCOMB_X35_Y31_N18 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :9: lc_i"
set_location_assignment LCCOMB_X35_Y31_N20 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :10: lc_i"
set_location_assignment LCCOMB_X35_Y31_N22 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :11: lc_i"
set_location_assignment LCCOMB_X35_Y31_N24 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :12: lc_i"
set_location_assignment LCCOMB_X35_Y31_N26 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :13: lc_i"
set_location_assignment LCCOMB_X35_Y31_N28 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :14: lc_i"
set_location_assignment LCCOMB_X35_Y31_N30 -to "ros:ros|ro:\\ ro_gen :9: ro_i |\\ lc_gen :15: lc_i"

Method 2: Using Design Partitions and LogicLock Regions

Another way to enforce the placement of LCELLs into specific LEs makes use of the
LogicLock feature of the licensed Quartus II Subscription Edition. The advantage of
this method is that the LCELLs can be easily relocated on the FPGA’s floorplan via
“drag-and-drop” in the Quartus Chip Planner. This manual procedure, is thus only
advisable for moderate amounts of LCELLs.

First, a Design Partition for each entity of the delay-based PUF (here for each
RO) has to be created. This can be done in the Chip Planner’s “Design Partitions
Window”. Afterwards, a LogicLock Region (LLR) for each Design Partition must
be created by right-clicking on the newly created partition entries and selecting
“LogicLock Region”→ “Create New LogicLock Region”. The newly created LLRs
are then shown in the Chip Planner’s “LogicLock Region Window”. For the LLR
of each RO, set “Size: fixed” and “State: Locked”, allowing to specify their width,
height and position. Setting “Reserved: On” determines that no other logic than the
corresponding Design Partition is placed in the respective LLR. Then go back to the

11 Implementation of Delay-Based PUFs on Altera FPGAs 223

Quartus main window and compile the whole project once more. Afterwards, the
Chip Planner shows the ROs placed in the defined LLR locations.

However, the placement of the LCELLs within the LEs of an LLR is still deter-
mined automatically by the compiler. We may now use the mouse cursor to drag-
and-drop the LCELLs from one LE to another, until we have the desired configura-
tion. For each drag-and-drop operation, a “change” is added to the Chip Planner’s
“Change Manager” window. This window is also where the button “Check and Save
All Netlist Changes” is found. When all drag-and-drop changes have been made,
click this button to start another partial compilation that relocates the LCELLs.

A new complete compiler run, however, would always undo thesemanual changes
and one has to go back to the “ChangeManager” to reapply them each time. Further-
more, it is not possible to relocate the LLRs keeping the custom LE placement within
them. To keep it, one has to go through the following process. First, in the Quartus
main window select “Assignments” → “Back-Annotate Assignments” → “Pin, cell
& device assignments”. This saves the current placement of the LCELLs such that
they are not undone when the project is compiled again. Then perform another full
compiler run and go back to the Chip Planner’s “Design Partitions Window” and for
the Design Partition of each RO, set “Netlist Type: Post-Fit” and “Fitter Preserva-
tion Level = Placement”. This forces future compiler runs to use the last placement
within theseDesign Partitions. Thus, it is now possible to relocate the LLRs keeping
their internal LCELL placement.

When theLLRs aremoved to new locations, the previously back-annotated assign-
ments are no longer valid and should be removed. This is done in the Quartus main
window by selecting “Assignments” → “Remove Assignments” → “Pin, Location
& Routing Assignments”. Notice though, that this also removes all previous pin
assignments; like, e.g. which pins of the FPGA are connected to an external clock,
LEDs or push buttons. These have to be redefined in the Quartus Pin Planner. Ideally,
all necessary assignments have been exported to a file from which they can easily be
imported again.

11.3.3 Defining the LUT Routing

The previous section showed how to enforce the placement of design components.
With the describedmethods, it is possible to specify inwhich logic elements (LEs) the
single components are implemented. But there is no immediate way to specify which
of the four LUT inputs of an LCELL is used for which input signal. Leaving this
up to the compiler may also lead to inferior uniqueness as outlined in the following.

Consider the simple example of an LUT that only passes on its one input signal to
its output—a typical application in delay-basedPUFsonFPGAs.TouseLUT inputA,
the LUTmask is set to 1010101010101010 = AAAA (cf. Fig. 11.3); for LUT input B
to 1100110011001100 = CCCC ; for LUT input C to 1111000011110000 = F0F0;
and for LUT input D to 1111111100000000 = FF00. All of these configurations
logically perform the same task. A glance at Fig. 11.3, however, reveals that the path

224 L. Feiten et al.

from input A to the output is the longest of all the inputs, whereas the path from input
D to the output is the shortest. In the real FPGA hardware it might not necessarily
be the case that the delay of input D to the output is indeed the fastest. This depends
on how the hardware is really structured. But there are definitely significant delay
differences between the different LUT inputs.

For the implementation of a delay-based PUF, such differences can have a severe
impact on the PUF quality. If, for example the LCELLs of one RO x mainly use their
LUT input A and the LCELLs of another RO y mainly use their input D, RO x will
most likely be slower than RO y on all FPGAs; leading to poor uniqueness. Such
scenarios do in fact occur, if the LUT routing is left to the compiler. This section
does therefore presents how to enforce the LUT routing as well.

To manually change the used LUT inputs, one has to open the Quartus Resource
Property Editor by double-clicking on an LE in theChip Planner. There, the “Signal
Name” of each LUT input can be edited or removed. To change, e.g. a LUT using
input C to using input D, copy the signal name for input C and paste it for input D.
Then remove the connection for input C. Lastly, change the LUT mask from F0F0
to FF00. Afterwards, the corresponding changes are listed in the Chip Planner’s
“Change Manager”, and can be applied by clicking the “Check and Save All Netlist
Changes” button.

Instead of applying all changes manually, which is rather tedious and error-prone
for larger amounts of LUTs, it is advisable to write a script to perform them auto-
matically. With a right-click in the “Change Manager”, any changes can be exported
to a TCL file (e.g. changes.tcl) that performs the changes when called with the
console command:

quartus_cdb -t changes.tcl

Thus, applying the above three example changes to, e.g. LCELL 3 of RO 0 can be
performed by the TCL script given in Listing 11.5. The actual changes are defined
in Lines 19–21 (add the connection to LUT input D), Lines 43–44 (remove the
connection of LUT input C), and Lines 63–65 (change the LUT mask). But the
preceding set node_properties commands (Lines 9–18, 30–42, 53–62) are
necessary, too. Here, the state of the LCELL prior to the change has to be given.
Notice that the “fanins” for the first change (Lines 13–17) only include the one
connection to LUT input C coming from the previous LCELL 2 (lc_gen:2). After
adding the connection to LUT input D, the “fanins” of the next change must also
include that connection (Lines 34–41). After removing the connection to LUT input
C, the “fanins” of the third change is only left with the connection to LUT input
D (Lines 58–60). Apart from the “fanins”, the current LUT mask has to be stated
in each set node_properties command (Lines 12, 33, 56). Would there be
more changes to this LCELL in this TCL script, the new LUT mask FF00 would
have to be stated for all subsequent changes.

11 Implementation of Delay-Based PUFs on Altera FPGAs 225

Listing 11.5 changes.tcl
1 package require ::quartus::chip_planner
2 package require ::quartus::project
3 load_chip_planner_utility_commands
4 project_open myPUF -revision myPUF
5 read_netlist
6 set had_failure 0
7
8 # Adding LUT input D of LCELL 3 of RO 0.
9 set node_properties [node_properties_record #auto \

10 -node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:3:lc_i \
11 -node_type LCCOMB_CII -op_mode normal -data_to_lut_c "Data C" \
12 -sum_lut_mask F0F0 \
13 -fanins [list \
14 [fanin_record #auto -dst {-port_type DATAC -lit_index 0} \
15 -src {-node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:2:lc_i \
16 -port_type COMBOUT -lit_index 0} -delay_chain_setting -1] \
17] \
18]
19 set result [make_ape_connection_wrapper \
20 $node_properties |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:3:lc_i DATAD 0 \
21 |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:2:lc_i COMBOUT 0 -1]
22 if { $result == 0 } {
23 set had_failure 1
24 puts "Use the following information to evaluate how to apply this change."
25 dump_node $node_properties
26 }
27 remove_all_record_instances
28
29 # Removing LUT input C of LCELL 3 of RO 0.
30 set node_properties [node_properties_record #auto \
31 -node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:3:lc_i \
32 -node_type LCCOMB_CII -op_mode normal -data_to_lut_c "Data C" \
33 -sum_lut_mask F0F0 \
34 -fanins [list \
35 [fanin_record #auto -dst {-port_type DATAC -lit_index 0} \
36 -src {-node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:2:lc_i \
37 -port_type COMBOUT -lit_index 0} -delay_chain_setting -1] \
38 [fanin_record #auto -dst {-port_type DATAD -lit_index 0} \
39 -src {-node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:2:lc_i \
40 -port_type COMBOUT -lit_index 0} -delay_chain_setting -1] \
41] \
42]
43 set result [remove_ape_connection_wrapper \
44 $node_properties |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:3:lc_i DATAC 0]
45 if { $result == 0 } {
46 set had_failure 1
47 puts "Use the following information to evaluate how to apply this change."
48 dump_node $node_properties
49 }
50 remove_all_record_instances
51
52 # Changing LUT Mask of LCELL 3 of RO 0.
53 set node_properties [node_properties_record #auto \
54 -node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:3:lc_i \
55 -node_type LCCOMB_CII -op_mode normal -data_to_lut_c "Data C" \
56 -sum_lut_mask F0F0 \
57 -fanins [list \
58 [fanin_record #auto -dst {-port_type DATAD -lit_index 0} \
59 -src {-node_name |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:2:lc_i \
60 -port_type COMBOUT -lit_index 0} -delay_chain_setting -1] \
61] \
62]
63 set result [set_lutmask_wrapper \
64 $node_properties |myPUF|ros:ros|ro:\\ ro_gen:0:ro_i |\\ lc_gen:3:lc_i \
65 "Sum LUT Mask" FF00]
66 if { $result == 0 } {
67 set had_failure 1
68 puts "Use the following information to evaluate how to apply this change."
69 dump_node $node_properties
70 }
71 remove_all_record_instances
72
73 # Apply the changes.
74 set drc_result [check_netlist_and_save]
75 if { $drc_result == 1 } {
76 puts "check_netlist_and_save: SUCCESS"
77 } else {
78 puts "check_netlist_and_save: FAIL"
79 }
80 if { $had_failure == 1 } {
81 puts "Not all set operations were successful"
82 }
83 project_close

226 L. Feiten et al.

1 ...
2 signal_name = ros:ros|ro:\ ro_gen :0: ro_i |\ lc_gen :2: lc_i {
3 LOCAL_LINE :X34Y33S0I2 ;
4 dest = (ros:ros|ro:\ ro_gen :0: ro_i |\ lc_gen :3:lc_i , DATAA), route_port = DATAC;
5 }
6 signal_name = ros:ros|ro:\ ro_gen :0: ro_i |\ lc_gen :3: lc_i {
7 LOCAL_LINE :X34Y33S0I3 ;
8 dest = (ros:ros|ro:\ ro_gen :0: ro_i |\ lc_gen :4:lc_i , DATAA), route_port = DATAD;
9 }

10 signal_name = ros:ros|ro:\ ro_gen :0: ro_i |\ lc_gen :4: lc_i {
11 LOCAL_LINE :X34Y33S0I4 ;
12 dest = (ros:ros|ro:\ ro_gen :0: ro_i |\ lc_gen :5:lc_i , DATAA), route_port = DATAC;
13 }
14 ...

