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Preface

Hardware security is becoming increasingly more important for many embedded
systems applications ranging from small RFID tag to satellites orbiting the earth. Its
relevance is expected to increase in the coming decades as secure applications such
as public services, communication, control and healthcare keep growing.

Concerning all the possible security threats, the vulnerability of electronic
devices that implement cryptography functions (including smart cards) has become
the Achille’s heel in the last decade. Indeed, even though recent crypto-algorithms
have been proven resistant to cryptanalysis, certain fraudulent manipulations on the
hardware implementing such algorithms can allow extracting confidential infor-
mation. The so-called side-channel attacks have been the first type of attacks that
target the physical device. They are based on information gathered from the
physical implementation of a cryptosystem. For instance, by correlating the power
consumed and the data manipulated by the device, it is possible to discover the
secret encryption key.

New threats have menaced secure devices and the security of the manufacturing
process. The first issue is the trustworthiness of the manufacturing process. From
one side, the test procedures, which increase controllability and observability of
inner points of the circuit, is antinomic with respect to the security. Another threat is
related to the possibility for an untrusted manufacturer to do malicious alterations to
the design (for instance to bypass or to disable the security fence of the system).
The threat brought by so-called hardware Trojans begins to materialize. A second
issue is the hazard of faults that can appear during the circuit’s lifetime and that may
affect the circuit behavior by way of soft errors or deliberate manipulations, called
fault attacks.

In 2012, a new COST Action, called TRUDEVICE (“Trustworthy
Manufacturing and Ultilization of Secure Devices”) started in order to cover the
above-mentioned topics. COST is an intergovernmental framework for European
Cooperation in Science and Technology, allowing the coordination of nationally
funded research on a European level. COST increases the mobility of researchers
across Europe and fosters the establishment of scientific excellence. COST does not
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fund research itself but provides a platform for European scientists to cooperate on a
particular project and exchange expertise.

In the context of the TRUDEVICE COST Action, we organized in July 2014 a
training school in Lisbon, Portugal. This training school aimed at providing theo-
retical and practical lectures on topics related to hardware security.

The school started with an introductory session on the fundamental primitives
for security, from both hardware and software perspectives. This is followed by an
introduction on the implementation of attacks and countermeasures, presenting an
overview of physical attacks, both passive and active, and some existing counter-
measures. Included in this introduction was the description of the evolution of
computer technology and cryptography from the ancient past to current days.

Given this introduction, trustworthy manufacturing of integrated circuits was
discussed ranging from the implementation of cryptographic primitives to the
manufacturing test of secure devices. The fight against theft, cloning and coun-
terfeiting of integrated circuits was also discussed considering both ASICs and
FPGAs. Continuing with the trustworthiness of secure devices, lectures on the
various forms of attacks were presented, considering fault attacks and differential
power analysis and existing countermeasures.

This training school also included a practical session on performing differential
power analysis and on how to test random number generation. As a boost to Ph.D.
students an extra session to foster the discussion between students also took place.

The editors would like to thank all the contributing authors for their patience in
meeting our deadlines and requirements. Moreover, we would like to express a
heartfelt appreciation to all the speakers that made possible the training school.
Thanks to their great enthusiasm and work that we could have made the
TRUDEVICE training school a grand success.

TRUDEVICE training school speakers: Lejla Batina (Radboud University
Nijmegen, The Netherlands), Lilian Bossuet (University of Saint-Etienne, France),
Jiri Bucek (Czech Technical University in Prague, Czech Republic), Ricardo
Chaves (University of Lisbon, Portugal), Amine Dehbaoui (SERMA Technologies,
France), Milos Drutarovsky (Technical University of Kosice, Slovakia), Viktor
Fischer (Jean Monnet University Saint-Etienne, France), Julien Francq (AIRBUS
Defense and Space, France), Ilya Kizhvatov (RISCURE, The Netherlands), Patrick
Haddad (STMicroelectronics and Jean Monnet University Saint-Etienne, France),
Vincent van der Leest (Intrinsic-ID, The Netherlands), Victor Lomné (ANSSI,
France), Nele Mentens (KU Leuven, Belgium), Giorgio Di Natale (LIRMM,
France), Martin Novotny (Czech Technical University in Prague, Czech Republic),
Paul-Henri Pugliesi-Conti (NXP Semiconductors, France), Francesco Regazzoni
(ALaRI Institute of University of Lugano, Switzerland), Nicolas Sklavos
(University of Patras, Greece).

This book follows the same structure of the training school in Lisbon. We start
with a brief survey hardware implementations of the Advanced Encryption
Standard, which is the cryptographic algorithm that we is used as a reference in the
forthcoming chapters. The book is then divided into four main sections. The first
section covers the implementation attacks, starting from an introduction on fault



Preface vii

attacks and side-channel attacks, followed by a practical description of the differ-
ential power analysis. The section is completed by some countermeasures against
fault- and power-based attacks.

The second section covers the issues of the manufacturing testing of hardware
devices implementing cryptographic algorithms. The first chapter is dedicated to the
classical manufacturing testing and how it can be exploited in order to retrieve
secret data. The second chapter contains a survey of the academic and industrial
countermeasures.

The third section is dedicated to hardware trust. The first chapter analyzes
trustworthiness of mobile devices, including both hardware and software compo-
nents. The second chapter focuses on Hardware Trojan detection, particularly
critical given the common outsourcing of ASIC manufacture.

The last section covers many aspects of Physically Unclonable Functions
(PUFs). The first chapter introduces the topic and presents a survey of existing
solutions. The next two chapters covers PUFs implemented on FPGAs using delay
elements and ring oscillators.

Patra, Greece Nicolas Sklavos
Lisbon, Portugal Ricardo Chaves
Montpellier, France Giorgio Di Natale

Lugano, Switzerland Francesco Regazzoni
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Chapter 1
AES Datapaths on FPGAs:
A State of the Art Analysis

Joao Carlos Resende and Ricardo Chaves

1.1 Introduction

The Advanced Encryption Standard (AES) has been the preferred block cipher algo-
rithm for data security since its 2001 approval by the North American National Insti-
tute of Standards and Technology (NIST) [19]. In the field of Field-Programmable
Gate Arrays (FPGA) technology, prototyping, easy-deployment, and experimenta-
tion has become less time consuming, increasing the amount of available options for
a custom-made AES implementation. Options in the chosen datapath width, SBox
implementation, round (un)rolling, pipelining, etc., result in different trade-offs in
terms of throughput, resource usage, and overall efficiency. The main goal for this
chapter is to provide the reader with an overall review of the updated state of the art
techniques and architectures for AES implementations on FPGA.

This chapter is organized as follows: Sect. 1.2 provides an introduction to the AES
algorithm. Section 1.3 insights the most common solutions for the implementation of
each AES operation on FPGAs, while Sect. 1.4 explores some architectural choices
when implementing the complete AES cipher. Section 1.5 presents a performance
comparison of the most updated state of the art, and Sect. 1.6 concludes with some
final remarks.

J.C. Resende - R. Chaves (<)

Instituto Superior Técnico, Universidade de Lisboa/INESC-ID,
Rua Alves Redol 9, 1000-029 Lisbon, Portugal

e-mail: ricardo.chaves @inesc-id.pt

J.C. Resende
e-mail: joaocresende @tecnico.ulisboa.pt
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1.2 The AES Algorithm

In the early 1970s, IBM and the NSA (North American National Security Agency)
collaborated on designing the Data Encryption Standard (DES), a symmetric block
cipher that would become a Federal Information Processing Standard (FIPS) in 1977.
It became one the most predominant digital ciphers at the time and the extended
scrutiny it was subjected to influenced modern cryptography.

In the 1990s, the exponential increase of computational power rendered DES
unsafe has brute force attacks were able to break the cipher in feasible time. This led
the USA’s National Institute of Standards and Technology (NIST) to open a compe-
tition for a new symmetrical encryption algorithm. Several proposals were submitted
and discussed, including the Rijndael algorithm [7]. This algorithm allowed several
sizes of data and cipher keys, while maintaining a balanced performance between
security, resources and computation efficiency, in both hardware and software. In
2001, a subset of the Rijndael algorithm became the Advanced Encryption Stan-
dard (AES) [19].

The AES algorithm is a 128-bit block cipher, accepting key lengths of 128, 192,
and 256 bits, processed over N rounds, with N equal to 10, 12, or 14 rounds, respec-
tively, as depicted in Fig. 1.1. Each 128-bit (16 bytes) block of plain text is organized
column wise, in a 4 x 4 byte matrix (named State).

After the initial key addition, in which the plain text is XORed with the first
128 bits of the expanded key, the State goes through the several operations. These
round operations are: SubBytes, where each byte is replaced by another one, which
can be implemented by a Look Up Table (SBox); ShiftRows, where the rows of
the State are left-round shifted; MixColumns, where each column of the State is
multiplied by a matrix; and AddRoundKey, where the entire State is XORed with
the corresponding 128-bit Round Key. The decryption process of the AES cipher is
performed identically to the encryption, but with the inverse operations. Note that
the last round is slightly different since no (Inv)MixColumns operation is performed.

AddRoundKey(State, ekey) AddRoundKey(State, dkey)

for round= 1, round<N, round++ do for round= 1, round<N, round++ do
SubBytes(State) InvSubBytes(State)
ShiftRows(State) InvShiftRows(State)
MixColumns(State) InvMixColumns(State)
AddRoundKey(State, ekey[round]) AddRoundKey(State, dkey[round])

end for end for

SubBytes(State) InvSubBytes(State)

ShiftRows(State) InvShiftRows(State)

AddRoundKey(State, ekey[N]) AddRoundKey(State, dkey[N])

Fig. 1.1 AES encryption/decryption operations
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1.2.1 SubBytes Operation

The SubBytes operation is a nonlinear function which replaces one byte by a different
predefined byte, given

b’ = SubBytes(b) & (L.1)
/ —1 —1 —1 -1 —1 .
< bi = bi @ b(i+4)mod3 D b(i+5)m0dg ® b(i+6)modg @ b(i+7)m0d3 D c
0<i<8; c¢={01100011}
{be b~V Ymod{M} =1 ; M = {100011011}

where b, !'is the i-th bit of the multiplicative inverse of the input byte b [19]. For
efficiency purposes, the SubBytes function is often replaced by an equivalent 256-
byte lookup table, designated as SBox. Alternatives to the implementation of this
byte substitution considering composite fields also exist [3, 24, 26].

1.2.2 ShiftRows Operation

The ShiftRows operation, as the name implies, is a permutation of the 2nd, 3rd and
4th rows of the State matrix, 1, 2, and 3 positions to the left, respectively. The inverse
operation used in decryption, InvShiftRows, is the direct undoing of the former
shifting, with the permutations of the same rows 1, 2, and 3 positions to the right.
The 1Ist row of the State matrix does not suffer any changes in either one of these
operations. Both operations are depicted in Fig. 1.2.

00 04 08 0C 00 04 08 0C
0105 09 0D . 05 09 0D 01
0206 04 0 | == ShiftRows => 11 65 02 06
03 07 0B OF 0F 03 07 OB
00 04 08 0C 00 04 08 0C
0105 09 0D . 0D 01 05 09
02 06 04 0 | = TwShiftRows => 1\ 45 09 o6
0307 0B OF 07 0B OF 03

Fig. 1.2 AES ShiftRows and InvShiftRows operations
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Table 1.1 Byte-by-byte GF(2%) multiplication

2" multiplication Non 2" multiplication
0l xB=(B <<0)mod(0x113) 03xB=02xB & 01xB
02xB=(BK l)mod(OxllB) 05xB=04xB & 0l xB
04 x B = (B < 2)mod(0x11B) 07xB=04xB & 02xB & 0l xB
08 x B = (B < 3)mod(0x11B) 0F x B =

08xB @ 04xB @& 02xB & 01xB

1.2.3 MixColumns Operation

In the (Inv)MixColumns operation, each individual column of the State matrix is
replaced by its multiplication, in a GF(2%),! through one of the matrices depicted in
Eq.(1.2). In order to easily understand the GF(2%) multiplication used in the AES
(Inv)MixColumns, the approach presented in Table 1.1 can be used, namely: when
multiplying a byte with a 2" coefficient, the byte is simply shifted n bits to the
left, as depicted in Table 1.1, e.g., 02 x B = (B < 1); multiplying with any other
coefficient (not a power of 2) requires a composite XOR of the smaller 2" coefficients,
as also depicted in Table 1.1, e.g., 03 x B =02 x B & 01 x B. When an overflow
occurs on the 8th bit during shifting, the result must be subtracted (by XORing)
with the value “Ox11B”, i.e., reducing it to the irreducible polynomial associated:
B xt+x3+x+1]19].

MixColumns matrix InvMixColumns matrix
roi 02 03 01 01 aop; r0i OE OB 0D 09 ao;
rii . 01 02 03 01 ayg rii _ 09 OE OB 0D ay;
ri |~ | 01010203 a; i |~ | 0D 09 OF OB ay;
r3i 03 01 01 02 as; r3i 0B 0D 09 OFE as;

(1.2)

1.2.4 Key Scheduling

The Key Scheduling, also known as Key Expansion, is an inherent subroutine of the
AES algorithm. The Key Scheduling is responsible for converting the 128, 192 or
256 bits long cipher key into all the necessary round keys (11, 13 or 15 round keys).

Similar to the AES ciphering procedures, the Key Scheduling is also an iterative
process, as shown in Fig. 1.3. It uses the same SubBytes operation as the ciphering
process, alongside the specific RotByte and AddConstant operations. RotByte per-
forms a byte-wise left rotation of a 32-bit word. AddConstant is the bitwise XOR

1Galois Field, or finite field, of order 28 [19].
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(a) Key Schedule for Encryption

KeySchedule(CipherKey){ (b) Key Schedule for Decryption

for i=1, i< 4, i++ do
W ilz2p = Clipher Keyli]sap
end for
for i= 4, i< (4% 10+ 4), i++ do
tempzop = Wi — 1]32p
if mod(i,4)=0 then

InvKeySchedule(CipherKey){

ekey=KeySchedule(CipherKey)
dkey[0] 128 =ekey[N]12sp
dkey[N]y28,=ekey|[0]128p

for round= 1, round<N, round++ do

53}2?223(2?5) ) KeyState; g, =ekey[round]j2gp
Y p . InvMixColumns(KeyState)
cAl(%?‘Constant(temp7 Const[i/4]) dkey[N-round]=KeyState
end i -
. . d f
Wlilzap = Wi — 4]325 © tempsap ?n or
end for

ekey[ 0: ... :10 |=W[ {0:3}: ... :{40:43} ]

Fig. 1.3 AES Encryption/Decryption KeySchedule operation for 128-bit keys.

between a 32-bit word and one equally sized constant vector { ‘C*¢*; 0;0;0} [19]. The
InvMixColumns operation is also used to calculate the round keys for decryption.

At the end of each round of the AES encryption, a Round Key is required. As
long as each key is available in its proper time, the Key Scheduling can either be
pre-computed or processed in parallel alongside the data encryption. This is not pos-
sible during decryption since the process starts with the last calculated round key (as
shown in the right side of Fig. 1.3).

Note that the Key Expansion only needs to be performed once for a given cipher
key, since it does not depend on the input data. Given that one cipher key is typically
used to cipher a large amount of data, the Key Expansion computation does not need
to be recomputed often. Different approaches to implement the Key Scheduling are
further discussed in Sect. 1.3.8.