Thus, a script generating the TCL file must—for each change—take into account
all previous changes made to the respective LCELL, which raises the question how
the initial states of all LCELLs can be known. As the compiler may chose the LUT
inputs arbitrarily, there is no way to predict the routing. Instead, it has to be extracted
after the compilation using the “Back-AnnotateAssignments” feature already applied
in Method 2 of Sect. 11.3.2. Only here, “Assignments” → “Back-Annotate Assign-
ments” → “Pin, cell, routing & device assignments” is selected, as opposed to just
“Pin, cell & device assignments”. This results in the generation of the Routing Con-
straints File myPUF.rcf in the project’s main directory. Within this file there are—
albeit not in this correct order—entries of the following form:

To extract which LUT inputs are used for which LCELL, one has to look at
the dest entry of the signal connected to that input. Thus, Lines 2–4 indicate that
the output of LCELL 2 is connected to LUT input C (DATAC) of LCELL 3; just as
Lines 6–8 indicate that the output of LCELL 3 is connected to LUT input D (DATAD)
of LCELL 4. The LUT masks are not explicitly stated in the Routing Constraints
File, but knowing the LUT inputs allows for them to be inferred.

The complete workflow for defining the LUT routing is hence:

1. Compile the Quartus project enforcing the desired LUT placement as explained
in Sect. 11.3.2.

2. Use the “Back-Annotate Assignments” feature to generate the Routing Con-
straints File (.rcf).

3. Check the .rcf file to extract original LUT inputs used by the compiler.
4. Create a TCL script changes.tcl to change the LUT inputs as desired.
5. Run quartus_cdb -t changes.tcl to execute the TCL script and apply

the changes.

11.4 Communication Between PC and FPGA

When the Quartus project is compiled successfully, the PUF implementation is ready
to be tested on real FPGAs. This section describes how the communication between
an FPGA and a PC can be achieved via the FPGA’s JTAG interface. Most FPGA
circuit boards have a USB port through which the JTAG interface can be accessed
andQuartus provides several TCL commands for all necessary communication tasks.

11 Implementation of Delay-Based PUFs on Altera FPGAs 227

Fig. 11.7 A schematic view
of the communication
between the TCL script
running on a PC and the
hardware controller on the
FPGA

Ro

%&

Figure11.7 shows a schematic view of the communication flow. Basically, the TCL
script tells the controller which two ROs should be compared to generate a single
response bit and afterwards reads out this bit.

For our running example, let the TCL script including these communication com-
mands be myPUF_test.tcl, given in Listing 11.6. In order to use the specific
TCL commands it is necessary to run the script within Quartus SignalTap, which is
done by entering the following in the command line:

quartus_stp -t myPUF_test.tcl

We will go through myPUF_test.tcl step by step and at the same time
explain its counterpart on the FPGA: i.e. the controller already mentioned in the
end of Sect. 11.3.1. Its VHDL code controller.vhd is given in Listing 11.7 and
Fig. 11.6 showed how is integrated in the overall design.

myPUF_test.tcl is divided into two parts: Lines 1–22 define the function
get_response that is called in Lines 34–36 of the script’s main section, each
time to sample one PUF response bit from the FPGA. Its argument challenge is
an eight-bit string, whose first four bits define one RO and last four bits the other RO
to be compared. Four bits per RO are sufficient here as we have only 16 ROs.

Line 24 executes quartus_pgm to programme the compiled bitstream onto the
FPGA. Its --cable argument selects the USB cable to be used. If there is only one,
the argument is 1 as the counting of cables starts at 1. The -o argument states the
path of the compiled .sof bitstream file; appended to the prefix “p;”.

Lines 26–29 select the USB cable and FPGA, needed later when opening
the FPGA in Line 31. Line 26 gets a list of all FPGA USB cables connected
to the PC. Line 27 selects one of those and stores its reference in the variable
hardware_name.Notice that the list indexhere starts at 0.Thishardware_name
is used in Line 28 to get a list of FPGA devices found at this cable. Normally,
there is only one FPGA per cable such that the first and only list element 0 is
selected in Line 29 and stored in the variable device_name. Both variables,
hardware_name and device_name are used as arguments of open_device
in Line 31 to start communicating with the FPGA. The locking of the device in

228 L. Feiten et al.

Listing 11.6 myPUF_test.tcl
1 proc get_response {challenge} {

2 set PUSH_CHALLENGE 0

3 set POP_RESPONSE 1

4 set START_COUNTERS 2

5 set STOP_COUNTERS 3

6 set RESET_COUNTERS 4

7

8 device_virtual_ir_shift -instance_index 0 -ir_value $PUSH_CHALLENGE

9 device_virtual_dr_shift -instance_index 0 \

10 -length [string length $challenge] -dr_value $challenge

11

12 device_virtual_ir_shift -instance_index 0 -ir_value $STOP_COUNTERS

13 device_virtual_ir_shift -instance_index 0 -ir_value $RESET_COUNTERS

14 device_virtual_ir_shift -instance_index 0 -ir_value $START_COUNTERS

15 after 20

16 device_virtual_ir_shift -instance_index 0 -ir_value $STOP_COUNTERS

17 device_virtual_ir_shift -instance_index 0 -ir_value $POP_RESPONSE

18 set response [device_virtual_dr_shift -instance_index 0 \

19 -length 1 -dr_value 0]

20

21 puts "$challenge: $response"

22 }

23

24 exec quartus_pgm --cable=1 --mode=JTAG -o "p;myPUF/output_files/myPUF.sof"

25

26 set hardware_names [get_hardware_names]

27 set hardware_name [lindex $hardware_names 0]

28 set device_names [get_device_names -hardware_name $hardware_name]

29 set device_name [lindex $device_names 0]

30

31 open_device -device_name $device_name -hardware_name $hardware_name

32 device_lock -timeout 10000

33

34 get_response "00000001"

35 get_response "00010010"

36 get_response "00100011"

37

38 device_unlock

39 close_device

Line 32 is necessary for the communication commands in the get_response
function. In the end (Lines 38 and 39), the device is unlocked and closed again.

Within the get_response function, the first commands (Lines 2–6) define
custom instructions used in the communication with the FPGA. Each instruction is
really an integer to be transmitted via JTAG to the FPGA’s instruction register with
the device_virtual_ir_shift command (Lines 8, 12, 13, 14, 16 and 17).
The -instance_index argument must be set even if there is only one Virtual
JTAG instance in our implementation. The -ir_value argument is the instruction
to be transmitted. We will explain the purpose each instruction while going through
the remainder of get_response. Simultaneously, we will go through the code
of controller.vhd (Listing 11.7) to explain the interaction between the TCL
script and the FPGA.

The controller’s input ports ir_in, tck_in, tdi_in, cdr_in, sdr_in and
uir_in are connected to the outputs of the Virtual JTAG component as seen

11 Implementation of Delay-Based PUFs on Altera FPGAs 229

Listing 11.7 controller.vhd
1 LIBRARY IEEE;
2 USE IEEE.STD_LOGIC_1164.ALL;
3

4 ENTITY controller IS
5 GENERIC (select_width : INTEGER := 4);
6 PORT (
7 ir_in : IN STD_LOGIC_VECTOR (2 DOWNTO 0);
8 tck_in : IN STD_LOGIC;
9 tdi_in : IN STD_LOGIC;

10 cdr_in : IN STD_LOGIC;
11 sdr_in : IN STD_LOGIC;
12 uir_in : IN STD_LOGIC;
13 compare_in : IN STD_LOGIC;
14

15 tdo_out : OUT STD_LOGIC;
16 run_out : OUT STD_LOGIC;
17 reset_out : OUT STD_LOGIC;
18 challenge_out : OUT STD_LOGIC_VECTOR (2* select_width -1 DOWNTO 0)
19);
20 END controller;
21

22 ARCHITECTURE arch OF controller IS
23 CONSTANT PUSH_CHALLENGE : STD_LOGIC_VECTOR (2 DOWNTO 0) := "000";
24 CONSTANT POP_RESPONSE : STD_LOGIC_VECTOR (2 DOWNTO 0) := "001";
25 CONSTANT START_COUNTERS : STD_LOGIC_VECTOR (2 DOWNTO 0) := "010";
26 CONSTANT STOP_COUNTERS : STD_LOGIC_VECTOR (2 DOWNTO 0) := "011";
27 CONSTANT RESET_COUNTERS : STD_LOGIC_VECTOR (2 DOWNTO 0) := "100";
28 SIGNAL challenge : STD_LOGIC_VECTOR (2* select_width -1 DOWNTO 0);
29 SIGNAL run : STD_LOGIC;
30 BEGIN
31 challenge_out <= challenge;
32 run_out <= run;
33 reset_out <= ’1’ WHEN ir_in = RESET_COUNTERS and uir_in = ’1’
34 ELSE ’0’;
35

36 PROCESS(tck_in)
37 BEGIN
38 IF RISING_EDGE (tck_in) THEN
39 IF ir_in = PUSH_CHALLENGE and sdr_in = ’1’ THEN
40 challenge <= tdi_in & challenge (2* select_width -1 DOWNTO 1);
41 ELSIF ir_in = POP_RESPONSE and cdr_in = ’1’ THEN
42 tdo_out <= compare_in;
43 ELSIF ir_in = START_COUNTERS and uir_in = ’1’ THEN run <= ’1’;
44 ELSIF ir_in = STOP_COUNTERS and uir_in = ’1’ THEN run <= ’0’;
45 END IF;
46 END IF;
47 END PROCESS;
48 END arch;

230 L. Feiten et al.

in Fig. 11.6. tck_in is the JTAG clock, synchronising the Virtual JTAG opera-
tions with the sequential operations of the controller (Lines 36 and 38). ir_in
is connected to the JTAG instruction register, determining the state of the con-
troller at any time (Lines 33, 39, 41, 43 and 44 of controller.vhd). As
already mentioned, the loading of an instruction into ir_in from the TCL script
is done by the device_virtual_ir_shift command. In Lines 23–27 of
controller.vhd the instructions are defined equivalently to the definitions in
the TCL script.

The JTAG communication only has a bit-width of one. Thus, a value of more
bits—like the three-bit instruction—must be shifted through bit by bit. The shifting
of instructions is done automatically by device_virtual_ir_shift. Once
it is complete, the uir_in flag is set to 1 indicating that the most recent update
of the instruction register is complete. Therefore, it is always necessary to check
for uir_in = ‘1’ when interpreting the value of ir_in (Lines 33, 43 and 44 of
controller.vhd). Lines 39 and 41 are exceptions as they work with the flags
cdr_in and sdr_in, which are themselves indicators that the last instruction
register shift has been finished.

Thus, Line 8 of myPUF_test.tcl shifts the PUSH_CHALLENGE instruction
into the instruction register. Afterwards, Line 9 performs a data shift of the eight-
bit PUF challenge. The -length argument states the length of the -dr_value
argument, which is thereby shifted through the tdi_in port; one bit per tck_in
clock cycle. This is matched by Lines 39 and 40 of controller.vhd, in which
one bit per cycle is shifted into the controller’s challenge register. The sdr_in
flag is set to 1 until the shift is completed.

With the challenge register being connected to the challenge_out port,
the multiplexers now have the desired values assigned to their select inputs (cf.
Figure11.6) and the frequencies of the selected ROs can be sampled. This is
done in Lines 12–16 of myPUF_test.tcl by loading the STOP_COUNTERS,
RESET_COUNTERS and STOP_COUNTERS instructions, followed by a waiting
time of 20ms, followed by loading the STOP_COUNTERS instruction. The first
STOP_COUNTERS in Line 12 is merely a precaution to make sure the ROs are really
stopped. In controller.vhd, the run register—connected to the run_out—
is determined by the START_COUNTERS and STOP_COUNTERS instructions
(Lines 43 and 44), as thereset_out port is determined by theRESET_COUNTERS
instruction (Line 33).

After the RO sampling and hence the response bit generation is finished, it must be
extracted from theFPGA.This is initiated inLine 17 of myPUF_test.tcl by load-
ing the POP_RESPONSE instruction, followed by another device_virtual_
dr_shift in Line 18, whose result is stored in the response variable. In Line 21,
the result is printed to the screen.

In the first clock cycle of device_virtual_dr_shift, the cdr_in flag—
not yet the sdr_in flag—is set, signalling the controller to capture the value to be
shifted out. This is done in Line 41 of controller.vhd, where compare_in is
simply connected to the tdo_out port. If we had to shift out a value with more than
one bit, we would have had to store the value in a register upon cdr_in, connect the

11 Implementation of Delay-Based PUFs on Altera FPGAs 231

first bit of that register to tdo_out, and shift it on—one bit per subsequent clock
cycle—as long as sdr_in is still set. But as our response bit here only consists of
one bit, this minimal implementation is sufficient.

11.5 Traps and Pitfalls

When designing a delay-based PUF on FPGAs, there are certain peculiarities to
watch out for. When the goal is to achieve good PUF uniqueness, the delays must be
so homogeneous that the impact of device-specific process variations can be large
enough to “tip the scales”; i.e. to determine the PUF signature values individually
for each device. Furthermore, when good PUF reliability is desired, it is necessary
to prevent all kinds of delay variance while the device is in operation.

So far we have shown how to cater for PUF uniqueness by making the place-
ment and routing of delay-relevant PUF structures as homogeneous as possible. The
thereby achieved PUF quality is already within acceptable limits [5]. Further exper-
imental results, however, show that even with homogeneous routing, there are still
delay biases which are the same for all devices leading to a decreased uniqueness.
Furthermore, it was shown in how far switching activity on the remaining circuit can
influence the delays of the PUF circuitry. Such effects have to be considered, when
good PUF quality shall be achieved.

Delay biases based on location

For reasons lying in the physical properties of an FPGA chip, the logic elements in
different locations can have tendencies for faster or slower delays, called biases. This
was first reported for Xilinx FPGAs by [11, 13]. We conducted a thorough analysis
on Altera FPGAs regarding location dependent delay biases by evaluating the results
of counters connected to ROs placed in all possible locations. The averages of 38
Cyclone IV and 20 Cyclone II FPGAs were sampled and visualised as shown in
Fig. 11.8. It can be seen that the biases are quite different in different locations. Fur-
thermore, depending on the FPGA technology, the bias distribution is very different
as well.

If the bias difference between two locations is too large, a delay-based PUF will
generate the same response for all devices when comparing the delays of these
locations. This is because the device-specific delay difference caused by process
variation is too subtle to overcome the bias [4]. Thus, when implementing a delay-
based PUF, the compared locations must either have very equal biases—as suggested
in [13] which, however, drastically reduces the amount of possible comparisons—or
the biases have to be compensated otherwise. In [4] we showed that the biases can
be estimated with sufficient accuracy based on just a small sample of devices. When
the biases are known, they can be compensated on each device at the time the PUF
response is generated.

232 L. Feiten et al.

Fig. 11.8 The colour at the
position of an LAB
represents the average
frequency of a ring oscillator
implemented there. The
average is calculated from
sampling 38 Cyclone IV and
20 Cyclone II FPGAs

Switching activity of non-PUF circuitry

The reliability of a delay-based PUF is hampered if the delays of compared compo-
nents change in opposing directions. In the case of an RO-PUF for example, there
is no change in the PUF response as long as the delays of compared ROs change in
the same direction: the faster RO will still be the faster. But if the delays change in
different directions the PUF response will be different.

In our experiments, we found that delays are influenced by switching activity on
the FPGA. There are two main effects: heating and energy consumption. It could be
asserted that heating only has a global effect influencing all locations in the same
way. Energy consumption, however, influences closer locations more than remote
locations. The experiment shown in Fig. 11.9 illustrates this. For the first 90min,
only a single RO is running whose start frequency depends on the initial temperature
of the FPGA. The oscillation of the RO is slowly heating up the chip, reducing
its frequency. After about 90min, the additional 79 ROs are activated. We see an
immediate frequency drop which is larger for the design in which the sampled RO is
right in the middle of the additional ROs. Afterwards, the switching activity of the
additional ROs is heating up the FPGA even further. At 180min, the additional ROs
are deactivated again, whereupon the frequencies of both ROs are again the same.

Thus, when implementing a delay-based PUF, it must be ensured that there is
always the same kind of switching activity in the non-PUF circuitry during the
response generation. Or these temporary biases induced by switching activity must
be compensated just as those induced by the physical properties described above.
One might even consider using the non-PUF switching activity as another layer of
security, such that the correct response is only generated if and only if the right non-
PUF activity is executed. On the other hand, one must consider that an attacker might
find ways to manipulate the non-PUF activity in ways to alter the PUF response of
an arbitrary device.

11 Implementation of Delay-Based PUFs on Altera FPGAs 233

Fig. 11.9 Experiments with
two different designs show
that energy consumption but
not heating of switching
activity can influence ROs
depending on their distance
to the source of switching
activity. The two curves in
the plot show the relative
frequencies of a sampled RO
in both designs

11.6 Conclusion

Wehave shown themethods necessary to ensure homogeneous placement and routing
of delay-based PUFs onAlteraCyclone FPGAs.Without these PUFuniqueness is not
achievable.A complete description detailing all required steps has so far beenmissing
in the literature. Furthermore, we have shown how the communication between the
FPGA and a PC can be managed, enabling also novice readers to embark directly on
their own PUF experiments.

Section11.5 included insights from the authors’ most recent research results.
Future work will consist of developing and refining methods to cope for example
with location based delay biases or with the biases induced by different non-PUF
switching activity. The application of programmable delay lines [3] in this field is a
very promising perspective.

References

1. Bohm C, Hofer M, Pribyl W. A microcontroller SRAM-PUF. In: 2011 5th international con-
ference on network and system security (NSS); 2011. p. 269–73. doi:10.1109/ICNSS.2011.
6060013.

2. Bossuet L, Ngo XT, Cherif Z, Fischer V. A PUF based on a transient effect ring oscillator and
insensitive to locking phenomenon. IEEE Trans Emer Top Comput. 2014;2(1):30–6. doi:10.
1109/TETC.2013.2287182.

http://dx.doi.org/10.1109/ICNSS.2011.6060013
http://dx.doi.org/10.1109/ICNSS.2011.6060013
http://dx.doi.org/10.1109/TETC.2013.2287182
http://dx.doi.org/10.1109/TETC.2013.2287182

234 L. Feiten et al.

3. Chen YY, Huang JL, Kuo T. Implementation of programmable delay lines on off-the-shelf
GPGAS. In: AUTOTESTCON, IEEE; 2013. p. 1–4. doi:10.1109/AUTEST.2013.6645040.

4. Feiten L,Martin T, SauerM, Becker B. Improving RO-PUF quality on FPGAs by incorporating
design-dependent frequency biases. In: IEEE European test symposium; 2015. doi:10.1109/
ETS.2015.7138749.