1.3 FPGA Techniques for the AES Operations

Most operations of the AES rounds have a mathematical definition behind them,
such as the SubBytes, being a nonlinear function, and the MixColumns, being a
matrix multiplication in GF(2%) [7]. Some implementations even change the original
mathematical definition for different purposes: speed, resource usage, side-channel
protection, etc.; but, regardless of any change, the AES input-output pair has to
be maintained [3, 17, 18, 26]. It is also possible to avoid the use of logic in the
implementation of the mathematical definition, and simply replace it by equivalent
input-output lookup tables [19]. In hardware, this led to two tendencies in imple-
menting the AES operations: through a logical defined function or by addressable
memory-based lookup tables.
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Logic-based implementations, more common is ASIC designs, use a set of logic
gates, placed and routed, to implement the mathematical function that defines a given
operation. Typically, logic-based implementations require less resources, but result
in slower designs.

Memory-based implementations store the pre-computed result of an operation
into a memory-mapped lookup table. These results are then outputted depending
on the input value. This type of implementation requires the existence of memory
elements, typically resulting in faster designs. This approach is common in software-
based implementations [1] but also on FPGAs that have embedded memory blocks
[4, 5,9, 20, 23].

In this section, an overview of the existing state of the art solutions focused on
FPGA is presented. The following describes these solutions regarding the imple-
mentation of the ShiftRows, SubBytes, MixColumns operations and their respective
inverses, for both logic and memory-based approaches. Given the simplicity of the
AddRoundKey operation, and of its implementation, it will only be occasionally
mentioned when particularly relevant for the resulting structure.

1.3.1 Datapath Width

One of the first decisions when considering the hardware implementation of an AES
design, is the datapath bit-width. This dictates how much of the State data is processed
atatime: 8, 32, or the full 128 bits per clock cycle iteration. Implementations with 16
and 64-bit datapath designs can also be considered, but are practically nonexistent.

8-bit datapaths [6, 13, 25] require less resources, but also the highest number
of iterations (160 or more cycles), and consequently the lowest throughput. Imple-
mentations with 128-bit datapaths [2, 4, 10] can process more data in a single cycle
(with one or more cycles/round), thus allowing for higher throughputs. Consequently,
given the replication of the computation units operating in parallel, higher resource
usage is also imposed.

32-bit datapath structures [5, 20, 23] are often consider as the more balanced
compromise between performance and resource usage, originating higher efficiency
results (throughput/resources).

1.3.2 (Inv)ShiftRows Implementations: Routing,
Multiplexing, and Memory Based

As explained in Sect. 1.2.2, the ShiftRows operation requires the shifting of the sec-
ond to fourth rows of the State matrix. From an implementation point of view, this
simply requires that each of the 16 bytes are properly routed to their respective
positions. On FPGAs, signal routing is performed by dedicated routing switches,
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SRL16 LUT mode

—1

Fig. 1.4 The SRL16 (previous Xilinx FPGAs) and SRL32 (current Xilinx FPGAs) LUT modes

typically not requiring any additional functional logic components. This specific
routing is performed when mapping, placing, and routing the structure onto the
FPGA. However, ShiftRows and InvShiftRows (used on encryption and decryption,
respectively) have opposite shifting directions. Thus the routing path of each opera-
tion cannot be shared.

Performing the (Inv)ShiftRows operation through routing is often the preferred
choice in several proposed 128-bit datapaths such as Bulens et al. [2] and Liu et al.
[17]. However, this implies that a particular implementation can only handle one
ciphering mode. With this approach, two AES cores need to be deployed when
supporting encryption and decryption, as used in HELION Standard and HELION
Fast AES cores [13]. In order to support both encryption and decryption on a single
AES design, both routing options need to coexist. If properly designed, and given
the similarity of the remaining computations, only minimum multiplexing logic is
needed, as presented in Chaves et al. [4].

In smaller datapaths of 32 and 8-bit widths, performing the (Inv)ShiftRows
through routing is not viable, since the 16 bytes of the State are not available at
the same time. The predominant state of the art solution for the (Inv)ShiftRows in
compact FPGA structures is using addressable memory, as introduced in Chodowiec
and Gaj [5]. These authors show how a RAM memory can be used to temporarily store
the State matrix between rounds, and perform either the ShiftRows or InvShiftRows
by properly addressing the writing and reading operations of the consecutive 32-bit
columns, or 8-bit cells, of the State [8, 11]. The authors further optimize this byte
shift operation by eliminating the need to specify the writing address. This approach
is optimized on Xilinx FPGAs using particular LUTs. On these devices, several LUTs
have an operational mode called SRL32 (SRL16 in older versions). This mode allows
for a single LUT to work as a 32-bit deep shift register with an addressable reading
port, resulting in improved resource usage efficiency, as depicted in Fig. 1.4. This
approach can be found in 32-bit [5, 20, 23] and 8-bit [6, 25] AES designs.
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1.3.3 (Inv)SubBytes Implementations: Logic Versus Memory

Another major implementation differentiation in the state of the art is in the byte
substitution operation. These vary from a fine-grained implementation of the byte
substitution (Logic-based) [6, 14, 26], to more coarse grained ones using lookup
table (Memory-based) approaches [2, 17].

Logic-based structures implement the byte substitution operations by hard-wiring
their actual mathematical definition (Sect. 1.2.1) through logic components. If one
recalls Eq. (1.1), the SubBytes substitution requires five XOR operations for each bit,
but first the multiplicative inverse of the input byte, in the GF(2%) finite field, needs
to be calculated. The problem with the multiplicative inverse is that there is no direct
function to calculate it. It is possible to calculate the multiplicative inverse through the
Extended Euclidean Algorithm, but this solution is better suited for software rather
than hardware [7]. Another approach to compute this multiplicative inverse, more
oriented to hardware implementations, is to use Composite Fields [24, 26]. Within
logic-based SubBytes implementations, different subsets of Composite Fields can
be considered faster, or more compact, or allow for additional security features,
than other subsets [3, 18, 22, 26]. The logic-based solution for the InvSubBytes
computation is similar to SubBytes, but modifications are still needed.

Overall, logic-based SubBytes implementations are the most area efficient but also
the slowest approaches, when compared to memory-based solutions. In a memory-
based SubBytes, byte substitution is implemented using a 256-byte lookup SBox
table [5, 7, 19]. On FPGAs this can be implemented through the use of multiple
FPGA LUTs [2, 17], or even BRAMs [5, 10]. Memory-based approaches can lead
to faster circuits at the cost of memory blocks.

On ASIC technology, the decision of using either logic-based or memory-based
SubBytes should be carefully analyzed [15]. However, on FPGAs, the use of logic-
based implementations has been losing relevancy in comparison to the memory-based
counterpart, mainly due to technology improvements. On older or more economical
FPGAs, one FPGA LUT can only be configured as a 4-input arbitrary function, with
two LUTs per FPGA Slice. On more high end FPGAs, such as the Xilinx Virtex 5
and onwards technologies, each Slice contains four 6-input LUTSs that can be easily
combined into a single 8-input lookup table (the exact specification of the AES SBox)
with a relatively low latency. If both SubBytes and InvSubBytes operations need to
be deployed, either a 9-bit lookup table needs to be considered, or two 8-bit lookup
tables multiplexed.

Another easily accessible solution is the use of embedded dual-port memory
blocks, BRAMSs, that exist within the FPGA. These memory blocks easily allow to
store the 2k bits needed for each byte substitution operation.

Implementations that only allow for one ciphering mode often consider the use of
LUT-based SBoxes, for shorter clock latency (512 LUTs for 128-bit datapaths [2, 17]
and 32 LUTs for 8-bit datapaths [25]). Architectures that allow for both ciphering
modes often incorporate pipelined BRAM-based implementations, since they can
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easily store all tables in their larger memories (8§ BRAMs for 128-bit datapaths [10]
and two BRAMs for 32-bit datapaths [5]).

1.3.4 Implementing the MixColumns: Logic

After the SubBytes and ShiftRows operations, in the encryption mode, the Mix-
Columns operation is computed by performing a matrix multiplication in GF(2%). In
this operation each 32-bit State column is multiplied by the left matrix of Eq. (1.2),
depicting the multiplication coefficients. Similarly to the SubBytes operation, the
MixColumns can also be implemented using logic or lookup tables.

In the MixColumns operation each byte is multiplied by a set of four constants
({03}, {02}, {01}, and {01} in the case of encryption). As described in Sect. 1.2.3,
the multiplication by 2, in GF(2?%), can be computed by shifting the input value once
to the left. If the resulting 9th bit is ‘1°, the entire result has to be bitwise XORed
(subtraction in GF(2%)) by ‘Ox11B’, in order to perform the modular reduction. The
multiplication by 3 can be achieved by adding the multiplications by 1 (the input value
itself) and by 2 (with the addition in GF(2%) being performed by a bitwise XOR).

To conclude the MixColumns matrix multiplication, the multiplied values are
added in GF(2%) by a XOR tree, as

roi =02 xag ® 03 xa; ®01 xay & 01 xas;
ri; =01 xay ®02xa; @03 xay @01 xas;
Vz,‘:OlXQOi @leali@OZXGZi@03Xa3i
r3i =03 xag ® 01 xa; & 01 xay & 02 xas;

(1.3)

Overall, in a logic-based MixColumns operation, the matrix coefficient multipli-
cations are relatively simple: it requires, for each byte, one 1-bit shift, one 8-bit con-
ditional XOR with the constant ‘0x1B’ to perform the modular reduction (computing
%x02), and one 8-bit wide XOR to compute the addition (e.g., x03 = x02 @ x01).
Figure 1.5 illustrates the multiplication of the four coefficients, given one input byte.

Input Byte
R e R S T R L Bl
M je—— 0x00
: i .;/T'\: -———{ U 8
8 X [e—— 0x1B
8 8 8 8 8
=x{01} =x{01} = x{03} = x{02}

Fig. 1.5 Circuit example for the GF(2®) encryption multiplication
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On a 128-bit datapath, the MixColumns requires a total of 128 7-input functions, or
256 6-input FPGA LUTSs. On FPGA s this operation can be performed with relatively
low latency, in comparison with the SubBytes stage, as suggested by [2, 5, 10, 17].

On 8-bit datapaths, a single State byte is provided in each clock cycle. As such,
the resulting bytes cannot be completed on a single cycle, since each byte result-
ing from the MixColumns operation depends on four State bytes. Given this, for
8-bit datapaths, registered accumulation can be used. One such approach was first
introduced by Hidmildinen et al. [12] for ASIC technology, and later adapted for
FPGA by Chu and Benaissa [6]. The resulting structure is depicted in Fig. 1.6.

In this design, the input byte is shifted and XORed in order to obtain the 4 coeffi-
cient multiplications ({03; 01; 01; 02}). The resulting values are then XORed by zero
in the first iteration and temporarily stored in four 8-bit registers. In the following
cycles, a new input byte suffers the same transformations but is XORed with the
previously stored 4-bytes. After 4+1 cycles, one matrix multiplication for one State
column is performed. After 16+1 cycles, the entirety of the MixColumns operation
can be completed. The issue with this approach [6, 12], is the fact that it requires a
32-bit parallel-to-serial converter, given the 8-bit datapath, as depicted at the bottom
of Fig. 1.6.

Instead of performing the 4 coefficient multiplications in parallel, Sasdrich and
Giineysu [25] proposed an 8-bit-only accumulative implementation that performs
one coefficient multiplication per iteration, as illustrated in Fig. 1.7.

With this approach, a significant area reduction can be achieved by further folding
the matrix multiplication and by not needing the parallel-to-serial converter. Addi-
tional resources can be saved by preloading a Round Key byte into the register, thus

SubBytes 8 =E x{02) |
N8
WA
8 8 AN 8
8 8 8 8
Y L J Y 3
A Jany A A
N N NV N
8 1.8 8 8
Y y v

I N R N R N S Y
0 t | 0 1; 0 0 4

8y 8 8 8 8 8

‘F; | ‘F{
\Mux/ > | \Mux/ o[> | \Mux/ o[>

Foe ] Tal Fal

Fig. 1.6 Chu and Benaissa [6] Accumulative MixColumns 8-by-32-by-8 bits

I
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Fig. 1.7 Sasdrich and Giineysu [25] 8-bit Accumulative MixColumns

intrinsically performing the AddRoundKey operation. However, this area compres-
sion implies a significant throughput reduction, since it requires 96 clock cycles to
complete the MixColumns and AddRoundKey operations. It should be noted that
none of these solutions [6, 12, 25] addresses the InvMixColumns operation, which
is more complex given the used coefficients ({0B; 0D; 09; OE }).

1.3.5 Implementing the InvMixColumns: Logic

The InvMixColumns operation is identical to the MixColumns, but with the coeffi-
cients {0B; 0D; 09; OE}, resulting in a more complex datapath. The required three
modular shifts (x08; x04; x02) and respective XORs (see Table 1.1 and Eq. (1.2))
create a dependency of up to 23 input signals for each bit of the 32-bit matrix
multiplication result, as depicted in Fig. 1.8. Because of this complexity, only two
state-of-the-art proposals have presented results for architectures with logic-based
InvMixColumns [2, 5].

In the single-mode structure presented by Bulens et al. [2], the authors implement
the extra required logic for the InvMixColumns (+150 Slices). Chodowiec and Gaj [5]
on the other hand, presented a 32-bit datapath that can operate in either encryption or
decryption mode. This approach allows to share resources between the two matrices
multiplications.

Chodowiec and Gaj [5] realized that, by applying a different, slightly simpler,
matrix multiplication over the MixColumns operation, one can compute both the
MixColumns and InvMixColumns by sharing resources. Being c(x) and d(x) the
polynomials defining the MixColumns and InvMixColumns operations, respectively,
and given that

c(x)ed(x) =01 & c(x)ed*(x) = d(x) 1.4)
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0x00 Ox1B 0x00 Ox1B 0x00 0Ox1B
8 \l\e 8 8 8 8
Input Byte L“sF MUX L"r"_ MUX ’L' 6" | MUX
Mgn| ]
7 8 8 8
[ g: | g Y ' y
| ::1_ << <<
|§E| —=Tg E g ——1 ¢ E g ——1 ¢ 59
2
I 15: L
— 1 =xon =x{02} = x{04} = x{08}
L
1V
AW
1
3 Y
e [\ Mg
N N !
ey
]/
8 8 8 8
Y Y Y Y
= x{09} = x{0B} = x{0E} = x{0D}

Fig. 1.8 A circuit example for the GF(2%) decryption multiplication

d*(x) = 04x> + 05 (1.5)

the InvMixColumns operation can be computed by:

roi 05 00 04 00 02 03 01 01 ao;

ni | _ 00 05 00 04 010203 01 ai; (1.6)
o 04 00 05 00 01010203 a; ’
3 00 04 00 05 03 01 01 02 as;

Given this, and by reusing the hardware structure computing the MixColumns,
the InvMixColumns operation only requires the additional computational structure
computing d?(x) depicted in Fig. 1.9.

1.3.6 Implementing the (Inv)MixColumns: Memory

Another alternative to implement the multiplication of the coefficients is to map the
result into a lookup table. With this option, the multiplication of the input a;; by the
coefficients {03; 01; 01; 02} or {0B; 0D; 09; OE} are stored into a memory with a
32-bit output. The resulting outputs can then be added (in GF(2%)) by a tree of XOR
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Input Byte
8h 7P 6 5 4 3 o | T alrh 57 4 319 20 13
(i == LR

8 8
8 0x00 —‘~¢» M f‘!\ M [ 0x00

U < ul s
U’)(‘]B-Arb— X N8 X e 0x36

(=0x1B <<1)
WA
oxno
3
Y
=x{00}  =x00}  =x{05}  =x{04)

Fig. 1.9 d?(x) matrix coefficient multiplications of Chodowiec and Gaj [5]

03x SBox(aj;) 0ExInvSBox(cji)

y _ | 01xSBox(a;:) ) | 09xInvSBox(cji)
TBow(aj:) = 01xSBox(a;;) » InuTBox(c;) = 0D x InvSBox(cji)
02x SBoz(aj;) 0BxInvSBox(cj;)

Fig. 1.10 The TBox computation

gates. The mapping of the multiplication coefficients requires 2% x 32 = 8k bits of
memory for encryption and another 8k bits for decryption.

However, if memory is to be used for the matrix multiplication, the mapped
values can belong to SBox(aj;) rather than just aj;, i.e., this lookup table can also
compute the SubBytes operation. This new table, mapping the byte substitution and
the multiplication by the MixColumns coefficients is called TBox, as depicted in
Fig.1.10.

Note that, between the SubBytes and MixColumns operations, the ShiftRows
operation should be performed. However, since the byte substitution is the same,
independently of the byte position, the ShiftRows can be performed before the TBox
computation.

Particularly on FPGAs, the TBox approach is quite recurrent, since it can be
easily implemented with embedded memory Blocks (BRAMs on Xilinx FPGAs)
acting as 1-byte-by-4-bytes lookup table, as depicted in Fig.1.10. A single TBox
can be stored in any BRAM with at least 8k bits of space and when dual-port access
is available in the technology, two substitutions can be performed within the same
memory component.

Note that the TBox only provides the GF(2%) multiplications required for the
MixColumns. It does not complete a full matrix multiplication (Eq. 1.2). Only after
the input bytes (ao;; a1;; azi; as;) have been replaced by TBoxes (resulting in 16
byte parcels) can all the byte outputs be properly “aligned” and XORed to complete
the GF(2%) additions (Eq. 1.3). Proper alignment refers to the different column-wise
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coefficient sequences found in Eq.(1.3), for each input byte. This can be achieved
by having only one type of TBox and afterwards shifting; or by having four different
TBoxes, each with a different coefficient rotation ({02; 01; 01; 03}; {03;02;01;01};
{01;03; 02; 01} and {01; 01; 03; 02}).

When considering the implementation of both TBox and the InvTBox on a single
memory block, 9 address bits are used: 8 bits for the input byte and 1 bit for the
selection between encryption (TBox) and decryption (InvTBox).

Itis also possible to create a LUT-based TBox solution, but doing so is not advised.
As Sect. 1.3.3 showed, 32 LUTs per SBox are required, which means 96 to 128 LUTs
would be required for each TBox/InvTBox, subsequently surpassing the logic-based
solution requirements for large datapaths.

1.3.7 Last AES Round

The last AES round has the particularity of not computing the (Inv)MixColumns oper-
ation. Implementations that separate the SubBytes operation from the MixColumns,
usually logic-based ones, simply bypass the latter in the last round. However, other
implementations, such as the TBox based ones, have the MixColumns operation
inherently performed every time. The way the MixColumns operation is bypassed
or canceled, in these situations, depends on the details of how the datapath is imple-
mented, as discussed in the following.

The easiest solution is to map into the BRAMs a second set of tables exclusively
performing the SBox lookup substitution. This solution is used by Drimer et al. [9]
and Resende and Chaves [20], although with slightly different mappings.

In [9], the State bytes are shifted column wise, and each column is fed, one byte
at a time, to a specific BRAM port. This means, that in order to properly process all
4 bytes of a column, each 8-bit path needs to be able to access all four rotations of a
TBox (plus 4 of the last round TBox), in order to obtain the coefficient alignments
of Eq.(1.3). To do this, each of the BRAM’s space is occupied with two different
rotated tables (+2 last rounds). Logic resources are used afterwards to optionally
rotate the 32-bit replaced values, which allows all four rotation types to be obtained,
as depicted in Fig. 1.11.

In [20], the memory mappings were improved. The State bytes are shifted line
wise, and a full column is fed at each time throughout the four BRAM ports available.
This means that every byte that enters in one BRAM port will always need the same
TBox (or last round TBox) rotation, halving the memory space required and replacing
any extra logic by simple routing, as depicted in Fig. 1.12.

The previous solutions are simple, but still impose additional memory resources,
which are not always available. To minimize the memory impact, Rouvroy et al. [23]
explores the redundancy of the unitary {01} coefficient in the TBox. A BRAM-based
TBox solution is implemented with both TBox and InvTBox tables mapped into
memory, as illustrated in Fig. 1.13. For the last encryption round, the final substitution
is directly obtained from the first unitary MixColumns coefficient 01 x SBox().
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Fig. 1.12 Resende and Chaves [20] BRAM-based TBoxes

The memory space that would be reserved to the second unitary coefficient (01)
is modified to contain the value of InvSBox(). With this, the InvTBox space is
addressed during the decryption mid-rounds, while on the last round the TBox space
is addressed instead, in order to obtain the /nv.SBox () value. Any data conflicts are
resolved by routing and multiplexing the substitution results. This solution was one
of the first in the state of the art considering TBoxes, and is particularly useful when
merging the datapath with a Key Scheduling circuit, as proposed in [23]. However,
the additional multiplexing logic, placed after the BRAMs, impacts the critical path
and consequently the overall performance of the design.

Chaves et al. [4] designed a more elegant solution to cancel the (Inv)MixColumns
at the last round. The authors add all the four different matrix coefficients among
themselves, using a XOR tree. With this the unitary value can be obtained, as depicted
in Eq.(1.7) and Fig. 1.14.
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This means that a regular TBox substitution can still be performed on the last
round, and then canceled by XORing each matrix coefficient multiplication. This
solution is easily implemented and its resources are scalable with the datapath width.
Moreover, these extra XOR trees can be efficiently separated from the critical path,
not impacting the circuit performance [21].
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1.3.8 Types of Key Scheduling

When encrypting/decrypting data through AES, several round keys need to be added
to the State matrix. If one includes the initial whitening key, a total of 11, 13 or 15,
128-bit round keys are required for the 10, 12, or 14 rounds of AES. As shown in
Sect. 1.2.4, the round keys are extracted from the original 128, 192, or 256-bit cipher
key defined by the user.

Every time the cipher key is changed, the Key Scheduling must be performed.
However, when ciphering multiple data streams, key changes are quite sporadic. This
low frequency in which the cipher key and derived round keys need to be updated has
led to different approaches to the key scheduling in the state of the art, namely key
expansion in parallel with data encryption (On-the-fly) or pre-computed (Off-the-
fly); inclusion of dedicated key scheduling logic (On-Chip) or external computation
of the key scheduling for higher resource efficiency (Off-Chip). The following briefly
analyses these Key Scheduling approaches:

A. On-the-fly versus Off-the-fly: Since data encryption and the expansion of
its respective cipher key are both iterative processes, previous works have suggested
implementing both to execute in parallel, or at least alternately (On-the-fly). The On-
the-fly method has the benefit of requiring very little memory components to store
the expanded round keys, since only the most recent one is necessary. On the other
hand, since for each encrypted block the round keys always need to be recomputed,
either more cycles or more hardware resources are required [6, 10, 17, 25].

Since the cipher key is often maintained throughout the encryption of several data
blocks, and if memory components are available, the entire key scheduling can be
processed before starting any actual ciphering. In the Off-the-fly approach, all round
keys need to be computed and stored, but only once for a given cipher key. At the cost
of additional memory, it allows for better throughputs than the On-the-fly solution
[2, 5, 23].

As explained in Sect. 1.2.4, the decryption process requires all encrypting round
keys to be processed and stored, followed by a post-processing through the InvMix-
Columns operation, as depicted in Fig. 1.3. This makes the On-the-fly solution inad-
equate for decryption, making Off-the-fly Key Schedule the preferred solution when
supporting both encryption and decryption.

Good and Benaissa [11] seem to be the only authors to propose a Key Scheduling
circuit that can work in both On-the-fly and Off-the-fly modes, operating in the first
mode for the first input of the cipher key, and switching to the second mode for as
long as the key remains unchanged.

B. On-Chip versus Off-Chip: Given the similarities between the ciphering
process and the key scheduling (namely in the SubBytes and the InvMixColumns
operations), several implementations have proposed to compactly merge the cipher-
ing process with the key expansion [2, 23]. These solutions, performing the Key
Scheduling on the cryptographic engine itself (On-chip), allow to minimize the
required resources. However, additional logic is always required [27]. Another option
is to perform the Key Scheduling on an external processor (Off-chip) and then
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load the round keys into a memory component, in the cryptographic engine itself
[4, 21, 27].

In the end, the Off-Chip Key Scheduler is preferable when: the cryptographic
core is not necessarily autonomous and simply acts as an auxiliary processor and/or;
a single cipher key can be kept for large quantities of processable data. The off-
chip computation of the key expansion and loading to an auxiliary memory typically
yields in more compact and efficient designs [27].

1.4 FPGA Architectures for AES

While the previous section elaborates on the multiple state of the art techniques
to improve the implementation of the several AES operations, this section details
the architectural options regarding the scheduling of the operations. At this level,
the designed decisions are mostly focused on the rolling or unrolling of the loop
computation, and in the location and the amount of pipeline stages employed.

1.4.1 Rolled Versus Unrolled Rounds

One of the most direct ways to obtain a trade-off between area and throughput is
with round rolling/unrolling.

When unrolling the round computation, multiple rounds of the algorithm are
executed in parallel. As such, independent pipeline stages are assigned to each cipher
round, as depicted in Fig. 1.15. For this computation to be efficient, data has to be
streamed into the pipeline, and the more pipeline stages are placed the faster the
overall circuit should run, as described bellow. These approaches are known for
imposing higher area demands but, on the other hand, allow for higher throughputs.
However, given the data dependency between AES rounds, these approaches can
only provide good results if multiple, independent, data blocks are ciphered at the

Cipher Key ——»{ Key Expansion

Y A A Y

¥

10° Round
Input —>€ 1° Round {— 2°Round f—- ... —»{ 9° Round [—f (VL (e Output

A JAN A A

Fig. 1.15 A pipelined unrolled round AES structure
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same time. When ciphering in feedback modes (such as CBC) with dependencies
between blocks, the throughput improvements cannot be achieved.

Jarvinen et al. [16] proposed a fully unrolled pipelined architecture targeting a
Xilinx Virtex-II 2000. This solution considers a logic-based implementation requir-
ing four clock cycles to complete each round-stage. Later on, Hodjat and Ver-
bauwhede [14] also designed a four cycles-per-round pipeline structure, logic-based,
for the Xilinx Virtex-II Pro. However, these authors also presented a second design
that uses a memory-based implementation for the first five rounds (two cycles
per stage), and a logic-based implementation for the remaining ones (four cycles
per stage).

Regardless of pipeline placement choices, the average throughput across the
encryption of a data stream is not directly affected by the increase of pipeline regis-
ters in the structure, but by the clock frequency increasing with it. An example of this
are two unrolled structures presented by Chaves et al. [4] on the Xilinx Virtex-II Pro.
As briefly mentioned in Sect. 1.3.7, both of them use a BRAM-based TBox imple-
mentation for all rounds. One structure takes one clock cycle per round, while the
second one, with a deeper pipeline, takes three cycles per round. The latter achieves
higher clock frequency and throughput values.

The structure presented by Liu et al. [17] updated the AES unrolled structure to
the more modern Xilinx Virtex 5, 6, and 7 series. The technological upgrade allowed
the authors to use a LUT-based SBOX solution and reduce the pipeline to two cycles
per round, while also increasing the clock frequency.

When rolling the architecture, lower hardware requirements are imposed, since
only the logic for one round is required. This round structure will process all rounds
recursively, taking one or more cycles for each round. Actually, in 32 and 8-bit
datapaths, the deployed logic is only able to compute part of the round on each clock
cycle. Such datapaths typically allow for relatively small structures, at a cost of lower
throughputs [11].

1.4.2 Intra Versus Inter-Pipeline

The clock frequency of a circuit is inversely proportional to the longest propagation
delay between two registers of that same circuit. Consequently, the more complex the
logic between each pipeline stage, the longer the propagation delay and the lower the
clock frequency of the system. As such, the more pipelined the design is, the faster
the hardware structure will operate, but more clock cycles will be required to finish
a given computation.

In round-based algorithms, such as AES, inter-pipeline refers to the registers that,
every clock cycle, store the processed value of one round, and then feed that data
to the next round. In rolled round architectures, only one pipeline register is placed
between each round logic. The location of these registers can be at the end of the
round logic or in between it, such as on the BRAMs computing the TBoxes.
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Intra-pipeline refers to the implementation of additional registers between the AES
round operations, in order to reduce the critical path and increase clock frequency.
Intra-pipeline can exist in either unrolled and rolled round structures.

Strongly unrolled round architectures should always aim to have as much pipeline
registers as possible to achieve the highest clock frequency, as their throughput
performances are not affected while streaming independent data blocks [14, 17].
For rolled architectures, however, a trade-off between number of cycles and their
latency needs to be considered when planning an AES pipelined structure.

In rolled structures, several implementations with 1, 4, or 8 cycles per round have
been presented [4, 5, 9, 20, 23], with lower to higher clock frequencies, respectively.

1.5 State of the Art Metrics

The previous sections depict the several design options, proposed in the state of the
art, regarding the implementation of the AES on FPGAs.

In this section, a comparative study of the most relevant state of the art structures is
presented. Note that not all structures mentioned above are compared, as their original
results are somewhat outdated, such as [5, 14, 23] and the unrolled datapaths of [4].

An overview of the architectural features and performances of these structures is
depicted in Table 1.2, with their designs grouped by the datapath width.

Regarding the achieved throughput, the presented values define the average
rhythm at which each circuit processes the input blocks. In deeper pipelined struc-
tures higher throughputs can be achieved, but only if multiple blocks are processed
simultaneously. When considering a single data stream in feedback modes, such as
CBC, these structures cannot be efficiently used due to the data dependency between
blocks. In Table 1.2 the throughput values are depicted as presented by their authors,
often considering independent data blocks.

Efficiency wise, we consider the use of the throughput per Slice metric (Through-
put/Slice). This metric can be contested as a biased measurement, since it does not
take into account other FPGA modules such as BRAMs or DSPs. However, given
the difficulty in extracting equivalency values, this is herein used as the efficiency
comparison metric.

Regarding the key expansion, Table 1.2 differentiates On-chip (Y) and Off-chip
(N) Key Scheduling circuits.

Most of the state of the art proposes architectures capable of performing only
AES encryption, and often neglect details regarding the decryption operation. There
are two main reasons for this. The first reason is detailed in Sect. 1.2.3 regarding the
added complexity of the InvMixColumns operation on logic-based solutions. The
second reason regards the structures that include On-the-fly Key Scheduling logic,
as introduced in Sect. 1.3.8, since it is extremely inefficient for decryption, given
the inverted order in which the round keys are supplied. Note that several ciphering
modes only require the existence of encryption, such as Counter and CCM modes.
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The depicted HELION AES cores [13] are commercial intellectual properties,
which specific details are not publicly known, and are used here for comparison as
market products.