5. Feiten L, Spilla A, Sauer M, Schubert T, Becker B. Implementation and analysis of ring
oscillator PUFs on 60 nm Altera Cyclone FPGAs. Inf Secur J Glob Perspect. 2013;22(5–
6):265–73. doi:10.1080/19393555.2014.891281.

6. Fournier J, Loubet-Moundi P. Memory address scrambling revealed using fault attacks. In:
2010 workshop on fault diagnosis and tolerance in cryptography (FDTC); 2010. p. 30–6.
doi:10.1109/FDTC.2010.13.

7. Guajardo J, Kumar SS, Schrijen GJ, Tuyls P. FPGA intrinsic PUFs and their use for IP pro-
tection. In: Proceedings of the 9th international workshop on cryptographic hardware and
embedded systems. Springer; 2007. p. 63–80. doi:10.1007/978-3-540-74735-2_5.

8. Kumar S, Guajardo J, Maes R, Schrijen GJ, Tuyls P. The butterfly PUF: protecting ip on every
fpga. In: IEEE international workshop on hardware-oriented security and trust, 2008. HOST;
2008. p. 67–70. doi:10.1109/HST.2008.4559053.

9. LimD, Lee J, Gassend B, SuhG, vanDijkM,Devadas S. Extracting secret keys from integrated
circuits. IEEE Trans Very Large Scale Integr VLSI Syst. 2005;13(10):1200–5. doi:10.1109/
TVLSI.2005.859470.

10. Maiti A, Kim I, Schaumont P. A robust physical unclonable function with enhanced challenge-
response set. IEEE Trans Inf Forensics Secur. 2012;7(1):333–45. doi:10.1109/TIFS.2011.
2165540.

11. Maiti A, Schaumont P. Improving the quality of a physical unclonable function using config-
urable ring oscillators. In: International conference on field programmable logic and applica-
tions, 2009. FPL; 2009. p. 703–7. doi:10.1109/FPL.2009.5272361.

12. Merli D, Schuster D, Stumpf F, Sigl G. Semi-invasive EM attack on FPGA RO PUFs and
countermeasures. In: Proceedings of the workshop on embedded systems security, WESS ’11.
ACM; 2011. p. 2:1–2:9. doi:10.1145/2072274.2072276.

13. Merli D, Stumpf F, Eckert C. Improving the quality of ring oscillator PUFs on FPGAs. In:
Proceedings of the 5th workshop on embedded systems security; 2010. p. 9:1–9:9. doi:10.
1145/1873548.1873557.

14. Note JB, Rannaud E. From the bitstream to the netlist. In: Proceedings of the 16th Int’l
ACM/SIGDA symposium on FPGAs, FPGA ’08. ACM; 2008. p. 264. doi:10.1145/1344671.
1344729.

15. Rührmair U, Sölter J, Sehnke F. On the foundations of physical unclonable functions; 2009.
https://eprint.iacr.org/2009/277.pdf.

16. Sklavos N. Securing communication devices via physical unclonable functions (PUFs). In:
Reimer H, Pohlmann N, Schneider W, editors. ISSE 2013 securing electronic business
processes. FachmedienWiesbaden: Springer; 2013. p. 253–61. doi:10.1007/978-3-658-03371-
2_22.

17. Skorobogatov S. Flashmemory ‘bumping’ attacks. In:Mangard S, Standaert FX, editors. Cryp-
tographic hardware and embedded systems, CHES 2010. Lecture notes in computer science,
vol. 6225. Berlin Heidelberg: Springer; 2010. p. 158–172. doi:10.1007/978-3-642-15031-9_
11.

18. SuhG, O’Donnell C, Devadas S. Aegis: a single-chip secure processor. IEEEDes Test Comput.
2007;24(6):570–80. doi:10.1109/MDT.2007.179.

19. Suh GE, Devadas S. Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of the 44th annual design automation conference; 2007. p. 9–14.
doi:10.1145/1278480.1278484.

20. Yin CE, QuG. Temperature-aware cooperative ring oscillator PUF. In: Proceedings of the 2009
IEEE international workshop on hardware-oriented security and trust; 2009. p. 36–42. doi:10.
1109/HST.2009.5225055.

http://dx.doi.org/10.1109/AUTEST.2013.6645040
http://dx.doi.org/10.1109/ETS.2015.7138749
http://dx.doi.org/10.1109/ETS.2015.7138749
http://dx.doi.org/10.1080/19393555.2014.891281
http://dx.doi.org/10.1109/FDTC.2010.13
http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1109/HST.2008.4559053
http://dx.doi.org/10.1109/TVLSI.2005.859470
http://dx.doi.org/10.1109/TVLSI.2005.859470
http://dx.doi.org/10.1109/TIFS.2011.2165540
http://dx.doi.org/10.1109/TIFS.2011.2165540
http://dx.doi.org/10.1109/FPL.2009.5272361
http://dx.doi.org/10.1145/2072274.2072276
http://dx.doi.org/10.1145/1873548.1873557
http://dx.doi.org/10.1145/1873548.1873557
http://dx.doi.org/10.1145/1344671.1344729
http://dx.doi.org/10.1145/1344671.1344729
https://eprint.iacr.org/2009/277.pdf
http://dx.doi.org/10.1007/978-3-658-03371-2_22
http://dx.doi.org/10.1007/978-3-658-03371-2_22
http://dx.doi.org/10.1007/978-3-642-15031-9_11
http://dx.doi.org/10.1007/978-3-642-15031-9_11
http://dx.doi.org/10.1109/MDT.2007.179
http://dx.doi.org/10.1145/1278480.1278484
http://dx.doi.org/10.1109/HST.2009.5225055
http://dx.doi.org/10.1109/HST.2009.5225055

11 Implementation of Delay-Based PUFs on Altera FPGAs 235

21. Yu H, Leong P, Hinkelmann H, Moller L, Glesner M, Zipf P. Towards a unique FPGA-based
identification circuit using process variations. In: International conference on field program-
mable logic and applications, 2009. FPL; 2009. p. 397–402. doi:10.1109/FPL.2009.5272255.

22. YuMD, Devadas S. Secure and robust error correction for physical unclonable functions. IEEE
Des Test Comput. 2010;27(1):48–65. doi:10.1109/MDT.2010.25.

23. Zhang J, Lin Y, Lyu Y, Qu G. A PUF-FSM binding scheme for FPGA IP protection and pay-
per-device licensing. IEEE Trans Inf Forensics Secur. 2015;10(6):1137–50. doi:10.1109/TIFS.
2015.2400413.

http://dx.doi.org/10.1109/FPL.2009.5272255
http://dx.doi.org/10.1109/MDT.2010.25
http://dx.doi.org/10.1109/TIFS.2015.2400413
http://dx.doi.org/10.1109/TIFS.2015.2400413

Chapter 12
Implementation and Analysis of Ring
Oscillator Circuits on Xilinx FPGAs

Mario Barbareschi, Giorgio Di Natale and Lionel Torres

12.1 Introduction

As security of digital applications relies on trustworthy hardware platforms, new
design challenges emerge from requirements of in-field applications which adopt
field programmable gate arrays (FPGAs) as the hardware implementation technology.
Indeed, the FPGA technology, contrary to the application-specific integrated circuits
(ASICs), is able to be configured and updated in-field, out of the foundry, bymeans of
a configuration file called bitstream. Its design methodology allows to fast prototype
hardware devices and to avoid expensive nonrecurring engineering costs, which
characterize ASIC projects, especially when the production scale is limited to few
units. These advantages are really attractive and have created a new huge market
segment around such devices.

However, as they are reconfigurable, FPGAs are more exposed to security attacks
than ASICs. For instance, the intellectual property (IP) theft attack can be accom-
plished by read out the bitstream from the internal configuration memory or from
external flash memories, once the application is deployed. Bitstream theft enables
cloning of the original device into compatible devices or, by exploiting reverse engi-
neer techniques, to analyze the netlist disclosing sensitive information, such as cryp-
tographic keys or algorithms.

M. Barbareschi (B)
DIETI—Department of Electrical Engineering and Information Technologies,
University of Naples Federico II, Via Claudio, 21 - 80125 Naples, Italy
e-mail: mario.barbareschi@unina.it

G. Di Natale · L. Torres
LIRMM UMR 5506—CNRS—University of Montpellier, 161 rue Ada,
34095 Montpellier Cedex 5, France
e-mail: giorgio.dinatale@lirmm.fr

L. Torres
e-mail: lionel.torres@lirmm.fr

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_12

237

238 M. Barbareschi et al.

For these reasons, FPGA vendors have been starting to implement decryption
algorithms on new and high-end FPGA devices, in order to program them by using
enciphered bitstreams. Indeed, ciphered bitstreams guarantee confidentiality against
IP theft and authenticity, such that it is not possible to use the bitstream on FPGAs
that are not configured with the secret key. However, this technique is not a silver
bullet for the FPGA security, since tampering and side-channel attack techniques are
improving in efficacy and effectiveness, as recently demonstrated in [16].

With respect to the trustworthiness of integrated circuit (IC), the most important
breakthroughs were given by the introduction of physically unclonable functions
(PUFs) [5]. They exploit unavoidable and uncontrollable manufacturing imperfec-
tions, which are tolerated for the properly circuit operations, giving unique and
unclonable hardware signatures. For instance, the propagation delay, through either
nominally identical metal wires or through gates, depends on these variations. Hence,
the PUF circuit has to mainly quantify a physical phenomenon affected by variability
in order to be able to provide some responses. Since exploited quantities are from
electrical phenomena, the responses are inherently affected by noise. The environ-
mental and working conditions, such as the temperature and the supplied voltage,
can dramatically alter PUFs responses, making them not suitable secure primitives
due to lack of reliability.

PUFs work in a challenge/response paradigm, such that a PUF is a function which
maps a set of inputs (challenges) to a set of outputs (responses) in a unique manner,
defining a challenge/response pairs (CRPs) set. CRPs can be pragmatically used
as key storage and key material provider and, if they are characterized by a huge
cardinality, they can be even adopted in an authentication scheme [17]. PUFs are
hard to attack and, furthermore, are tamper evident, such as physical attack attempts
modify permanently their responses [5, 10].

Among all PUFs architectures that are discussed in the literature, we can list the
SRAM PUF [4, 6], MRAM PUF [19] and the D flip-flop PUF [18] for the memory-
based family, and the Arbiter PUF [8], the ring oscillator (RO) PUF [11–13, 17],
the Butterfly PUF [7], and the Anderson PUF [2, 3] for the delay-based family.
Ring oscillators-based PUFs (ROPUFs) are currently the most affordable secrecy
source, since they can be easily implemented on every hardware technology, even
on low-end and old FPGA device families, and received a great attention from the
research community [13–15, 23, 24]. ROPUFs work by exploiting the variability on
oscillations frequencies: considering a pair of ring oscillators (ROs), it is possible to
extract one response bit by testing their frequencies with a binary comparator.

In this chapter, through a large amount of experiments conducted over Xilinx
Spartan-6 XCS6LX16 45nm devices, we collect some characterizations of RO fre-
quencies, mainly aiming at analyzing how frequencies, generated by different ROs
structures placed over a device and among different devices, are distributed. Along
the way, we detail how to implement a RO on such devices and how to measure
and extract frequencies from each implemented RO. In particular, for the frequency
extraction we adopt Xilinx ChipScope. Furthermore, targeting a single device,

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 239

we empirically study some noise sources, in particular the temperature variations, the
logic which surrounds the ROs and the aging, in order to give better characterizations
of read frequencies under different working conditions.

12.2 Xilinx FPGA Fabric

For any FPGA technology, the basic configurable element is the look-up table (LUT),
which is a read-only memories able to implement any boolean function of k inputs
depending on the configuration saved in it. Practically, the input of LUTs acts as an
address signal and ROM values establish the output value of the function.

For Xilinx FPGAs, old and low-end devices are equipped with 4-input LUTs
(e.g., Spartan-3/3E), while medium and high-end devices are characterized by
6-inputs LUTs. Any family arranges LUTs inmore complex structures, called Slices.
Most of them contains LUTs, flip-flops, carry propagation and generation logic and
other basic elements. With the Spartan technology, Xilinx introduced the Slince M
and L. Slice M is a Slice L with other additional features: indeed, Slice M has LUTs
with can be configured to accomplish memory functionality, such as RAM, ROM,
shift registers, and so on. Slices are grouped together to form the configurable logic
block (CLB), which is strictly coupled with the switch matrix, used to communicate
with other CLBs. CLBs are arranged in both spatial dimensions and this allows to
address each CLB, and hence each slice, with two coordinates X and Y. Depending
on the family, a CLB can include 2 or 4 slices, and typically each one contains one
Slice M and one Slice L. Moreover, the Xilinx FPGA technology is characterized by
a fast carry propagation path, that is a dedicated interconnection between slices that
belong to the same columns, avoiding to route carry signals through switch matrices.

As for the Xilinx Spartan-6, adopted in this chapter, its fabric is characterized
by 3 different slices [21]. Besides the previously described Slice L and slice M,
The Slice X is the simplest structure as it is characterized by four 6-input LUTs and
eight flip-flops. EachCLBof the Spartan-6 technology contains a pair of slices, either
Slice L and Slice X or SliceM and Slice X. The two different slice pairs are alternated
among CLBs columns, hence the odd CLBs columns contain a Slice L and Slice X
pair, while the even columns are characterized by the pair Slice M and Slice X. The
targeted FPGA device, namely the XC6SLX16, has a CLB array composed of 18
columns and 60 rows.

12.3 RO Frequencies Characterization

The ROPUF is an easily implementable hardware primitive and, with respect to
other proposed PUFs architectures, it does not require special attention to symmetric
placement, since its structure is a single closed loop [17]. For the FPGA technol-
ogy, this implies a suitable implementation for every device and family. The design

240 M. Barbareschi et al.

parameters which characterize the RO loop include: the number of stages, the routing
and the placement of the loop. As for the first, it affects the oscillation frequency
because the increase of involved stages in the loop causes a greater delay. In the same
manner, the routing has to be considered since longer connections cause slower oscil-
lation frequencies. At the end, the placement of the RO loop involves the choice of
which basic elements implement the ring stages, i.e., the relative position among
loop stages and the position of them in the chip.

Other parameters are able to alter the RO frequency, in particular the working
conditions of the device, which are dynamic as they change over time, contrary to
previous oneswhich are static andfixed at design time.Mainly, they canbe considered
as unwanted side effects and which cannot be controlled neither at design level nor
during the lifetime. First of all, the supplied voltage is directly related to the signal
propagation delay, hence the RO frequency is sensitive to the voltage variations.
Those variations can be caused either by unstable supplied voltage or by variable
workload of the logic that surrounds the RO, which absorbs a significant current
and causes a local voltage drop. Hence, the switching activity, i.e., the logical values
switching frequency of the signals of the surrounding logic represents also a disturb.

The die temperature, similarly to the voltage, is able to cause a degradation of
the design performance, since at higher temperature values the signal propagation
delay increases. Even in this case, two sources can be identified. Obviously the envi-
ronmental temperature in which the circuit works is responsible for the signal delay
over all the die, but a secondary contribution can be caused by local heating. Indeed,
a high speed circuitry is able to warm the surrounding area due to the dissipation
effect, hence it might affect the speed of other on-chip structures.

Another investigated side effect is the aging of the chip. Indeed, even with per-
fect and stable working conditions, during the chip lifetime, the frequency can be
altered by the aging in a permanent manner. In fact, contrary to previous discussed
effects, the aging of the chip is incremental and cannot be recovered once happened.
Aging has different contributions, such as the hot carrier injection, the oxide break-
down, the electromigration phenomenon, the negative and positive bias temperature
instability [9].

12.3.1 RO Structure and Measurement Architecture

The RO structure that we adopt in this chapter is reported in Fig. 12.1. A control gate
interrupts the ring of inverters in order to enable or disable the oscillation; moreover
its output is exploited to obtain the oscillating signal. If the inverting stages are odd,
the control gate must be an AND gate, otherwise a NAND gate.

In order to measure the RO frequency value, we exploit two counters (see
Fig. 12.2). One counter establishes the time window in which the frequency mea-
surement has to be accomplished (the clock counter), hence it is timed by the system
clock, which frequency is C , and it is configured to count up to a maximum fixed
value T . The other, namely the ring oscillator counter, is fed with the RO output, so it

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 241

Fig. 12.1 Ring oscillator
loop controlled by an AND
gate

enable output

Fig. 12.2 High-level
schematic view of the
adopted design architecture

clock counter

ring oscillator
counter

ring
oscillator

system
clock VIO

ICON

counts the edges (rising or falling) of the oscillations.When the first clock reaches the
established maximum counting value, the RO is disabled and the RO frequency can
be obtained computing R × C/T , with R the number of counted oscillations edges.
Due to the uncertainty on the system clock phases, this measurement introduces a
measurement error ε = ± C

2×T .
The clock counter width is 18bits and the RO counter width is fixed to 24bits.

This choice enables to keep the RO and the two counters bounded in a block of
6 × 2 = 12 CLBs, such that it can be easily placed over allowed FPGA positions.
The resources allocated for the RO allows to instantiate a single RO with a number
of stages up to 8.

As we are interesting in measuring frequency from ROs which are identically
routed and placed on homologous structures, we defined each component as a relative
placed macro (RPM). Contrary to hard macros, RPM allows to keep the original
VHDL code and collect any information on the place and route as user constraint
parameters. Each implemented entity is fixed thanks to a dedicated RPM in position
within the cell and in used basic elements. This implies that each cell translation does
not alter the design at the netlist level description. Furthermore, entities enrichedwith
an RPM can be easily moved on the chip, arbitrary placing them anywhere.

As for the communication with a workstation to read the bits contained in the RO
counter, the design architecture is instrumented with Xilinx ChipScope. ChipScope
is a hardware and software suite that Xilinx includes in the design flow to allow the
live debugging by means of the JTAG protocol. Indeed, by placing virtual I/O (VIO)
and in logic analyzer (ILA), an user can instrument a design in order to provide
inputs and retrieve outputs from a targeting HDL entity. Both the VIO and ILA are
instantiated as IPCores within the design and they have to be properly connected with
entity under test. Once the design flow is completed, the FPGA can be programmed
with the obtained bitstream and analyzed by the ChipScope software, which offers a
view pretty much like the HDL simulation environment. To retrieve the RO counter
value, the design has to include only one VIO.

To automatize the frequency extraction phase, the Xilinx ChipScope have avail-
able a set of APIs which are accessible by means of the TCL scripts. So, by adopting

242 M. Barbareschi et al.

such ChipScope libraries, the value can be retrieved by the workstation in which the
board is plugged-in (Fig. 12.2).

Like the RO measurement cell, all involved ChipScope cores are fixed and
bounded in an RPM.

12.4 Result and Validation

In this section, we show complete analysis for frequencies extracted from each imple-
mented RO under different conditions. In particular, we analyze the effect of the logic
which surrounds the RO, the temperature, and the aging. As for the static parameters,
we analyze frequencies distribution over devices and with attention to the place and
routing configurations.