Datapaths with only 8-bit widths are relatively uncommon since their throughputs
are normally below 100 Mbps, with wider structures easily surpassing the 1 Gbps
mark. This also affects their efficiency. They have, however, a better potential to
require less resources.

In 8-bit Datapaths, the work in [6] only requires 80 Slices on a Xilinx Virtex
6, working at 72 MHz, achieving throughputs of 58 Mbps and an efficiency metric
of 72 Kbps/Slice. The MixColumns is performed by a 32-bit parallel module and
the SubBytes operation is logic based. The design proposed in [25] considerably
reduces the amount of resources by using a single 32 LUT-based SBox proposed
in [2], while also folding the MixColumns logic for 8 bits only. It is the smallest
AES structure presently conceived, with only 21 Slices and a clock frequency of 105
MHz. Throughput and efficiency are inevitably dropped, as expected from an 8-bit
datapath, to 9 Mbps and 90 Kbps/Slice.

Although slightly wider than their 8-bit counterparts, the 32-bit datapaths can
still offer extremely compact solutions at much higher performances. This is due to
the fact that 32-bit widths can take better advantage of several FPGA technology
features, such as BRAMs [9, 20] and DSPs [9].

The 32-bit compact structure proposed in [9], allows for a throughput up to 1.76
Gbps at a cost of 107 Slices. This is a TBox-based structure using BRAMs and 4
DSP blocks. The DSP blocks are used to implement the XOR operations, instead
of regular Slices. This approach allows for an efficiency of 16.45 Throughput/Slice,
achieved for two parallel block streams. Note that DSPs are Xilinx FPGA dedicated
arithmetic components and are not accounted for the efficiency metric herein con-
sidered. Without the use of DSPs, 212 Slices are needed instead, resulting in an
efficiency of 8.30 Mbps/Slice.

The work of de 1a Piedra et al. [8] extends the use of DSPs. Since DSPs are capable
of performing XOR operations with constants, the authors decided to implement them
on a logic-based MixColumns. SBox lookup operations and temporary State storage
is performed exclusively by BRAMs. This leads to the small amount of needed Slices
(80), mostly used in the Key Schedule and Control Unit. However, 11 BRAMs and
16 DSPs are required as a consequence. With this type of resources it is hard to
compare the 2.44 Mbps/Slice efficiency value with the remaining state of the art, but
remains as a viable alternative, if FPGA Slices are required for other operations.

The work presented in [20] improves upon the two block stream computation of
[9]. This design does not use DSPs, allowing for a simple scheduling, and uses the
SRL32 LUT-based shifter [5], instead of the large shift register used in [9]. This leads
to the best Throughput/Slice efficiency value in the state of the art, 24 Mbps/Slice
on a Virtex 5, with a cost of 70 Slices and 3 BRAMs [20], and a throughput of 1.7
Gbps.

Increasing the datapath width allows for better throughputs, but the extra resources
impact the area efficiency. The 128-bit rolled datapath structure presented in [4]
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computes a round on a single clock cycle, achieving a throughput of 2.4 Gbps with
an efficiency of 5.96 at a cost of a higher BRAM usage (10 BRAMs).

Bulens et al. [2] designed a 128-bit datapath with LUT-based SBoxes, off-the-fly
Key Scheduling and four pipeline stages. This allows to process with a 4.1 Gbps
throughput and a 10.4 Mbps/Slice efficiency mark, but only if four different data
blocks are being processed in parallel. The datapath presented by El Maraghy et al.
[10] has similarities with [2], but the SBoxes are BRAM-based, and the on-the-fly
Key Schedule only allows for 1 single 128-bit block to be processed at a time at 1.3
Gbps, with an overall 4.38 Mbps/Slice area efficiency.

Finally, the fully unrolled AES architectures can achieve the highest speed per-
formances for non-feedback streams. The specific solutions for each AES round
operation are very similar to the ones presented in the 128-bit rolled round struc-
tures: Routed ShiftRows, LUT-based SBox, and logic-based MixColumns, but their
inter-pipeline feature suits them for a complete different area of applications. Liu
et al. [17] has presented what may be the AES implementation with the highest
throughput on the FPGA state of the art, including results for the Virtex 7 FPGAs.
With two clock cycles per round, it can reach throughputs from 46 Gbps up to 66
Gbps, and from 12 Mbps/Slice up to 20 Mbps/Slice in efficiency values, depending
on the technology. However, the high resources cost, 3121 to 3579 Slices, makes this
architecture unsuitable for small embedded devices. Flexibility is also disregarded, as
their throughput and efficiency performances can drop by a factor of ~20 if feedback
ciphering modes are required.

In the works presented in [9, 20], the authors discussed the difficulty in obtaining
high clock frequencies. As explained in Sect. 1.2, the ShiftRows data dependency
dictates that 128, 32 and 8-bit datapaths need to complete each AES round in one
[4], four [5, 23], and eight cycles, respectively, in order to prevent empty cycles with
no computations. However, due to the technology limitations, the minimal amount
of cycles per round cannot be reached without affecting the clock frequency. Drimer
et al. [9] and Resende and Chaves [20] have stated that the best way to achieve high
clock frequency in 32-bit rolled AES datapaths is to create an eight-cycle pipeline
for two independent data blocks.

1.6 Conclusion

Since the introduction of the AES, several optimization features have been proposed
towards improving the implementation of this algorithm, exploiting the particularities
of the FPGA technology. These optimizations consider the several AES operations
and the overall computational flow. This chapter provides the reader with an overview
of the state of the art techniques used in the implementation of AES on FPGAs.
Datapath widths are herein discussed, ranging from the 8-bit rolled structure
proposed by Sasdrich and Giineysu [25] trading speed for compactness, being the
smallest architecture with only 21 Slices; the 128-bit unrolled pipeline, proposed
by Liu et al. [17], achieving the best streamed throughput of 66 Gbps; and the
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structure with the highest Throughput/Slice efficiency on a more balanced 32-bit
rolled architecture by Resende and Chaves [20], achieving an efficiency metric of
30 Mbps/Slice. Particular FPGA optimizations are also analyzed such as the LUT-
based addressable shift register solution for the ShiftRows operation, from its first
introduction by Chodowiec and Gaj [5], to its most recent usage in [6, 20, 25]. Logic
versus memory-based solutions are also compared, regarding the implementation of
both the SubBytes and the MixColumns, with memory lookup tables (such as BRAM-
based TBoxes), particularly in structures where both encryption and decryption are
necessary.

Additional insights, such as the last round exception or pipeline distribution, are
also herein discussed, presenting the most significant contributions in the implemen-
tation of the Advanced Encryption Standard on Field-Programmable Gate Arrays.
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Chapter 2
Fault Attacks, Injection Techniques
and Tools for Simulation

Roberta Piscitelli, Shivam Bhasin and Francesco Regazzoni

2.1 Introduction

Embedded systems pervaded our live since few years. The applications where they
are used are often safety critical, such as public transports or smart grids control, or
handle private and sensitive data, such has medical records or biometrics information
for access control. This trend is expected to even increase in the near future, when
a large amount of embedded devices will be connected to the so called Internet of
Things (IoT). If, on one side, the level of interoperability and connectivity which will
be reached by the objects in the IoT will allow to offer a large variety of services,
to increase the efficiency and to reduce the costs, on the other side, the envisioned
applications require the device to include security functionality to guarantee the
confidentiality of the processed data and the security of the overall infrastructure.
Designers anticipated these needs by augmenting several devices with state of the
art cryptographic primitives: embedded processors included instructions to quickly
encrypt and decrypt data and a number of low-cost accelerators were designed to
boost the performance of secure protocols implemented in wireless sensor nodes.
However, robust and mathematically secure cryptographic primitives are not suf-
ficient to guarantee the security of embedded devices. In the past, cryptographics
algorithm have been conceived to be robust only against mathematical attacks: their
structure is realized to resist, among other, to linear and differential cryptanalysis,
they were requested to resist brute force attacks, also considering the progress of the
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technology, and the hardness of the computational problem involved should have
been capable of guaranteeing long-term security.

The situation changed in the last to decades, with the advent, the rise and the
develop of a novel form of attacks, called physical attacks. These attacks, instead
of addressing the mathematical structure of the algorithm, try to extract information
about the secret key exploiting the weaknesses of the implementation of the algo-
rithm itself. To recover the secret data, the adversary can exploit either an additional
information leaked by the device during the computation (for instance the power
consumed by the device) or can actively induce an anomalous behavior capable of
leaking secret information.

Physical attacks are particularly dangerous for embedded systems, as they are,
potentially, “in the hand” of the adversary, which thus has the whole control over
them. Physical attacks are usually divided into two classes: passive attacks and
active attacks. Among the first ones, the most notable one is power analysis [1], in
which the adversary measures the power consumed by certain number of encryptions
computed using a known plaintext, makes an hypothesis on a small portion of the
secret key, and used the previously collected power traces to verify the correctness
of the hypothesis. Nevertheless, the time [2] needed to complete an encryption, the
electromagnetic emission [3] of a device or even the photons emitted by transistors
[4] were successfully used to recover secret data.

During active attacks, the adversary does not limit himself to the observation of
information leakage but actively tampers with the target device. The most common
form of active attack is fault injection. In this attack, the adversary forces the device to
perform erroneous operations and he exploits the relation between the correct results
and the incorrect ones to infer the secret key (or to significantly reduce the possible
key space). Fault injection consists of two parts: the first is the injection of the fault
into the device, in which the target device is induced into an anomalous behavior,
the second is the attack itself, in which the erroneous output is used to extract secret
information.

Fault injection attacks are extremely dangerous because they require a limited
amount of time to be carried out and because they were proven to be effective even
when performed with an extremely inexpensive equipment. Barenghi et al. [5], for
instance, showed how, by underpowering an ARM9 embedded processor, it was
possible to induce a number of errors sufficient to successfully attacks software
implementations of the AES and the RSA algorithms. A similar approach was used
also to attack an ASIC implementation of the AES algorithm.

Robustness against fault attacks is usually evaluated in laboratories, where a man-
ufactured device is tested by mounting a number of known attacks. However, this is
not the best solution for designers which needs to timely apply the proper counter-
measure against these attacks. Even if the final prove of resistance can be obtained
only with the direct evaluation of the manufactured device, it would be more effec-
tive to have an initial exploration of the resistance against fault attacks at design
time. This, however, requires to have tools capable of simulating the behavior of a
device under attack, at the needed resolution, and to have a methodology to compare
different countermeasures.
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This paper addresses the problem of fault attacks. First, we survey the most com-
mon methods used to inject the faults, highlighting the potentialities of the method
and its cost. Then we summarize the type of fault attacks previously presented in
literature, finally we introduce the design tools which can be used for simulating fault
attacks and we discuss to which extend they are suitable for evaluating the sensitivity
of a device against fault attacks.

2.2 Fault Injection Techniques

Fault attacks are active attacks, which need an adversary to induce errors into the
target device, using some tampering means. This tampering can be accomplished
in several ways, as extensively discussed in literature and illustrated in Fig.2.1. In
general tampering means or fault injection techniques are classified in two broad
categories, i.e., global and local. Global fault injection are, in general, low-cost
techniques which create disturbances on global parameters like voltage, clock, etc.
The resultant faults are more or less random in nature and the adversary might need
several injection, to find required faults. On the other hand, local techniques are more
precise in terms of fault location and model. However, this precision needs expensive
equipment.

The kind of fault injected can be defined as fault model. The fault model has
two important parameters, i.e., location and impact. Location means the spatial and
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Fig. 2.1 An illustration of fault injection techniques
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temporal location of fault injection during the execution of target algorithm. Depend-
ing on the type and precision of the technique, location can be at the level of bit,
variable or random. Coming to the impact of fault, it is the affect on the target data.
Commonly known fault injection impacts on target data can cause stuck-at, bit-flip,
random-byte, or uniformly distributed random value. In the rest of the section, we
summarize the most common techniques for injecting faults, highlighting for each of
them, the main characteristics, the complexity, the cost, and the erroneous behavior
introduced in the target device.

2.2.1 Fault Injection Through Power Supply

Embedded systems are often either battery operated or connected with an external
power supply (latter, for instance, the case of smart cards). In this context, a natural
and very inexpensive way to induce a malfunctioning is to alter the power supply
coming from an external source. This alteration or disturbance can be performed
in two different ways: underfeeding or voltage glitch. The typical effects caused by
alteration of power supply are setup-time violation: flip-flops are triggered before
the input signals reach a stable and correct value. Such fault techniques can be used
to skip the execution of an instruction in the microprocessor code. The temporal
precision of the fault injection depends on the accuracy of the voltage drop in duration
and its synchronization with the target device. By underfeeding the target for a
prolonged period, the adversary is able to insert transient faults with single-bit faults
appearing first and increasing in multiplicity as the feeding voltage is further lowered.
This requires only basic skill and can be easily achieved in practice without leaving
evidence of tampering on the device. Alterations of power supply was exploited
by Barenghi et al. [5] to attack software implementations of the AES and the RSA
algorithms. The authors demonstrated that an embedded processor, in that case an
ARMD, can be successfully attacked using very inexpensive equipment. Several other
works demonstrated the feasibility of attacking the AES algorithm with fault induced
by underfeeding. A possible example is the work of Selmane et al. [6]. The drawback
of this technique is the time precision: the adversary can not control the exact time
in which the fault happens. As a results, he must be capable of selecting the right
faults and discard the ones which cannot be used during attacks.

2.2.2 Fault Injection Through Clock

Fault induced with clock are similar to fault induced with power supply. The typical
target of these attacks are devices, such as smartcards, which use an external clock
signal. The adversary can supply these devices with an altered clock signal, which
contains, for instance, a clock pulse which is much shorter than what is expected in
the normal clock. Pulses generated in this way are called clock glitches, are much
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shorter than the deviations normally tolerated by the smart cards [7, 8], and they can
cause a setup-time violation or the skipping of instructions during the execution of
a program [9]. The errors are transient and the device does not incur any damage;
thus it is possible to induce faults at will without leaving any evidence of tampering.
Overclocking the target for a prolonged period can also be used to inject transient
faults. Much like underfeeding, overclocking leads to single-bit flips initially and
higher multiplicity of faults at higher frequencies. This type of attack can be carried
out with relatively low cost equipment.

2.2.3 Fault Injection Through Temperature

Electronic circuit are manufactured to work only on specific operating conditions
identified by an upper and a lower temperature thresholds. Outside this range, there
is no guarantee that the circuit continues to work as expected. Possible effects can be
the random modification of the content of the memory cells or a limited functionality
of the device. An adversary can induce faults into the device by exposing it to
temperatures outside this range or by stressing it in order to increase its temperature.
An example of this approach is the one proposed by Govindavajhala and Appel [10],
where the chip was heated by executing a large number of load and store operations.
The authors report a thermal fault induction attack against the DRAM memory chips
of a common desktop PC. Using a 50 W light bulb and controlling its distance from
the target, the authors reported around ten flipped bits per 32-bit word at 100 °C.
Since the precision of the heating element is coarse grain, the controllability of faults
is limited and impact is global. Moreover, excessive heating can cause permanent
damage to the target.