12.4.1 Analysis of the Logic Surrounding the RO

As the surrounding logic is unavoidable to on-chipmeasure the frequency, it is neces-
sary to evaluate how components surrounding ROs may influence their frequencies.
At this aim, first of all we evaluated the impact of the proximity of both two counters
and the ChipScope logic to the RO and, to avoid unwanted effects of temperature
variations, we kept the external temperature fixed at 26.6 ◦C. This was accomplished
by performing tests controlling the temperature of the FPGA by means of a thermal
chamber. As for the RO, we targeted a single 5-stage RO and we implemented it by
exploiting several syntheses, changing the on-chip position of the clock counter, RO
counter and ChipScope, one by one keeping the others fixed. The design diversity
allowed us to see how the surrounding logic involved in a frequency measurement
affects read frequency values. Each experimental campaign involved about 1000
experiments and each one was repeated 25 times in order to mitigate the measuring
error by averaging the values. Figure12.3 reports frequencies distributions, obtained
by allocating counters and the ChipScope logic in different positions, considered as
percentage variations from the average value. As for the RO counter, its position
does mostly not influence the frequency value, except for some positions around
the same rows in which the RO is placed, causing an increase of 0.1% on read
values (Fig. 12.3a). In contrast, the read frequency is sensitive to the placement of
the clock counter, with an alternating of decreases and increases of −1%/+ ∼ 3%
(Fig. 12.3b). In both cases, the measured frequencies turn out to be stable when the
counters are placed close to the ROs. Figure12.3c, d show that the impact of the
ChipScope logic on read frequencies is practically insignificant, even when chang-
ing the shape in which its logic is bounded. In particular, placing ChipScope logic in
different vertical positions does not have any significant effect, but moving it hori-
zontally causes a slightly frequencies decrease (maximum ∼0.05%) proportionally

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 243

99.7 % 99.8 % 99.9 % 100 % 100.1 %
0

0.05

0.1

0.15

0.2
(a) (b)

(c) (d)
Frequency (%)

D
en

si
ty

99 % 100 % 101 % 102 % 103 %
0

0.1

0.2

0.3

0.4

Frequency (%)

D
en

si
ty

99.9 % 99.95 % 100 % 100.05% 100.1 % 100.15%
0

0.02

0.04

0.06

0.08

Frequency (%)

D
en

si
ty

99.9 % 99.95 % 100 % 100.05% 100.1 % 100.15%
0

0.05

0.1

0.15

0.2

Frequency (%)
D

en
si

ty

Fig. 12.3 Distribution of ROs frequencies values, considered as percentage variation from the
average, with different places for counters and ChipScope debug logic

to the distance. Hence ChipScope can be considered as a nonintrusive surrounding
logic. Indeed, during the oscillations sampling process, its logic does not work.

To better evaluate the effect of an intrusive logic that heavily works near the RO,
we designed an architecture characterized by a pseudorandom behavior, inspired
by the linear feedback shift register (LFSR). Compared to a classic LFSR, that is a
single shift register whose serial input bit is a nonlinear function of previous states,
we define a logic which perfectly fits the FPGA slices structure to guarantee higher
workload. A very pervasive surrounding logic has to exploit all LUTs inputs with
high switching activity signals and has to occupy as much as resources in slices in
which it is allocated. In particular, each slice in the Spartan-6 fabric contains four
6-input LUTs and their outputs can be registered in flip-flops. Figure12.4 shows

CLBslice

slice

CLBslice

slice

Fig. 12.4 A schematic overview of the implemented intrusive logic

244 M. Barbareschi et al.

a high level schematic of the logic that we designed. Each CLB has two slices
which generate pseudorandom switching activity exploiting four parallel 6-input
XOR functions and storing generated values in flip-flops. The input assignment for
XOR function involves four signals locally picked, i.e., within the CLB, and 2 outside
by neighbor CLBs. Iterating such a structure in a loop generates an auto-sustained
signal switching, like the LFSR, but with more simultaneous activities per clock
cycle.

The cells activity can be easily disabled, driving the signal clock-enable
for all the involved flip-flops. The density of this intrusive logic, evaluated as the
number of occupied LUTs on four times the number of occupied slices, reaches
values between 75 and 85%. Figure12.5 reports three experiments with different

99.7 % 99.8 % 99.9 % 100 % 100.1% 100.2%
0

0.05

0.1

0.15

0.2

Frequency (%)

D
en

si
ty

Logic Off

Logic On

Frequencies distribution considering a shape of 3×8 CLB.

99.7 % 99.8 % 99.9 % 100 % 100.1% 100.2%
0

0.05

0.1

0.15

0.2

Frequency (%)

D
en

si
ty

Logic Off

Logic On

Frequencies distribution considering a shape of 8×6 CLB.

99.7 % 99.8 % 99.9 % 100 % 100.1% 100.2%
0

0.05

0.1

0.15

0.2

(a)

(b)

(c)

Frequency (%)

D
en

si
ty

Logic Off

Logic On

Frequencies distribution considering a shape of 6×18 CLB.

Fig. 12.5 Distribution of ROs frequencies values with an intrusive surrounding logic, considered
as percentage variation from the value of ROs without the logic

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 245

intrusive logic configuration, respectively 3 × 8, 8 × 6 and 6 × 18, considering the
frequency as percentage against average values of targeted RO measured without
any insertion of intrusive logic. In all the reported cases, the logic causes a frequency
decrease around 0.4% when it is on and, surprisingly, it causes a frequency increase
of about 0.15% when it is off. Moreover, the logic is more intrusive in frequencies
measurements when the prominent dimension is the height, hence the logic turns out
to be more invasive if it is vertically stretched.

12.4.2 Analysis of the Stages Number and Routing

The frequency value of ROs is tightly coupled with the number of stages in the ring,
such that longer loops cause lower frequencies. We designed five different loops
with the number of inverting stages in the range between 4 and 8. In each design,
the control gate of the loop was fixed in the bottom LUT of the Slice X and the
loop has been arranged in the other available LUTs in slice X and the other slice,
where its type (M or L) depends on the CLB column. Each ROmeasurement block is
implemented in every allowable place on the FPGA, as in the previous experimental
campaigns, obtaining about 1000 different design implementations. In Table12.1
we report the means and standard deviations of the frequencies for the five different
configurations.

The higher is the amount of stages, the lower are both average values and associ-
ated standard deviations. This implies that if the loop is longer, the values are closer
to the average frequency values. Indeed, since each loop stage introduces a delay
that is affected by uncertainty due to manufacturing variations, the uncertainty on
the global delay turns out averaged.

A similar behavior can be also appreciated considering standard deviations of
frequencies among different devices. In fact, we report in the same table two other
standard deviations varying the number of RO stages: one is the average value, among
10 devices, of standard deviations calculated considering 10 different ROs, i.e., aver-

Table 12.1 Mean values and standard deviations of RO frequencies for different stages. The intra-
die and inter-die are calculated among 10 ROs and 10 devices.

RO stages Mean
frequency (MHz)

Standard deviation (MHz)

Global Intra-die Inter-die

4 351.4552 7.1784 1.5295 2.5168

5 347.3760 7.0729 1.0850 2.0569

6 259.1042 5.1403 0.9113 1.4903

7 201.2785 3.6479 0.5729 0.9840

8 190.6770 3.7693 0.5320 0.8398

246 M. Barbareschi et al.

age intra-chip standard deviation; the other is the average value, among 10 ROs,
of standard deviations calculated for 10 different devices, i.e., average inter-chip
standard deviation. These two quantities represent how frequencies are scattered. In
particular, the intra-die indicates the dispersion around the mean value for frequen-
cies extracted from the same device, vice versa the inter-die measures the dispersion
around the mean value considering frequencies read from different devices. Since
intra-die standard deviations are greater than inter-die ones, it is clear that frequencies
are closer among them when they are extracted from the same device rather than in
the case in which they are measured from different devices. Moreover, standard devi-
ations are inversely proportional to the number of stages. Furthermore, besides the
RO structure, the placement and routing of the loop plays a crucial role in determin-
ing the oscillating frequencies. Aiming at deduce the relationship among different
routing configurations and corresponding frequency changes, we have designed two
identical 4-stage ROs but with different mapping within a Slice X. In particular, we
have swapped two stages in the LUT assignment such that paths of the ring are dif-
ferent at least for two stages. The two configuration are allocated in every allowable
location on the FPGA and their frequency distributions are reported in Fig. 12.6.
The average values differ from one another by ∼100MHz and their standard devi-
ations by ∼2.35MHz. Moreover, each configuration is characterized by a bimodal
Gaussian as they are distributed around two well-distinguishable frequencies peaks.
Correlating the frequencies with the spatial position, it is possible to note that ROs
which are placed within a CLB in even columns, characterized by a slice X and slice
L pair, have frequencies that in values are less than others placed in odd columns,
characterized by a slice X and slice L pair. This happens even if the RO structure is
entirely placed within a slice X. We can conclude that the two different distribution
peaks are caused by different routing resources that characterize each CLB type.

200 250 300 350 400
0

0.05

0.1

0.15

0.2

Frequency (MHz)

D
en

si
ty

Fig. 12.6 Frequency distribution for two different mapping 4-stage RO configurations allocated
over all the FPGA device

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 247

12.4.3 Temperature Analysis

The working temperature for an integrated circuit is directly related to the signal
propagation delay. Indeed, high working temperatures cause a performance degra-
dation in terms of speed. In order to analyze the effect of temperature changing on
ROs frequencies, we measured frequencies of 5-stage ROs under 7 different external
fixed temperatures, uniformly picked in the range between 0 and 80 ◦C, which is the
commercial working temperature range [20]. To this aim, the FPGA was placed in a
thermal chamber which keeps the temperature with a precision of 0.1 ◦C. Unfortu-
nately, at 80 ◦C we were not able to correctly communicate with the FPGA in order
to extract frequency value of the RO under test, hence we reported frequencies for
the following values: 0, 13.3, 26.6, 40, 53.3 and 66.6 ◦C. When the thermal chamber
reached the desired temperature, we waited 30min in order to be sure that the die
inside the package has uniformly reached the same external temperature before start-
ing each test campaign. Figure12.7 illustrates all measured frequencies varying the
temperature with previous defined values between 0 and 66.6 ◦C. They are inversely
proportional to temperature values and the relationship between them is quite close to
be a linear function. The only observable exception is after 40 ◦C because the curve
starts to be more descendant. In order to better analyze the relationship between
the temperature value and the RO frequencies, we can consider the difference quo-
tient for each temperature range, namely how the frequency decreases increasing the
temperature of 13.33 ◦C. Figure12.8 shows two distribution difference quotients cal-
culated for all ROs. The blue histogram is related to the temperatures less than 40 ◦C,
while the red to the temperature greater than 40 ◦C. They indicate that the average
values of difference quotients are respectively −0.29 and −0.36MHz/◦C. Both are
distributed with as a Gaussian curve with a standard deviation of ∼0.013MHz/◦C.

As for the even and odd CLB columns, there is a difference in terms of difference
quotient, as illustrated in Table12.2. The distance between the difference quotient of
even and odd columns can be approximated as constant and equal to 0.0015MHz/ ◦C.