2.2.4 Fault Injection Through Light

Optical attacks are a semi-invasive fault injection attack because they require the
decapsulation of the target device, which is then hit with a light pulse or high-
intensity laser. The light pulse or laser can be directed to the front or to the back side
of the chip, depending on the type of the attack and the difficulty involved in each
approach. In fact, with modern technologies, it can be difficult to reach the target
cell from the front side of the chip, due to several metal layers of the chip itself. In
order to obtain very precisely focused light pulses, the light emitted from a camera
flash is concentrated with the aid of a precision optical microscope by applying it
to the eyepiece after the device under attack has been carefully placed on the slide
holder. In order to avoid over-irradiation of the device, which might lead to permanent
damage to the circuit, care must be taken in selecting an appropriate magnification
level for the microscope lens. The accuracy with light pulse is limited as the pulse
gets scattered. Laser provides higher accuracy. It can also be used to attack through
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the back-substrate of the chip using near-infrared wavelengths. Optically induced
fault require expensive equipment to be carried out. High-energy radiations like UV
lamps can also create permanent faults. Nevertheless, they can be very precise both in
the target, as it was demonstrated by Skorobogatov [11], and in time. This precision
allow to change values at the granularity of a single RAM cell or even at of a register
[12]. Light-based faults need medium to high expertise depending on the equipment.
Laser is also capable of damaging the chip with over-radiation. The faults can be
precise in time and space and also multiple faults can be injected using laser.

2.2.5 Fault Injection Through Electromagnetic Fields

Electromagnetic pulses can cause the change in the memory content or the malfunc-
tioning of the device. This is due to the so called Eddy currents, which are created
using an active coil [13]. Electromagnetic pulses can induce a fault which is extremely
localized and precise (up to the level of a single bit), while the equipment needed to
carry out this attack can be relatively cheap. Furthermore, the attack can be carried
out without depackaging the chip. However, the adversary is required to know the
details of the layout of the chip in order to identify the precise point of attack. The
EM pulse can either be injected over the power trail of the chip, uniformly affecting
the whole attacked device, or a smaller EM coil can be used to induct an additional
current on a specific part of the circuit. The idea of this type of fault injection has
been introduced by Quisquater and Samyde [13]. The authors demonstrated that it
is possible to alter the computations of a cryptographic algorithm using an Electro-
magnetic probe and a camera flash (used to induce high voltage into the coil of the
probe). This technique does not work efficiently with chips that employ grounded
metal packaging (usually for heat sinking purposes), that also act as an EM shield,
which needs the adversary to perform decapsulation (Table 2.1).

2.2.6 Fault Injection Through Focused Ion Beams

Focused Ion Beams (FIB) are a very expensive way to inject fault into the device,
however they allows the attacker to arbitrarily modify the structure of a circuit. The
adversary can cut existing wires, add connections, and operated through different
layers. The capability of these tools are demonstrated in Torrance et al. [14], where
the authors showed the reconstruction of a bus without damaging the contents of
the memory. FIB equipment is expensive and needs high technical expertise, but the
precision is extremely high. Current FIBs are able to operate with precision up to
2.5nm, i.e., less than a tenth of the gate width of the smallest transistor that can
currently be etched.
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2.2.7 Comparison of Fault Injection Techniques

The previously introduced fault injection techniques have several parameters to define
its application. The most important parameters are compared in Table2.2.

2.3 Fault Attacks

Faults attacks have gained popularity as a serious threat to embedded systems over
the last few years. Attacks can target a specific algorithm or generically modify the
program flow to attacker’s advantage. In the following, we refer the classification of
attacks and the organization proposed by Karaklaji¢ et al. [15]. In particular, three
distinct classes of fault attacks are identified for embedded system.

2.3.1 Algorithm Specific Attacks

Fault attacks can be designed to exploit specific weaknesses of the target algorithm
which are introduced by the injection of a fault. Several attacks targeting a large
number of algorithms were presented in the past, the most common being the attacks
against AES, RSA, and ECC.

Bloemer et al. in [16] proposed an attack on AES which exploit the change of a
single bit after the first key addition. However, this attack can successfully recover
a complete key only when the adversary has the possibility to inject a fault at a very
precise timing and at a very specific position.

The security of asymmetric cryptosystems relies on problems which are mathe-
matically hard to be solved. Fault attacks can be designed to weaken the problems
and thus weaken the security of the algorithm based on that. A common target for
such attacks are public-key cryptography algorithm, in particular RSA and ECC, as
they are widely used for authentication, digital signature, and key exchange. RSA
is based on exponentiation using a square and multiply (S&M) routine, while ECC
is based on point-scalar multiplication using a double and add (D&A) routine. Both
(S&M) and (D&A) have similar structure where the set of executed routine depends
on the value of the processed bit of the secret.

Proposed attacks to these cryptosystems requires the attacker to change the base
point of an ECC. As a result, the scalar point-multiplication will be moved to a
weaker curve. The use of weak curve will make the problem of solving the discrete-
logarithm problem of ECC manageable, and thus will lead to the recover of the
secret [17]. The same attack can be carried out if the attacker manage to supply
wrong parameters for the curve [17]. Other attacks proposed in the past showed that
faults can be exploited to control few bits of the secret nonce in DSA and, which
ultimately allows to recover the whole key [18]. Pairing algorithm are also vulnerable
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to faults [19]: it was demonstrated that by modifying the loop parameter of a pairing
algorithm, the secret point can be recovered.

2.3.2 Differential Fault Analysis

Differential fault analysis (DFA) is one of the most common exploits for crypto-
graphic algorithms. The main idea behind DFA is the following: faults are injected
in a device to alter the computation of the target algorithm. When a fault injection
is successful, it is reflected on the output ciphertext. The attacker also computes the
correct ciphertext for the same inputs. After collecting several correct/faulty cipher-
text pairs, differential cryptanalysis techniques are applied to discard key candidates.
With precise faults injection, the attacker can reduce the key candidates to a unique
solution. DFA was introduced as a threat to symmetric block ciphers by Biham [20]
and then extended to other symmetric primitives [21, 22]. The attack presented by
Giraud [23] targets the state during the last round, and assumes that the fault alters
only a single bit of the state, prior to the last SubBytes operation. The attack is
thus applicable only to the last AES round that does not include the MixColumns
operation, where the a single byte difference in the state will not spread to other
bytes. Attacks proposed in the past also target a single bit or a single byte in the
key-expansion routine of the target algorithm in order to recover the whole secret
key [24].

DFA has also been reported on public-key algorithms like RSA [25]. Bellcore
attack [26] attempts to factor the modulus n by injecting faults in exponentiation
phase using the Chinese remainder theorem. DFA was further extended to fault
sensitivity analysis (FSA [27]), which exploits the physical characteristics of faults
like timing instead of faulty outputs.

2.3.3 Tampering with the Program Flow

Faults can also be injected to change the flow of an executed software code [28-31].
A fault in program counter is an obvious way to modify the program flow. For code
implementing cryptographic algorithms, change in the program flow can be a secu-
rity threat. Often an instruction skip lead to a wrong computation of critical portion
of the algorithm, significantly weakening it. A notable example of this involves the
exponentiation algorithm [28]. Similarly, fault on loop counter or branch selection
were demonstrated to leak secret point of pairing schemes [30] or to reduce the
number of encryption round in symmetric key algorithms [20], thus enabling classi-
cal cryptanalysis. Often fault attack countermeasures are based on redundancy with
sanity check. Some efficient attacks simply try to skip the sanity check to bypass
a deployed countermeasure [32]. This approach can be distinguished in two main
categories: during compile time or during runtime. To inject faults at compile time,



2 Fault Attacks, Injection Techniques and Tools for Simulation 37

the program instruction must be modified before the program image is loaded and
executed. Rather than injecting faults into the hardware of the target system, this
method injects errors into the source code or assembly code of the target program
to emulate the effect of hardware, software, and transient faults. During runtime, a
mechanism is needed to trigger fault injection. Commonly used triggering mecha-
nisms include, timeouts, exception/traps and code insertions. Although this approach
is flexible, it has its shortcomings: first of all, it cannot inject faults into locations
that are inaccessible to software. Second, the poor time-resolution of the approach
may cause fidelity problems. For long latency faults, such as memory faults, the low
time-resolution may not be a problem. For short latency faults, such as bus and CPU
faults, the approach may fail to capture certain error behavior, like propagation.

2.4 Fault Injection Simulators and Their Applicability
to Fault Attacks

In simulation-based fault injection, the target system as well as the possible hardware
faults are modeled and simulated by a software program, usually called fault simu-
lator. The fault simulation is performed by modifying either the hardware model or
the software state of the target system. This means that the system could behave as if
there was a hardware fault [13]. There are two categories of fault injection: runtime
fault injection and compile-time fault injection. In the former, faults are injected
during the simulation or the execution of the model. In the latter, faults are injected
at compile time in the target hardware model or in the software executed by the tar-
get system. The advantage of the simulation-based fault injection techniques is that
there is no risk to damage the system in use. In addition, they are cheaper in terms of
time and efforts than the hardware techniques. They also have a higher controllabil-
ity and observability of the system behavior in the presence of faults. Nevertheless,
simulation-based fault injection techniques may lack in the accuracy of the fault
model and the system model. In addition, they have a poor time-resolution, which
may cause fidelity problems. Software fault injection is a special case of simulation-
based fault injection where the target system is a large microprocessor-based machine
that may include caches, memories, and devices, running a complex software. This
technique is able to target applications and operating systems, which is not easy to
do with the hardware fault injection.

Fault-injection simulators are attractive because they do not require expensive
hardware. Moreover, they can be used to support all system abstraction levels, as
applications and operative systems, which is difficult at hardware level. The control-
lability of fault-injection simulators is very high: given sufficient detail in the model,
it is possible to modify any signal value in any desired way, with the results of the
fault-injection easily observable regardless of the location of the modified signal
within the model. The main goal of an early analysis of the resistance against fault
attacks is to allow designers to easily identify the weakest point of their design, and
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to protect it with appropriate countermeasures. Although this approach is flexible, it
has some shortcomings:

e Large development efforts are required, as they involve the construction of the
simulation model of the system under analysis, including a detailed model of the
processor in use. This increase the cost of using simulation-based fault-injection
tools.

e Not all the fault attacks previously discussed can be simulated in the simulation
model.

e The fidelity of the model strongly depends on the accuracy of the models used.

e High time consuming, due to the length of the experiment.

Some attacks, in particular setup-time violations, can be reliably simulated using
state of the art EDA commodities. For some others, instead, it is impossible to have a
complete simulation. It is however possible to model the type of error which will be
induced into the device, and simulate the behavior of a device when a similar type of
error occurs with cycle accurate or with behavioral simulators. The strategy usually
adopted by these injection frameworks is to evaluate the effects, that the injected
faults have on the final result of the computation. Designer then attempts to mount
an attacks using the simulated data and can determine if the amount of information
which will be available to the attacker will be sufficient to successfully extract secret
information. In the rest of this section we revise known tools and approaches used
in the past for injecting and simulating faults at different level of abstraction and we
discuss their suitability for evaluating the resistance against fault attacks.

2.4.1 Weaknesses Identification with Static Analysis

Identification of portions of the circuit sensitive to fault attacks can be achieved
using static timing analysis. Static timing analysis produces a very detailed timing
characterization of the paths inside their design, highlighting the critical path and all
the other paths which are very close to the critical one. Barenghi et al. [33] proposed
to extract the worst-case delays associated with the input connections of the state and
key registers. Static analysis was carried out with Synposys PrimePower, using as
input the placed and routed netlist and the parasitics of the connections. The authors
compared the ranking of sensitivity to attacks, obtained using static analysis, with
the fault attacks mounted on a real device. Obtained results demonstrated that static
timing analysis provides an effective way to estimate the worst case timings for
the input lines of the state registers and pinpoint which ones are more likely to be
vulnerable to setup-time violation attacks.
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2.4.2 High-Level Simulation with Complex Fault Models

High-level simulators are system simulator which simulate the behavior of a device
with the precision of a clock cycle. They can be execution based, when the benchmark
is directly executed, or trace based, when the simulation is carried out using a trace
of execution previously generated.

2.4.2.1 Fault Injection in Execution-Based Simulators

In these kind of simulators, a module for fault injection is integrated in the target
design. The fault injection module can be integrated as dedicated module called
saboteur. It is inactive during normal operation and can alter value or timing char-
acteristics when active. Saboteurs can be inserted in series or parallel to the target
design. Serial insertion, in its simplest form, consists of breaking up the signal path
between a driver (output) and its corresponding receiver (input) and placing a sabo-
teur in between. In its more complex form, it is possible to break up the signal paths
between a set of drivers and its corresponding set of receivers and insert a sabo-
teur. For parallel insertion, a saboteur is simply added as an additional driver for
a resolved signal. The other approach of fault injection is using mutants which are
inserted by modifying parts of the target circuit components. Those two approaches
present the advantage of supporting all system abstraction levels: electrical, logical,
functional, and architectural. Such approaches allow full reproduction of: single-
bit flips, selected bit alterations, data corruptions, circuit rewiring, clock alteration
and instruction swaps effects. However, theory require large development effort and
cannot support fully randomisation and real-time features.

Existing available tools are: MEFISTO-C [34], VERIFY [35], HEARTLESS [36],
GSTF [37], FTI [38], Xception [39], FERRARI [40], SAFE [41], DOCTOR [42]. A
detailed overview can be found in [43].

Selected Simulators

Xception [39] is a software implemented fault injection tool for dependability analy-
sis. It provides an automated test suite that helps in injecting realistic faults. It injects
faults without any intrusion on the target system. No software traps are inserted and
hence program can be executed in normal speed. It uses the advanced debugging and
performance monitoring features that exist in processors to inject realistic faults by
software, and to monitor the activation of the faults in order to observe in detail their
impacts on the behavior of the system [39]. Xception is a flexible and low-costly tool
that could be used in a wide range of processors and machines (parallel and real-time
systems). In addition, it enables the definition of a general and precise processor
fault model with a large range of fault triggers and oriented to the internal processor
functional units.
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2.4.2.2 Software Faults Emulation Tools

A few tools do exist to emulate the occurrence of faults in distributed applications.
One of those tools is DOCTOR [42] (integrateD sOftware fault injeCTiOn enviRon-
ment), that allows to inject faults in real-time systems. It supports faults in processor,
memory and communication. The tool can inject permanent, transient, or intermit-
tent faults. The fault scenarios that can be designed uses probabilistic model. While
this suits small quantitative tests, repeatable fault injection capabilities are required
for more complex fault scenarios.

SAFE [41] fault injection tool allows to automatically generate and execute fault
injection tests. SAFE injects or detects software faults in C and C++ software, in order
to force a software component failure, and to evaluate the robustness of the system
as a whole. Injected faults are designed to realistically reproduce the real defects
that hampers software systems, including issues affecting data initialization, control
flow, and algorithms. Testing team can easily know how vulnerable the software is
and fix it. The SAFE tool lets users customize which faults are injected.