0 10 20 30 40 50 60 70
320

330

340

350

360

370

F
re

qu
en

cy
 (

M
H

z)

Temperature (°C)

Fig. 12.7 Values for all ROs frequencies varying the working temperature

248 M. Barbareschi et al.

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

Difference Quotient (MHz/°C)

D
en

si
ty

[0°C, 40°C]
[40°C, 66.66°C]

Fig. 12.8 Difference quotient distributions evaluated before and after 40 ◦C

Table 12.2 Frequencies and difference quotients for ROs placed in even and odd columns varying
the working temperature

Temperature (◦C) Even column Odd column

Frequency (MHz) Difference
quotient

Frequency (MHZ) Difference
quotient

0 348.5540 361.8935

13.3 344.7655 −0.2842 357.9787 −0.2937

26.6 340.8063 −0.2970 353.8691 −0.3083

40 336.8726 −0.2951 349.7988 −0.3054

53.3 332.4376 −0.3327 345.1964 −0.3453

60 327.7191 −0.3540 340.2945 −0.3677

This implies that the frequencies of ROs placed in even columns are more sensitive
than the ones placed in odd columns.

12.4.4 Aging Analysis

Aging is an unavoidable process that affects any IC, causing performance degradation
and leakage current increase. In order to evaluate its impact on ROs, it is possible to
perform aging acceleration of an FPGA. Through the application of stress working
conditions, in particular high temperature and supplied voltage, for a period of time,
the IC ages more than that period [1]. So we stressed a, FPGA core supplying an
external voltage of 1.8V (+50% more than its nominal value [22]) and heating the
chip up to 80 ◦C for 7days. During this time, a particular design is configured onto the
FPGA such that all the ROs are active at the same time. In order to clear the effects

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 249

300 305 310 315 320 325 330
0

0.01

0.02

0.03

0.04

0.05

Frequency (MHz)

D
en

si
ty

Fresh
Aged

Fig. 12.9 Frequency distributions measured on the same device before and after the aging process

of the reversible aging process, we recovered the FPGA in 3days with nominal
supply voltage, but still keeping the temperature at 80 ◦C. As in the temperature
experiments, we adopted 5-stage ROs to characterize the device before and after
the aging process. Figure12.9 illustrates such characterization through frequency
histograms. As we can notice, the aged device frequency distribution has the same
shape as the fresh version and it is shifted by ∼0.6MHz. In Fig. 12.10, we report the
distribution of the difference quotients calculated on the frequencies of ROs freshed
and aged. Even in this case, the values are distributed with a normal curve.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

Different Quotient (MHz/Week)

D
en

si
ty

Fig. 12.10 Distribution of difference quotients of the aging campaign

250 M. Barbareschi et al.

12.5 Conclusion

In this chapter,we showed thatROs frequencies are tight coupled not onlywith design
parameters, but also with other working conditions. In particular, we illustrated the
role played by the on-chip logic which surrounds ROs and how the choice of the
number of stages modifies ROs average frequencies and the dispersion of measured
values around them. As for the working condition, we have posed our attention on
the temperature, surrounding logic, and aging effects on the measured frequencies.
Such analyses are extremely useful to design robust RO-based PUF, as we provide
an extensive knowledge about the behavior of on-chip frequencies with static and
dynamic parameters.

References

1. Amouri A, Bruguier F, Kiamehr S, Benoit P, Torres L, Tahoori M. Aging effects in fpgas: an
experimental analysis. In: 2014 24th international conference on Field Programmable Logic
and Applications (FPL); 2014. p. 1–4.

2. Anderson JH. A puf design for secure FPGA-based embedded systems. In: Proceedings of the
2010 Asia and South Pacific design automation conference. IEEE Press; 2010. p. 1–6.

3. Barbareschi M, Bagnasco P, Mazzeo A. Supply voltage variation impact on Anderson PUF
quality. In: 2015 10th international conference onDesign andTechnology of Integrated Systems
in Nanoscale Era (DTIS). IEEE; 2015. p. 1–6.

4. Barbareschi M, Battista E, Mazzeo A, Mazzocca N. Testing 90 nm microcontroller SRAM
PUF quality. In: 2015 10th international conference on Design and Technology of Integrated
Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1–6.

5. Gassend B, Clarke D, Van Dijk M, Devadas S. Silicon physical random functions. In: Proceed-
ings of the 9th ACM conference on computer and communications security. ACM; 2002. p.
148–60.

6. Holcomb DE, Burleson WP, Fu K. Power-up SRAM state as an identifying fingerprint and
source of true random numbers. IEEE Trans Comput. 2009;58(9):1198–210.

7. Kumar SS, Guajardo J, Maes R, Schrijen G-J, Tuyls P. The butterfly PUF protecting IP on
every FPGA. In: IEEE international workshop on hardware-oriented security and trust, 2008.
HOST 2008. IEEE; 2008. p. 67–70.

8. Lim D, Lee JW, Gassend B, Suh GE, Van Dijk M, Devadas S. Extracting secret keys from
integrated circuits. IEEE Trans Very Large Scale Integr VLSI Syst. 2005;13(10):1200–5.

9. Lorenz D, Georgakos G, Schlichtmann U. Aging analysis of circuit timing considering NBTI
and HCI. In: 15th IEEE international on-line testing symposium, 2009. IOLTS 2009. IEEE;
2009. p. 3–8.

10. Maes R, Verbauwhede I. Physically unclonable functions: a study on the state of the art and
future research directions. In: Towards hardware-intrinsic security. Springer; 2010. p. 3–37.

11. Maiti A, Casarona J, McHale L, Schaumont P. A large scale characterization of RO-PUF. In:
2010 IEEE international symposium on Hardware-Oriented Security and Trust (HOST). IEEE;
2010. p. 94–9.

12. Maiti A, Schaumont P. Improving the quality of a physical unclonable function using config-
urable ring oscillators. In: International conference on field programmable logic and applica-
tions, 2009. FPL 2009. IEEE; 2009. p. 703–7.

13. Maiti A, Schaumont P. Improved ring oscillator PUF: an FPGA-friendly secure primitive. J
Cryptol. 2011;24(2):375–97.

12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs 251

14. Merli D, Stumpf F, Eckert C. Improving the quality of ring oscillator PUFs on FPGAs. In:
Proceedings of the 5th workshop on embedded systems security. ACM; 2010. p. 9.

15. Qu G, Yin C-E. Temperature-aware cooperative ring oscillator PUF. In: IEEE international
workshop on hardware-oriented security and trust, 2009. HOST’09. IEEE; 2009. p. 36–42.

16. Skorobogatov S,Woods C. Breakthrough silicon scanning discovers backdoor in military chip.
Springer; 2012.

17. Suh GE, Devadas S. Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of the 44th annual design automation conference. ACM; 2007. p.
9–14.

18. van der Leest V, Schrijen G-J, Handschuh H, Tuyls P. Hardware intrinsic security from D
flip-flops. In: Proceedings of the fifth ACM workshop on scalable trusted computing. ACM;
2010. p. 53–62.

19. Vatajelu EI, Di Natale G, Barbareschi M, Torres L, Indaco M, Prinetto P. Spin-transfer torque
magnetic random access memory (STT-MRAM). ACM J Emer Technol Comput Syst JETC.
2015.

20. Xilinx. Spartan-6 family overview. Available at http://www.xilinx.com/support/
documentation/data_sheets/ds160.pdf.

21. Xilinx. Spartan-6 FPGA configurable logic block. Available at http://www.xilinx.com/support/
documentation/user_guides/ug384.pdf.

22. Xilinx. Spartan-6 FPGA data sheet: DC and switching characteristics. Available at http://www.
xilinx.com/support/documentation/data_sheets/ds162.pdf.

23. Xin X, Kaps J-P, Gaj K. A configurable ring-oscillator-based PUF for xilinx FPGAs. In: 2011
14th euromicro conference on Digital System Design (DSD). IEEE; 2011. p. 651–7.

24. Yin C-ED, Qu G. LISA: maximizing RO PUF’s secret extraction. In: 2010 IEEE international
symposium on Hardware-Oriented Security and Trust (HOST). IEEE; 2010. p. 100–5.

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf

Index

A
Advanced encryption standard (AES), 1, 2,

4–8, 14, 17–20, 22, 23, 77, 80, 86, 90,
115–118, 121–123

Aging analysis, 240, 248
Algorithms, 93–97, 103
Altera, 211, 213–217, 231
Android OS, 152, 163
Arbiter PUF, 196, 197, 206

B
BIST for secure devices, 129–132, 134, 142,

146

C
Chipscope, 238, 241–243
Correlation power analysis, 79
Cryptography, 93, 94
Cyclone, 211, 213, 216, 217, 231, 233

D
Datapaths, 6–10, 14, 19, 20, 22, 23
Delay, 213, 214, 216, 217, 221, 224, 231,

233
Differential power analysis (DPA), 49, 55,

58–60, 62, 70, 71, 77, 78
Dynamic detection, 155–158

E
Elliptic curve cryptography (ECC), 50, 55,

58–62, 70, 93, 95–101, 103

F
Fault attacks, 28, 29, 34, 37, 38, 44
Fault injection analysis attacks, 101–103
Fault injection techniques, 29, 33, 34, 37, 44
Feature selection, 156
Field programmable gate array (FPGA), 1,

5–8, 10, 13, 18, 20, 22–24, 211–213,
215, 217, 220, 223, 226, 227, 231,
232, 237

Fuzzy extractor, 205, 207

H
Hardware security, 211–213, 224
Hardware security and trust, 189
Hardware Trojan, 169–174, 179, 180, 182–

185
Hardware Trojan activation, 170, 173, 176,

177, 184
Hardware Trojan characteristics, 169–171,

174, 176
Hardware Trojan detection in FPGAs, 182
Hardware Trojan detection methodology,

169, 170, 172, 180, 185
Hardware Trojan payload, 170, 175
Hardware Trojans’ examples, 170, 176
High throughput, 6, 18, 20, 23, 24
Horizontal attack, 59–62

I
Implementation attack, 94
IoT devices, 153

L
Length-optimizedTERO, 180, 182, 183, 185

© Springer International Publishing Switzerland 2017
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8

253

254 Index

Logic vs memory, 5, 6, 8, 24
Lookup table (LUT), 215, 216

M
Machine learning, 157
Manufacturing test of secure devices, 127,

128, 138
Mathematica, 79, 80, 85
Matlab, 78–83, 85
Mobile malware, 150, 152, 162
Mobile threats, 153, 158

O
Online template attack (OTA), 60, 65, 69, 70
Oscilloscope, 78, 86–88, 90

P
Physical security, 189
Physically unclonable function (PUF), 189,

211–213, 220, 221, 224, 226, 231,
233

Placed relative macro, 241, 242
Power trace, 77–80
Practical session, 77
Process variations, 172, 182
Public key cryptography, 93

Q
Quartus, 211, 214, 216–218, 220–224, 226,

227

R
Random number generator, 174
Recovery scheme, 205, 207
Reliability, 189, 190, 194, 204
Resource efficiency, 1, 2, 6, 7, 17, 22
Ring oscillator (RO), 169, 174, 176, 185,

213, 232, 238, 240
Ring oscillator PUF, 196
RO design, 240, 241, 248, 250
Rolling vs unrolling, 1, 18
RSA, 93, 95–101, 103

S
SAKURA G board, 182
Scan attack, 117–120, 123, 125

Scan-based DFT, 125
Scan-based solutions for secure devices,

129, 132, 133, 141
Scan chain, 109–111, 113, 114, 117, 121,

122
Secure systems design, 165
Secure test controller, 141, 143
Security, 107, 108, 114, 115, 125
Side channel analysis attacks, 95
Side-channel analysis (SCA), 49, 55, 62–64
Simple power analysis (SPA), 49, 50, 55, 57–

60
Small size, 2
Smart card, 86, 88
SNOW3G cipher, 181, 182
SRAM PUF, 201–203
State of the art, 1, 6–8, 11, 15, 17, 18, 20, 22,

23
Static detection, 154–156, 158
STT-MRAM PUF, 203

T
Taxonomy of hardware Trojan, 169–171
Temperature analysis, 240, 242, 247, 248,

250
Temperature analysis , 238
Template attack, 59, 62, 63, 65, 66, 70
TERO for hardware Trojan detection, 180
Testability, 108, 110, 114, 125
Testability and security, 127, 136
The transient effect ring oscillator (TERO),

182–185
Tools for simulation, 28, 29, 38–41, 43
Transient effect ring oscillator (TERO), 170,

180
Triggering of Trojan hardware logic, 170
Trojan detection in true randomnumber gen-

erators, 169, 174
Trusted hardware, 149

U
Unclonability, 189–192, 204, 206

V
Voltage analysis, 238, 240, 249

X
Xilinx spartan-6, 238

	Preface
	Contents
	1 AES Datapaths on FPGAs: A State of the Art Analysis
	1.1 Introduction
	1.2 The AES Algorithm
	1.2.1 SubBytes Operation
	1.2.2 ShiftRows Operation
	1.2.3 MixColumns Operation
	1.2.4 Key Scheduling

	1.3 FPGA Techniques for the AES Operations
	1.3.1 Datapath Width
	1.3.2 (Inv)ShiftRows Implementations: Routing, Multiplexing, and Memory Based
	1.3.3 (Inv)SubBytes Implementations: Logic Versus Memory
	1.3.4 Implementing the MixColumns: Logic
	1.3.5 Implementing the InvMixColumns: Logic
	1.3.6 Implementing the (Inv)MixColumns: Memory
	1.3.7 Last AES Round
	1.3.8 Types of Key Scheduling

	1.4 FPGA Architectures for AES
	1.4.1 Rolled Versus Unrolled Rounds
	1.4.2 Intra Versus Inter-Pipeline

	1.5 State of the Art Metrics
	1.6 Conclusion
	References

	2 Fault Attacks, Injection Techniques and Tools for Simulation
	2.1 Introduction
	2.2 Fault Injection Techniques
	2.2.1 Fault Injection Through Power Supply
	2.2.2 Fault Injection Through Clock
	2.2.3 Fault Injection Through Temperature
	2.2.4 Fault Injection Through Light
	2.2.5 Fault Injection Through Electromagnetic Fields
	2.2.6 Fault Injection Through Focused Ion Beams
	2.2.7 Comparison of Fault Injection Techniques

	2.3 Fault Attacks
	2.3.1 Algorithm Specific Attacks
	2.3.2 Differential Fault Analysis
	2.3.3 Tampering with the Program Flow

	2.4 Fault Injection Simulators and Their Applicability to Fault Attacks
	2.4.1 Weaknesses Identification with Static Analysis
	2.4.2 High-Level Simulation with Complex Fault Models
	2.4.3 Low-Level Virtual Machine Simulation
	2.4.4 Transistor Level Simulation
	2.4.5 Emulation

	2.5 Conclusions
	References

	3 Recent Developments in Side-Channel Analysis on Elliptic Curve Cryptography Implementations
	3.1 Introduction
	3.2 Elliptic Curve Cryptography
	3.2.1 Coordinate Systems
	3.2.2 Forms of Elliptic Curves

	3.3 Scalar Multiplication Algorithms
	3.3.1 Left-to-Right Double-and-Add-Always Algorithm
	3.3.2 Right-to-Left Double-and-Add-Always Algorithm
	3.3.3 Montgomery Ladder
	3.3.4 Side-Channel Atomicity

	3.4 Side-Channel Attacks on ECC
	3.4.1 Collision-Correlation Attacks
	3.4.2 Horizontal Attacks and Variants
	3.4.3 Template Attacks
	3.4.4 Common Distinguishers
	3.4.5 A Special Case: Online Template Attacks

	3.5 Countermeasures
	3.5.1 Randomization Countermeasures
	3.5.2 OTA Countermeasures

	References

	4 Practical Session: Differential Power Analysis for Beginners
	4.1 Introduction
	4.2 Differential Power Analysis---Key Recovery
	4.2.1 Method
	4.2.2 Schedule of Your Work
	4.2.3 Training Sets
	4.2.4 Tools

	4.3 DPA---Measurement with an Oscilloscope
	4.3.1 Preparation of the Measurement
	4.3.2 Compilation of Program for Measurement

	References

	5 Fault and Power Analysis Attack Protection Techniques for Standardized Public Key Cryptosystems
	5.1 Introduction
	5.2 Public Key Primitive Fault and Power Attacks and Countermeasures
	5.2.1 Side Channel Attacks and Countermeasures
	5.2.2 Fault Attack and Countermeasures

	5.3 Proposed Approach
	5.4 Security Analysis
	5.5 Conclusion
	References

	6 Scan Design: Basics, Advancements, and Vulnerabilities
	6.1 Introduction
	6.2 DfT
	6.2.1 Scan Design
	6.2.2 Boundary Scan

	6.3 Scan-Based Side-Channel Attack
	6.3.1 Attack Principle
	6.3.2 Advanced Encryption Standard (AES)
	6.3.3 Traditional Scan Attack
	6.3.4 Test-Mode-Only Scan Attack

	6.4 Summary
	References

	7 Manufacturing Testing and Security Countermeasures
	7.1 Introduction
	7.2 Countermeasures to Scan-Based Attacks
	7.3 Built-In Self-Test
	7.3.1 BISTed Cryptographic Cores
	7.3.2 Built-In Test Comparison

	7.4 Secure Test Access Mechanism
	7.5 Industrial Solutions
	7.5.1 Standard DfT Weaknesses
	7.5.2 Secure DfT and Industrial constraints
	7.5.3 Industrial-Constraint-Aware Secure DfT
	7.5.4 RAM/ROM Test

	7.6 Conclusions
	References

	8 Malware Threats and Solutions for Trustworthy Mobile Systems Design
	8.1 Introduction
	8.2 Threats in Mobile Devices
	8.3 Malware Detection Solutions
	8.3.1 Signature-Based Detection
	8.3.2 Static Detection
	8.3.3 Dynamic Detection

	8.4 Discussion
	8.4.1 Type of Analysis
	8.4.2 Type of Threats
	8.4.3 Detection Techniques
	8.4.4 Operating System
	8.4.5 On Device Versus on Cloud Detection
	8.4.6 Datasets
	8.4.7 Overhead

	8.5 Conclusions
	References

	9 Ring Oscillators and Hardware Trojan Detection
	9.1 Introduction
	9.2 Trojans and Trojan Detection Techniques
	9.2.1 Trojan Characteristics
	9.2.2 Trojan Taxonomies
	9.2.3 Detection Techniques

	9.3 Trojan Detection in True Random Number Generators
	9.3.1 TRNG Design
	9.3.2 Trojan Characteristics
	9.3.3 Feasibility of a T4RNG

	9.4 Transient-Effect Ring Oscillators for Hardware Trojan Detection
	9.4.1 Experimental Setup
	9.4.2 Experiments
	9.4.3 Results and Discussion

	9.5 Conclusions and Outlook to the Future
	References

	10 Notions on Silicon Physically Unclonable Functions
	10.1 Introduction
	10.2 A Formal Perspective on PUF
	10.2.1 Unclonability
	10.2.2 Uniqueness
	10.2.3 Unpredictability
	10.2.4 One-Way Property
	10.2.5 Feasibility
	10.2.6 Tamper-Evident

	10.3 Quality Measurement on Silicon PUFs
	10.3.1 Uniqueness
	10.3.2 Reliability
	10.3.3 Uniformity
	10.3.4 Bit Aliasing

	10.4 Categories of PUFs
	10.4.1 Delay-Based PUF
	10.4.2 Memory-Based PUF

	10.5 Post-Processing Techniques
	10.5.1 Majority Voter
	10.5.2 Fuzzy Extractor

	10.6 Attacks Against PUF
	10.6.1 Model Based Attack
	10.6.2 Side-Channel Attack

	10.7 Conclusion
	References

	11 Implementation of Delay-Based PUFs on Altera FPGAs
	11.1 Introduction
	11.2 Altera FPGA Architecture
	11.3 Implementing the PUF
	11.3.1 Defining the Hardware Components
	11.3.2 Defining the LUT Placement
	11.3.3 Defining the LUT Routing

	11.4 Communication Between PC and FPGA
	11.5 Traps and Pitfalls
	11.6 Conclusion
	References

	12 Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs
	12.1 Introduction
	12.2 Xilinx FPGA Fabric
	12.3 RO Frequencies Characterization
	12.3.1 RO Structure and Measurement Architecture

	12.4 Result and Validation
	12.4.1 Analysis of the Logic Surrounding the RO
	12.4.2 Analysis of the Stages Number and Routing
	12.4.3 Temperature Analysis
	12.4.4 Aging Analysis

	12.5 Conclusion
	References

	Index