2.4.2.3 Fault Injection in Trace-Based Simulators

An example of fault injection tools exploiting trace-based simulations is the one of
Miele [44]. The tool analyzes the system-level dependability of embedded systems.
The workflow is organized in three main phases: preliminary characterization of the
system, setup of the experimental campaign, and execution of experimental campaign
followed by results’ post-processing. The designer specifies monitoring and classi-
fication actions at application and architecture levels. Debug-like mechanism allow
to analyze the propagation of the errors in various functionalities of the executed
application. The proposed approach is extremely suitable to reproduce the effects in
simulation of single-bit flips, selected bit alterations, data corruptions and instruc-
tion swaps. Ferrari [40] (Fault-and-Error Automatic Real-Time Injection), developed
at the University of Texas at Austin, uses software traps to inject CPU, memory, and
bus faults. Ferrari consists of four components: the initializer and activator, the user
information, the fault-and-error injector, and the data collector and analyzer. The
fault-and-error injector uses software trap and trap handling routines. Software traps
are triggered either by the program counter when it points to the desired program
locations or by a timer. When the traps are triggered, the trap handling routines inject
faults at the specific fault locations, typically by changing the content of selected
registers or memory locations to emulate actual data corruptions. The faults injected
can be those permanent or transient faults that result in an address line error, a data
line error, and a condition bit error.

Jacais afaultinjection tool that is able to inject fault in object-oriented systems and
can be adapted to any Java application without the need of its source code, but only
few information about the application like the classes, methods, and attributes names
[45]. Jaca has a graphical interface that permits the user to indicate the applications
parameters under test in order to execute the fault injection [45]. Most of the fault
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injection tools are able to handle the injection of faults at low level of the software.
Jaca differs from the other tools in the fact that it can perform both low-level fault
injection, affecting Assembly language element (CPU registers, buses, etc.), and
high-level fault injection affecting the attributes and methods of objects in a Java
program.

The main advantage of using a trace-based simulator is the possibility of altering
specific parts of the system without the need of altering the main structure of the
system.

2.4.2.4 Software-Based Simulators

Software fault injection is a special case of simulation-based fault injection where
the target system is a large microprocessor-based machine that may include caches,
memories, and devices, running a complex software. This technique is able to target
applications and operating systems, which is not easy to do with the hardware fault
injection.

Selected Simulators

LFI is a tool to make fault injection-based testing more efficient and accessible to
developers and testers [46]. LFI injects faults at the boundary between shared libraries
and target programs, which permits to verify if the programs are handling the failures
exposed by the libraries correctly or not. More in detail, LFI permits to automatically
identify the errors exposed by shared libraries, find potentially buggy error recov-
ery code in program binaries, and produce corresponding injection scenarios. Fault
injection was rarely used in software development. LFI was developed in response to
this. It permits to reduce the dependence on human labor and correct documentation,
because it automatically profiles fault behaviors of libraries via static analysis of their
binaries. The tool aims to provide testers an easy, fast, and comprehensive method to
see how much the program is robust to face failures exposed between shared libraries
and the tested programs [46].

Byteman [47] is a byte code injection tool developed to support Java code testing
using fault injection technique. It is also very useful for troubleshooting and tracing
Java program execution. Byteman provides a functions library which helps generating
simple error conditions to complex error flows. Almost any Java code can be injected
into the application in scope at the injection point. POJO (plain old java object) can be
plugged in to replace built-in functions. Byteman works by modifying the bytecode
of the application classes dynamically at runtime.

2.4.3 Low-Level Virtual Machine Simulation

Fault injection tools based on virtual machine can be a good solution. First, because
they permit simulating the computer without having the real hardware system.
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Moreover, they target hardware faults on the software level, and they allow observing
complex computer-based systems, with operating system and user applications.

Virtualization is the technology permitting to create a virtual machine (VM) that
behaves like a real physical computer with an Operating System (OS). It has an enor-
mous effect in todays I'T world since it ensures efficient and flexible performance, and
permits cost saving from sharing the same physical hardware. The virtual machine
where the software is running is called a guest machine, and the real machine in which
the virtualization takes place is called the host machine. The words host and guest
are used to make difference between the software that runs on the virtual machine
and the software that runs on the physical machine.

Selected Simulators

LLVM (Low-Level Virtual Machine) is a compiler framework designed to support
transparent, life-long program analysis, and transformation for arbitrary programs,
by providing high-level information to compiler transformations at compile time,
link-time, runtime, and in idle-time between runs [48, 49].

LLVM uses the LLVM Intermediate Representation (IR) as a form to represent
code in the compiler. It symbolizes the most important aspect of LLVM, because
it is designed to host mid-level analysis and transformations found in the optimizer
section of the compiler. The LLVM IR is independent from the source language and
the target machine. It is easy for a front end to generate, and expressive enough to
permit important optimizations to be performed for real targets.

QEMU [50] is a versatile emulation platform with support for numerous target
architectures like x86, ARM, MIPS and allowing to run a variety of unmodified
guest operating systems. In [51], BitVaSim is proposed as a fault injection simulator
on QEMU platform, for targets like PowerPC and ARM with built-in test software
framework. BitVaSim can inject faults in any process, even pre-compiled software
and allows a good degree of user configuration for fault injection. It can also be
used for hardware targets in a virtual machine. In addition, unmodified operating
systems and applications, especially the Built-In Test system can run on the prototype
without intrusion. The described technique provides complete control over the target
environment with fault injection process monitor and efficient feedback.

FAUMachine is a virtual machine that permits to install a full operating systems
and run them as if they are independent computers. FAUMachine is similar in many
aspect to standard virtual machines like QEMU [50] or VirtualBox [52]. The prop-
erty that distinguishes FAUMachine from the other virtual machines is its ability to
support fault injection capabilities for experimentation. FAUMachine supports the
following fault types [53]:

e Memory Cells: such as transient bit flips, permanent struck-at faults, and permanent
coupling faults.

e Disk, CD/DVD drive: such as transient or permanent block faults, and transient or
permanent whole disk faults.

e Network: such as transient, intermittent, and permanent send or receive faults.

FAUMachine does not permit injecting faults in the CPU registers yet. Bit flips could
be easy to implement. Stuck-at faults is also possible but it is much more complex
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since FAUMachine uses just-in-time compiling. In FAUMachine, the injection of
fault could be done online via GUI, or defined (type, location, time, and duration of
fault) via VHDL scripts. Compared to existing fault injection tools, FAUMachine is
able to inject faults and observe the whole operating system or application software.
Using the virtualization, this tool provides a high simulation speed for both complex
hardware and software systems [53]. FAUMachine also supports automated tests,
including the specification of faults to be injected.

2.4.4 Transistor Level Simulation

As previously discussed, setup-time violation can be induced by underfeeding the
device. This attack can be completely simulated using SPICE level simulators, as
proposed by Barenghi et al. [33]. The authors evaluated if transistor level simula-
tor is capable of correctly predicting the fault patterns which were measured on a
real device. The simulation was carried out using Synopsys Nanosim, a fast SPICE
simulator, using the netlist and the parasitics generated by Cadence Encounter after
place and route. The device was simulated for different voltages, ranging from 0.3 to
0.5V. The simulation generated a number of faulty ciphertexts reasonably close to
the one observed in the experiments, allowing to speculate that Nanosim is capable
of predicting the setup-time violations measured in practice.

2.4.5 Emulation

Emulation-based fault injection has been introduced as a better solution for reducing
the execution time compared to simulation-based fault injection. It is often based on
the use of Field Programmable Gate Arrays (FPGAs) for speeding up fault simulation
and exploits FPGAs for effective circuit emulation. This technique can allow the
designer to study the actual behavior of the circuit in the application environment,
taking into account real-time interactions. However, when an emulator is used, the
initial VHDL description must be synthesizable.

Fault injection can be performed in hardware emulation models through compile
time reconfiguration and runtime reconfiguration. Here reconfiguration refers to the
process of adding hardware structures to the model which are necessary to perform the
experiments. In compile-time reconfiguration, these hardware structures are added
by the instrumentation of HDL models. The main disadvantage of compile-time
reconfiguration is that the circuit must be resynthetised for each reconfiguration,
which can impose a severe overhead on the time it takes to conduct a fault injection
campaign.
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2.5 Conclusions

Faults attacks are a powerful tool in the hand of adversaries, and they can have serious
impacts on the security of embedded systems. Currently, most of the evaluation
against fault attacks is done post-fabrication. However, it is important for designers
to know the sensitive fault targets and possibly fix it at the design time. With this
objective in mind, we summarize the most common fault attacks, the most frequently
used faultinjection techniques and the most used approach for fault simulations which
could be used to evaluate the robustness of cryptographic circuits at design time.

Table 2.2 classifies the different fault injection methods. The approaches presented
have different level of impact. Static timing analysis [33] provides an effective way
for the designer to predict circuit paths which are likely to experience setup-time
violations upon an attack, but it does not provide the possibility of simulating a fault.

Saboters and mutant fault injection approaches allow to properly simulate fault
injection effects such as single bit flips, selected bit alterations, data corruptions,
circuit rewiring, clock alteration, and instruction swaps. Furthermore, they provide
full control of both fault models and injection mechanisms, together with maximum
amount of observability and controllability. Essentially, given sufficient detail in the
model, any signal value can be corrupted in any desired way, with the results of
the corruption easily observable regardless of the location of the corrupted signal
within the model. This flexibility allows any potential failure model to be accurately
modeled. These methods are able to model both transient and permanent faults, and
allow modeling of timing-related faults since the amount of simulation time required
to inject the fault is minimal. The main drawback of those two approaches is given
by the fact that only a predetermined set of faults can be injected, and new changes
cannot be applied at runtime.

The main advantage of using a trace-based simulator as in [44] is given by the pos-
sibility of changing at runtime the execution traces, without a structural modification
of specific components of the architecture or saboteurs. In this way, fault effects gen-
eration is easier and less time consuming. Moreover, it allows for time-specific fault
attacks, since it is a cycle accurate based simulator. As main disadvantage, not all
the current existing fault effects such as rewiring and clock delays can be effectively
simulated, thus prohibiting an exhaustive analysis.

Virtual Machines-based tools can be a good solution for injecting faults. First,
because they permit simulating the computer without having the real hardware sys-
tem. Moreover, they target hardware faults on the software level, and they allow
observing complex computer-based systems, with operating system and user appli-
cations. However, at the state of the art, they do not support yet fault models defined
at software level, such as an instruction or a variable used in place of another.

Finally, for certain fault injection techniques, a complete simulation at SPICE level
is possible. The drawback of this approach is the time required for the simulation,
which can be prohibitive.
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Chapter 3

Recent Developments in Side-Channel
Analysis on Elliptic Curve Cryptography
Implementations

Louiza Papachristodoulou, Lejla Batina and Nele Mentens

3.1 Introduction

The emerging need for secure communications in embedded systems is constantly
threatened by sophisticated side-channel analysis (SCA) attacks. SCA attacks exploit
various types of physical leakage of secret information from cryptographic devices.
The physical leakage originates also from the power consumption [1], the electro-
magnetic radiation [2, 3], and the timing behavior [4] of the device. We focus on
attacks exploiting power consumption leakage, namely power analysis attacks. These
attacks are based on the principle that a switching event of a signal inside a device
causes a current to be drawn from the power supply or to be drained to the ground,
which is illustrated in Fig.3.1 on the basis of a CMOS inverter. When the input
switches from a logical 1 to a logical O or vice versa, the output makes the opposite
transition, respectively charging or discharging the output capacitor. When the input
remains constant, there is no switching current and no switching power consumption.
This physical behavior is exploited by power analysis attacks to extract data that are
processed internally in the device.

Within this area of power analysis of cryptographic implementations, there are
various methods of analysis, such as Simple Power Analysis (SPA), Differential
Power Analysis (DPA), and Collision Analysis (CA). SPA uses a single power trace
or several traces, i.e., the instantaneous power consumption of a single run of an
algorithm over a certain period of time. DPA uses statistical methods to extract
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information from multiple traces [1]. CA exploits the leakage of two portions of
traces when the same intermediate values are used [5].

Naive implementations of public-key cryptosystems are usually susceptible to
SPA attacks because of, e.g., the use of conditional branches. In the RSA cryptosys-
tem, these branches are present in the modular exponentiation algorithm when it is
executed using an iteration of modular squarings and modular multiplications. The
analogy of modular exponentiation in RSA is point multiplication in elliptic curve
cryptosystems. Naive implementations use the double-and-add method consisting
of consecutive point doublings and point additions, where a point addition is only
executed when the corresponding key bit equals 1. This way, a single power trace
reveals a logical 1in the key through the presence of a point addition. One type of
countermeasures balance the computation such that the power traces always look
similar regardless of the processed key bits. Other countermeasures randomize the
computation such that an attacker is not able to correlate the power traces with the
processed data.

This chapter starts with an overview of elliptic curves used in cryptography in
Sect.3.2. Since the power analysis attacks we discuss, focus on the scalar multipli-
cation algorithm, Sect. 3.3 presents different options for this algorithm. Section 3.4
elaborates on power analysis attacks on elliptic curve cryptosystems, while Sect. 3.5
gives an overview of countermeasures at the algorithmic level.

3.2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) was introduced around 1985 independently by
Miller [6] and Koblitz [7]. It is broadly used for implementing asymmetric cryp-
tographic protocols in embedded devices due to the small key length and memory
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requirements compared to equivalent RSA implementations. For instance, a 256-bit
field curve provides a security level of 128 bits, which is roughly equivalent to a
2048-bit RSA key (see [8] for more details).

3.2.1 Coordinate Systems

An elliptic curve £ over the finite field K, denoted as £k, can be defined in terms
of solutions (x, y) to one of the equations defined in Sect.3.2.2. The pairs that
verify these equations represent the affine coordinates of a point over the curve £.
From the addition rules on an elliptic curve, the necessary operations are addition,
multiplication, and inversion over K. Inversion is the most expensive operation and
can be avoided using other types of coordinate systems for the points P = (x, y).
We hereby present the most commonly used coordinates systems that can be found
in cryptographic implementations of elliptic curve protocols.

Projective coordinates

In the projective coordinate system, each point P = (x, y) is represented by three
coordinates (X, Y, Z), where x = %, y = %

Jacobian coordinates

In the Jacobian coordinates system, each point P = (x, y) is represented also by
three coordinates (X, Y, Z), with x = %, y= %

Lépez-Dahab coordinates

In the Lépez-Dahab system, the relation for the point (X, Y, Z) isx = %, y = %

3.2.2 Forms of Elliptic Curves

There are several forms of elliptic curves defined by their curve equation. Below we
will treat some commonly used forms.

Weierstrass curves

An elliptic curve defined over a field K is defined by the Weierstrass equation

Ex : y2+a1xy+a3y = x> + apx? + oux + ag. (3.1

Together with the point at infinity O, the set (£¢ U O, +) forms an abelian group
with neutral element O.
When the characteristic of the field K is not 2 or 3, then the general Weierstrass form
can be simplified to

Ex:y=x>+ax+8. 3.2)

In the following, it is assumed that char (K) # 2, 3. Adding the points P = (x1, y1)
and Q = (x3, y) gives a third point on the curve, namely P + Q = (x3, y3) accord-
ing to the formulas



52 L. Papachristodoulou et al.

X3 :AZ — X1 — X2,
y3 =A(x1 —x3) — y1,

NN iepLoandi =
X1 =X . . Lo
For points represented in Jacobian coordinates, P = (X, Y1, Z;) and Q =

(X3, Y2, Z,), the addition of P and Q with P # Q is P + Q = (X3, Y3, Z3) with

3x7 +

X3=F*—E*—2BE* Ys=F(BE*— X3)— DE>, Z3 = Z1Z,E, (3.3)

where A = X,Z3, B=X,Z},C=Y,23, D=Y,Z}, E=A—B, F=C - D.
Jacobian addition needs 12M + 48, with M and S the number of multiplications
and squarings over K, respectively. Point doubling can be performed very efficiently
with only 3M + 68 using the formulas

X3 =B>—2A,Y3=B(A—X3) - Y Z3 =17, (3.4)

2 1 2 4
where A = XY, B = 5(3X1 +aZy).

Weierstrass curves are standardized and widely used in cryptography [9-12].
However, they have a main drawback regarding their side-channel resistance; namely
their addition formulas are incomplete. As is obvious from the previous formulas,
addition and doubling are handled differently and the point at infinity gives an excep-
tion case. In [13], Bosma and Lenstra presented complete formulas for Weierstrass
curves, which had an exceptional case for the pair of points (P, Q) if and only if
P — Q is a point of order two. In [14], Renes, Costello, and Batina presented com-
plete addition formulas for odd order elliptic curves E/Fy : y? = x* + ax + b with
g > 5, which require only 12 field multiplications 12M.! The complete addition
formulas using Jacobian representation of a point are

[ X3 = (X1Yo + XoY1) (N1 Y2 —a(X1Zo + X2Z1) — 3bZ1Z,)
—~(N1Z2+ Y2Z1)(@X1X2 +3b(X1Z2 + X2Z1) — a?Z1Z,),

Ys = (/o 4+a(X1Zy+ X2Z1) +3bZ1Zr))(Y1 Yo —a(X1Zy + X2Z1) — 3bZ12Z>)
+BX1 Xo+aZ1Zy)) (X1 X2 +3b(X1Zy + X2Z1) — oﬂZlZz),

Zy =My + N Z)) Y1 Y2 +a(X1Z2+ X2Z1) +3bZ1Z3)
+(X1Y2 + XoY)(BX1 X2 +aZ1 Z7)

Edwards curves
Edwards curves, introduced by Edwards in [15], were the first curves shown to have
a complete addition law. Applications of Edwards and twisted Edwards curves in

1For the overview on elliptic curves in this section, we omit counting the multiplications by a constant
(My) and the additions A, which are used for extensive comparison results in some publications.
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cryptography are extensively studied by Bernstein and Lange [16, 17]. An Edwards
curve is defined over a field K with char(K) # 2 by the following equation:

iy +x% =1 +dx*y?, (3.5)

where d € K\{0, 1}. The Edwards addition law for two points P = (xy, y;) and
0 = (x2, y»), in affine coordinates, is given by the following formulas:

X1y2 + Yi1x2 Yiy2 — X1X2

P+ Q0 =(x3,y3) = ( , .
I +dxixoyiy: 1 —dxixayiy2

(3.6)

This addition law is unified, i.e., the same formula can be used for both addition and
doubling without exceptional cases. The neutral element is the point (0, 1). If d is
not a square, then the addition law is complete and there are no exceptional cases for
the neutral element.

Twisted Edwards curves, introduced in [18], are a generalization of Edwards curves
and they have the form E, 4 : ax? + y> = 1 + dx?y?. The addition law for twisted
Edwards curves is a generalization of Eq. (3.6):

X1y2 +Yixa  YiY2 —axixp
1 +dxixoyiys’ 1 —dxixayiys

P40 = (x3,y3) = ( (3.7)

The cost of addition and doubling on Edwards curves depends on the form of the
curve and the coordinates chosen by the developer. An overview of all types of curves
and coordinates is given in the Explicit Formulas Database [19]. The most efficient
implementation of twisted Edwards curves is given by Bernstein et al. in [18]. It uses
inverted twisted Edwards coordinates and needs 9M + 18 for addition and 3M + 4S
for doubling.’

Montgomery curves

In [20], P. L. Montgomery defined the following form of elliptic curves over finite
fields of odd characteristic:

Ev:BY? =x>+ Ax® +x, B(A2—4) £0. (3.8)

Let Py = (x1, y1) and P, = (x3, y2) be points on £y;. Then, the point P3 = (x3, y3) =
P; + P, can be calculated using the following formulas:
Addition formulas (P; # P)

A =2 —yD)/(x2—x1)
X3 = BAZ—A—xl — X2
¥3 = A1 —x3) — y1

2The developer can choose to use different formulas for addition and doubling in twisted Edwards
curves for extra efficiency in the implementation or unified formulas for resistance against side-
channel attacks.
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Doubling formulas (P, = P;)

A = (3x?+2Ax; 4+ 1)/(2By))
x3 = BA? — A —2x,
3 = A(x; —x3) — ¥

Montgomery arithmetic is very efficient with additional speed-up by computing
only (X, Z) coordinates of intermediate points [21]. We set (x,y) = (X/Z,Y/Z)
and present the operations in projective coordinates, as described in [20]. We note
here that the point nP = (X,,, Yy, Z,) is the n—times multiple of the point P =
(X, Y, Z). The addition and doubling formulas for (m +n)P = mP + nP are as
follows: Addition formulas (m # n)

Xm+n - Zm—n[(Xm - Zm)(Xn + Zn) + (Xm + Zm)(Xn - Zn)]z
Zm+n = men[(Xm - Zm)(Xn + Zn) - (Xm + Zm)(Xn - Zn)]z

Doubling formulas (m = n)

4XnZn = (Xn + Zn)2 — (X, - Zn)2
X2, = (Xn + Zn)z(Xn - Zn)2
Yoo = @XuZ) (X — Za)* + (A+2)/H)(4X,Zy))

In [22], it is shown that the loop iteration in the Montgomery ladder using (X, Z)
coordinates is performed in only 11M 4 4S. Moreover, as presented in [23], the
number of additions and doublings in scalar multiplications on Montgomery form
elliptic curves only depends on the bit length of the key and not on the bit patterns
or the bit itself at a certain position of the scalar.

Hessian curves

A Hessian curve over a field K is defined by the cubic equation

Ex : x>+ y3 +72= dxyz, 3.9)

where d € K and d* # 27. Hessian and twisted Hessian curves are interesting for
cryptography due to their small cofactor 3 and their side-channel resistance [24-26].
Moreover, the Hessian addition formulas (also called Sylvester formulas) can be used
for doubling, a fact that provides a form of unification.

In [27], Farashahi and Joye presented efficient unified formulas for generalized
Hessian curves as follows:

Ex x>+ ¥+ =dxyz, (3.10)

where ¢, d € K, ¢ # 0 and d® # 27c. The unified formulas are complete for certain
parameter choices. More precisely, the group of K -rational points on a generalized
Hessian curve has complete addition formulas, if and only if ¢ is not a cube in K.
The fastest known addition formulas on binary elliptic curves with 9M + 3§ for



3 Recent Developments in Side-Channel Analysis ... 55

extended projective coordinates and 8M + 3S for mixed affine-projective addition
are presented in [27]. The sum of two points P, Q represented in extended projective
coordinatesby (X; : Y; : Z; 1 A; : B; : C; : D; : E; : F;),where A; = Xl.z, B, = Yl.z,
C,‘ = le, D,’ = X,‘Yl‘, E,‘ = X,‘Z,’, F, = Y,Z, and fori = 1,2, isthepoint P+ Q =
(X3:Y3:2Z3:A5:B3:Csz: Ds3: Ez: F3) with

X3 =cCiF> + DA,
Y3 = BlDz + CE1C2,
Z3y = A Ey + Fi By,

with Ay = X3, By = Y}, C3 = Z3, D3 = X3Y3, Es = X375, F3 = Y3 Zs.
The complete addition formulas for twisted Hessian curves of cofactor 3 in [24]
give the fastest results for prime-field curves with 8.77M for certain curve parameters.

3.3 Scalar Multiplication Algorithms

ECC primitives are used for cryptographic protocols such as the Elliptic Curve Digital
Signature Algorithm (ECDSA) for digital signatures, Elliptic Curve ElGamal as an
encryption/decryption scheme, and Elliptic Curve Diffie-Hellman (ECDH) as a key
exchange scheme. The main operation in all those protocols using ECC is scalar
multiplication of a point P on a curve and with an integer k.

Computing the result of a scalar multiplication on an elliptic curve can be done
in a similar way as exponentiation in RSA. A simple and efficient algorithm is
binary scalar multiplication, where an r-bit scalar k is written in its binary form
(ko, k1, ..., kn_1)2 with k = Zi k2%, k; € {0, 1}. The binary algorithm processes
a loop, scanning the bits of the scalar (from the most significant bit to the least
significant one, or the other way around) and performing a point doubling only if the
current bit is O or a doubling and an addition if the bit is 1.

Scalar multiplication algorithms take as input a point P in affine or projective
coordinates and the scalar k. The result is the point [k]P on the curve. During the
execution of the algorithm, mixed coordinates can be used for an additional speed-up
[28].

Scalar multiplication is a sensitive operation, since it manipulates the secret key k
and returns the result according to the bits of the key. Naive implementations of scalar
multiplication with if-statements are subject to SCA, and more precisely timing
attacks. Coron’s randomization countermeasures of point or scalar, as presented
in [29] and in Sect. 3.5, can thwart timing or DPA attacks, but not SPA attacks. SPA
leakage is present when there is a difference in operation flow between only doubling
or doubling-and-addition. Point additions and point doublings give different leakage
patterns and since these operations are key dependent, the key can be retrieved quite
easily. SPA-resistant algorithms are regular algorithms, which perform a constant
operation flow regardless of the scalar value. A nice overview of fast and regular
scalar multiplication algorithms is given in [30]. In this section, we present the most
broadly used regular scalar multiplication algorithms.
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3.3.1 Left-to-Right Double-and-Add-Always Algorithm

The double-and-add-always algorithm was initially proposed by Coron in [31] as
a first attempt to avoid i f-statements and therefore prevent the identification of
different operations. The algorithm performs a point doubling followed by a point
addition in a for loop, scanning the scalar bits from the most significant to the least
significant one. Both operations are performed in every loop and according to the
key bit, the final assignment to 7Ry will be either Ry or R. There are no conditional

Algorithm 1: The left-to-right double-and-add-always algorithm
Input: P,k = (ky—1, kx—2,...,ko)2
Output: Q9 =k - P
Ro <P
for i < x —2down to 0 do
Ry < 2Ro ;
Ri <~ Ro+7P;
Ro < Ry ;
end

return R

statements in the algorithm, but there is one key-dependent assignment, which can
leak secret information. Another important remark is that R is initialized by P
instead of O, in order to avoid exceptional cases given by the point at infinity.

3.3.2 Right-to-Left Double-and-Add-Always Algorithm

The binary right-to-left double-and-add-always algorithm of [32] is shown below as
Algorithm 2. The steps of the algorithm are similar to Algorithm 1 with the following
differences:

e The bits of the scalar are scanned from the least significant to the most significant
one.

e Two temporary registers are used instead of three and they are both effectively
used, without any dummy operations.

Similar to Algorithm 3.3.1, there are no conditional statements in this algorithm,
but there is a key-dependent assignment, which can be vulnerable to attacks. However,
there are several attacks that can be mounted on the left-to-right, but not on the right-
to-left algorithm (for instance the Doubling attack, described in Sect.3.4, is only
applicable on the left-to-right algorithm).
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Algorithm 2: Binary right-to-left double-and-add-always algorithm

Input: P,k = (ky—1,kx—2,...,ko)2
Output: Q =k - P

Ro < O;
Ri <P
for i < Oup to x-1 do
b<«1—k;
Rp < 2Rp
Ry < Rp + Ry
end
return R

3.3.3 Montgomery Ladder

The Montgomery Ladder, initially presented by Montgomery in [20] as a way to
speed up scalar multiplication on elliptic curves, and later used as the primary secure
and efficient choice for resource-constrained devices, is one of the most challenging
algorithms for simple side-channel analysis due to its natural regularity of operations.
A comprehensive security analysis of the Montgomery ladder, given by Joye and Yen
in [33], showed that the regularity of the algorithm makes it intrinsically protected
against a large variety of implementation attacks (SPA, some fault attacks, etc.). The
Montgomery ladder is described in Algorithm 3. For a specific choice of projective
coordinates, as described in Sect.3.2.2 and in [21], one can do computations with
only X and Z coordinates, which makes this option more memory efficient than other
algorithms.

Algorithm 3: The Montgomery Ladder

Input: P, k = (ky—1, kx—2,...,ko)2
Output: Q =k - P

Ro <P

R < 2P

for i < x —2down to 0 do
b« 1—k;
Ry < Ro+Ri;
Ry, < 2Ry, ;

end

return R




58 L. Papachristodoulou et al.

3.3.4 Side-Channel Atomicity

Side-channel atomicity is an SPA countermeasure proposed by Chevallier-Mames
et al. [34], in which individual operations are implemented in such a way that they
have an identical side-channel profile (e.g., for any branch and any key-bit related
subroutine). In short, it is suggested in [34] that the point doubling and addition
operations are implemented such that the same code is executed for both operations.
This renders the operations indistinguishable by simply inspecting a suitable side-
channel. One could, therefore, implement a point multiplication as described in
Algorithm 4.

Algorithm 4: Side-Channel Atomic double-and-add algorithm

Input: P, k = (ky—1, kx—2, ..., ko)2
Output: 9 =k -P
Ry < O;Ry < Pyi < x—1;
n<0;
while i > 0 do

Ro < Ro+Rn;

n<ndk;;

i <i—-n;
end

return R

There are certain choices of coordinates and curves for which this approach can
be deployed by using unified or complete addition formulas for the group operations.
The unified and complete formulas of Weierstrass, Edwards and Hessian curves are
described in Sect.3.2.2.

3.4 Side-Channel Attacks on ECC

Attacking implementations of elliptic curve cryptography (ECC) with natural pro-
tection against side-channel attacks, e.g., implementations using Edwards curves, is
quite challenging. This form of elliptic curves, proposed by Edwards in 2007 [15] and
promoted for cryptographic applications by Bernstein and Lange [18], showed some
advantages compared to elliptic curves in Weierstrass form. For instance, the fast
and complete formulas for addition and doubling put these types of curves forward
as more appealing for memory-constrained devices and at the same time resistant to
classical simple power analysis (SPA) techniques. Recently, due to the work of Renes
et al., complete formulas have been published for curves in Weierstrass form [14].
Although considered a very serious threat against ECC implementations, dif-
ferential power analysis (DPA), as proposed in [1], cannot be applied directly to
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ECC-based algorithms and protocols. Soon after the first DPA paper by Kocher et
al., Coron showed how to attack the scalar multiplication operation by DPA tech-
niques [31]. However, the idea does not apply to other ECC protocols where the
secret is either not a scalar involved in the scalar multiplication algorithm or a scalar
that is used only once, like, e.g., in ECDSA or in ephemeral Diffie-Hellman. The
latter is incompatible with the requirement of DPA to collect a large number of power
traces of computations on the same secret data.

When attacking ECDSA, two secrets could be of interest for the attacker. She
could go for an ephemeral key or a secret scalar that becomes a part of the signature.
The idea of attacking the ephemeral key is to get reveal a few key bits (from just
one measurement) and then proceed with some sort of theoretical cryptanalysis to
recover the remaining bits. This kind of special attacks is often used in combination
with lattice techniques similar to [35, 36], in order to derive the whole private key
from a few bits of multiple ephemeral keys.

The richness of the mathematical structures behind public-key systems and other
algorithm-dependent features, that are special for both RSA and ECC, created oppor-
tunities for many unique side-channel attacks exploiting those features. The first work
to propose new techniques was the paper of Fouque and Vallette [37]. They introduce
a new attack against scalar multiplication (or modular exponentiation) that looks for
identical patterns within power traces due to the same intermediate results occurring
within the computation. In this way, the so-called “doubling attack” only requires
two queries to the device. This work has started a new line of research on new attack
techniques that reside somewhere between SPA and DPA, of which the most notable
are collision [5, 37—41] and template attacks [36, 42, 43].

Collision-based attacks exploit the fact that when processing the same data, the
same computations will result in the same (or very similar) patterns in the power con-
sumption traces. However, although the idea is easily verifiable, the efficiency of most
of the so far introduced collision-based attacks is shown only on simulated traces; no
practical experiments on real ECC implementations have confirmed those results. To
the best of our knowledge, only two practical collision-based attacks on exponentia-
tion algorithms were published, each of which rely on very specific assumptions and
deal with very special cases. Hanley et al. exploit collisions between input and output
operations within the same trace [44]. On the other hand, Wenger et al. performed
a hardware-specific attack on consecutive rounds of a Montgomery ladder imple-
mentation [45]. However, both attacks are very restrictive in terms of applicability to
various ECC implementations as they imply some special implementation options,
such as, e.g., the use of Lopez—Dahab coordinates, where field multiplications use
the same key-dependent coordinate as input to two consecutive rounds. A class of
attacks similar to collision-based attacks is sometimes also called horizontal attacks
and they were first defined for modular exponentiation by Clavier et al. [46]. Their
attack is inspired by Walter’s work [38] and it requires a unique power trace, in this
way rendering classical randomization countermeasures. In another work [47], the
authors have introduced a general framework enabling to model both horizontal and
classical attacks (the latter are called vertical attacks in this work) in a simple way.
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Their follow-up paper [41] introduced horizontal attacks for ECC but the results were
obtained from simulations only and no real measurements were used.

We observe that the trend of attacks is shifting more toward this type of collision
and horizontal attacks as known randomization-based countermeasures are effective
in protecting ECC against SPA and DPA attacks. Therefore, in the remainder of this
chapter we focus on collision-based/inspired attacks and we give a detailed example
of one such attack i.e. the Online Template Attack (OTA).

3.4.1 Collision-Correlation Attacks

As mentioned above, collision attacks exploit leakages by comparing two portions of
the same or different traces exploiting the same power being consumed when values
are reused. The Big Mac attack [38] is the first theoretical attack on public-key cryp-
tosystems, in which only a single trace is required to observe key dependencies and
collisions during an RSA exponentiation. Witteman et al. performed a similar attack
on the RSA modular exponentiation even in the presence of blinded messages [48].
Clavier et al. introduced horizontal correlation analysis, as a type of attack where a
single power trace is enough to recover the private key [46]. They also extended the
Big Mac attack using different distinguishers, i.e., types of statistical tests.

The doubling attack, proposed by Fouque and Vallette [37] and described previ-
ously, is a special type of collision attack relevant to ECC. The main assumption of
this attack is that an adversary can distinguish collisions of power trace segments
(within a single or more power traces) when the device under attack performs twice
the same computation, even if the adversary is not able to tell which exact computa-
tion is done. Collision of two computations will not reveal the value of the operand.
Yen et al. extended this attack to the Refined Doubling Attack (RDA) [39], where the
adversary is assumed to be able to detect the collision between two modular squar-
ings, i.e., detecting if the squared value is the same or not. Collisions of computations
cannot be distinguished; the only knowledge obtained is that k; = k;_; if a collision
is detected. Based on the derived relationship between every two adjacent private
key bits (either k; = k;_; or k; # k;—) and a given bit (e.g., ko or k,,_1), all other
private key bits can be derived uniquely. RDA is a powerful attack technique that
works against some scalar multiplication algorithms, which are resistant against the
doubling attack (e.g., the Montgomery power ladder).

3.4.2 Horizontal Attacks and Variants

An interesting class of side-channel attacks is the Horizontal Analysis attack, where
a single trace is used to recover the secret scalar. The main characteristic of the traces
that makes horizontal attacks possible lies in the fact that the operation sequences of
doubling-adding and doubling-doubling can be distinguished. The attacker applies
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the classical correlation analysis using different parts of time samples in the same
side-channel trace to recover the secret scalar bit-by-bit. This technique can be useful
to attack protected implementations, where the secret value or unknown input is
blinded. The first horizontal attacks were applied to RSA implementations; extension
of those to ECC implementations is straight-forward, since scalar multiplication and
exponentiation algorithms have the same operation steps.

The so-called Big Mac attack from Walter [38] is the first attack of this kind, where
squarings (S) are distinguished from multiplications (M) and the secret exponent of an
RSA exponentiation can be recovered from a single execution curve. The distinction
is possible by averaging and comparing the cycles performed in the multiplier of the
device during long-integer multiplication, since more cycles are needed for SM than
for SS. This attack can be directly applied to ECC implementations.

The term horizontal was first introduced by Clavier et al. in [46], where the authors
performed a horizontal correlation analysis to compute the correlation factor on sev-
eral segments extracted from a single execution curve of a known message RSA
encryption. More specifically, their proposed method starts by finding a sequence of
elementary calculations (C;); (with i, j € Z indicating the sequence of the calcula-
tion and the order of the execution respectively) that processes the same mathematical
operation (e.g., field multiplication) and depends on the same part of the secret scalar.
The outputs O;; of the calculations C;(X;) that depend on the same input value X;
will give high correlation results and in this way, they can be distinguished from out-
puts of computations with different input values. Horizontal correlation analysis was
performed on RSA using the Pearson correlation coefficient in [46] and triangular
trace analysis of the exponent in [49].

The most recent attack, proposed by Bauer et al. in [41], is a type of horizontal
collision correlation attack on ECC, which combines atomicity and randomization
techniques. Based on the basic assumption of collision attacks that an adversary is
able to distinguish when two field multiplications have at least one common operand,
their attack consists of the following steps:

e Identify two elementary calculations Cy, C; that are processed N times with inputs
from the same distribution. The correlation between the random output values
01, O, must depend on the same secret sub-part s.

e For each of the N processings of C; get an observation l;, with j € {1,..., N}.

e Compute the Pearson correlation coefficient on the two samples of observations
p = p(I});, 1D)).

e Deduce information on the secret scalar from p using an appropriate distinguisher
that shows which observation is more similar to the real secret value.

The horizontal collision correlation attack is shown by simulated traces to be applica-
ble to atomic implementations and to implementations based on unified addition
formulas over Edwards curves.

Two recent publications on blinded asymmetric algorithms propose the combi-
nation of horizontal and vertical techniques, in an attempt to provide more practical
attacks against blinded implementations and avoid the complex signal processing
phase. Bauer et al. [50] at Indocrypt 2013, presented an attack on RSA blinded
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exponentiation based on this approach. They took advantage of the side-channel
leakage of the entire long-integer modular multiplication without splitting the trace
into parts of single precision multiplications. However, their attack requires a small
public exponent (no greater than 2'® 4+ 1) and an exponent blinding factor smaller
than 32 bits. Their observation that the scalar blinding does not mask a large part of
the secret value, led Feix et al. [51] a year later to exploit this vulnerability vertically
on a ECC implementation. The most significant part of the blinded scalar can be
recovered with a horizontal attack. The least significant part of the scalar is retrieved
using vertical analysis (several execution traces) and the information leaked in the
previous steps of the attack.

3.4.3 Template Attacks

The most powerful SCA attack from an information theoretic point of view is con-
sidered to be a template attack (TA). Template attacks, as introduced in the original
paper by Chari et al. in [52], are a combination of statistical modeling and power
analysis attacks consisting of two phases, as follows:

e The first phase is the profiling or template-building phase, where the adversary
builds templates to characterize the device by executing a sequence of instructions
on fixed data. Focusing on an “interesting pattern” or finding the points of interest
is very common in this phase.

e The second phase is the remplate-matching phase, in which the adversary matches
or correlates the templates to actual traces of the device. By applying some signal
processing and classification algorithms to the templates, it is possible to find the
best matching for the traces.

In this type of attacks, the adversary is assumed to have in his possession a device
which behaves similar to the device under attack (target device), in order to build tem-
plate traces. In his device he can simulate the same algorithms and implementations
that run in the target device. For the template-matching phase several distinguishers
and classification algorithms are proposed; in the next section the most common
classifiers are presented.

The practical application of TAs is shown on several cryptographic implementa-
tions such as RC4 in [53] and elliptic curves in [54]. Medwed and Oswald demon-
strated in [42] a practical template attack on ECDSA. However, their attack required
an offline DPA attack on the EC scalar multiplication operation during the template-
building phase, in order to select the points of interest. They also need 33 template
traces per key bit. Furthermore, attacks against ECDSA and other elliptic curve sig-
nature algorithms only need to recover a few bits of the ephemeral scalar for multiple
scalar multiplications with different ephemeral scalars and can then employ lattice
techniques to recover the long-term secret key [35, 36, 43]. It is not possible to
obtain several traces in the context of ephemeral Diffie-Hellman: an attacker only
gets a single trace and needs to recover sufficiently many bits of this ephemeral scalar
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from side-channel information to be able to compute the remaining bits through, for
example, Kangaroo techniques [55, 56]. With these techniques and by using pre-
computation tables, it is possible to exploit partial information on the subkeys and
recover the last / unknown bits of the key in O(~/1) group operations [57].

3.4.4 Common Distinguishers

In this section, the most common distinguishers used in SCA for correlation analysis
and template-matching are presented. Machine learning techniques for classification
and clustering are broadly used in SCA, in order to distinguish between traces with
high noise ratios.

According to [58], unsupervised clustering is generally useful in side-channel
analysis when profiling information is not available and an exhaustive partitioning
is computationally infeasible. The authors presented an attack on an FPGA-based
elliptic curve scalar multiplication using the k—means method. In [59], Perin et al.
used unsupervised learning to attack randomized exponentiations.

Lerman et al. showed in [60] that machine learning techniques give better clas-
sification results when there is limited ability of the adversary to perform profiling
of the device and in a high dimensionality context, where many parameters affect
the leakage of the device. Indeed, combining three side-channel leakages and a
clustering-based approach for non-profiled attacks, gives higher success rates than
traditional template attacks, as shown by Specht et al. in [61].

The success results of online template attacks (presented in the next section) are
significantly improved in [62] by using the k-nearest neighbor approach, naive Bayes
classification and the support vector machine method for template classification. In
order to explain these techniques, we first give the definition of the Euclidean distance
and the Pearson correlation coefficient.

Euclidean Distance The Euclidean distance between two points is defined as the
square root of the sum of the squares of the differences between the corresponding
point values:

dEUC =

D (i = yi)?

i=1

In the SCA setting, a realization of a random variable X corresponds to x. A sample
of n observations or traces of X is denoted by (x;);<;<,, where the index i denotes
the different observations or the different time when an observation occurs in the
same trace.

Pearson correlation The Pearson correlation coefficient measures the linear inde-
pendence between two observations X and Y:
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In SCA, the Pearson correlation coefficient is used to describe the difference in the
Hamming weight of the observations.

Naive Bayes Classification The naive Bayes classification method is based on prob-
ability concepts, and more precisely on the Bayes theorem for conditional proba-
bilities of independent events [63]. According to the conditional probability model,

let x = (xy, ..., x,) be the vector of problem instances (independent variables) to
be classified, each one having a feature n. Each instance is assigned a probability
p(cklx1, ..., xn), for k possible classes. The set of classes ¢y, ¢3, . . ., ¢; is mutually

exclusive and exhaustive.

Using Bayes’ theorem, the posterior conditional probability is p(ck|x) =
W. Assuming that each event and posterior probability is independent
on each previous event, the conditional distribution over the class variable ¢ is
pcelxt, .oy xp) = %p(ck) H?:l p(x;|cx) where the evidence Z = p(X) is a scaling
factor dependent only on xi, ..., x,, that is, a constant if the values of the feature
variables are known.

The naive Bayes classifier is a function that combines the naive Bayes probability
model with a decision rule. One common rule is to pick the hypothesis that is most
probable; that is the maximum value of the a posteriori probability. For each class
¢;, the class index that gives the maximum value for an event is chosen as classifier.
K-Nearest Neighbor The k-Nearest Neighbor Classification (kNN) is a classification
method based on the closest instances of the training set to the unlabeled data.
Basically, according to [63], it consists of the following two steps:

1. Choose the number of k closest instances (from the training set) to the sample.
2. The majority label (class) for the chosen closest instances will be class for the
unlabeled data.

The distance metric plays an important role, in order to determine the closest instance.
In kN N, the Euclidean distance or the Manhattan distance can be used. The value
k indicates the number of the already-classified closest instances that are chosen in
order to classify the next unlabeled data. The default value is 1, but with larger value
for k it is possible to obtain higher success rate with less template traces. Figure 3.2
shows an example with k = 2 and k = 4 close instances; if the new sample is closer
to A, it will be classified in the “A-class.”

Fig. 3.2 kN N method for
k=2andk =4
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SVM A Support Vector Machine (SVM) is a supervised learning model that produces
a discriminative classifier formally defined by a separating hyperplane. In other
words, given labeled training data, the algorithm outputs an optimal hyperplane
which categorizes new examples. Figure 3.3 shows such a hyperplane. An optimal
hyperplane, as defined in [64], is the one that gives the largest minimum distance to
the training points, because in this way noisy data will still be classified correctly.
Therefore, the optimal separating hyperplane maximizes the margin of the training
data. An SVM model is a representation of the examples as points in space, mapped
so that the examples of the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall on. The classifier
in an SVM can be nonlinear for data sets that are not easily separable, but in the
following analysis a linear classifier gives very good results.

3.4.5 A Special Case: Online Template Attacks

In this section, we present in more detail an adaptive template attack technique,
which is called an Online Template Attack (OTA) and is initially proposed by Batina
et al. in [65]. This technique resides between horizontal and template attacks. The
attacker is able to recover a complete scalar after obtaining only one power trace
of a scalar multiplication from the device under attack. This attack is characterized
as online, because templates are created after the acquisition of the target trace.
While the same terminology is used, OTA is not a typical template attack; i.e., no
preprocessing template-building phase is necessary. OTA functions by acquiring one
target trace from the device under attack and comparing patterns of certain operations
from this trace with templates obtained from the attacker’s device that runs the same
implementation. Pattern matching is performed at suitable points in the algorithm,
where key-bit related assignments take place by using an automated module based
on the Pearson correlation coefficient.

The attacker needs only very limited control over the device used to generate the
online template traces. The main assumption is that the attacker can choose the input
point to a scalar multiplication, an assumption that trivially holds even without any
modification to the template device in the context of ephemeral Diffie-Hellman. It
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also holds in the context of ECDSA, if the attacker can modify the implementation
on the template device or can modify internal values of the computation. This is no
different than for previous template attacks against ECDSA.

OTA is defined as a side-channel attack with the following conditions:

1. The attacker obtains only one power trace of the cryptographic algorithm involv-
ing the targeted secret data. This trace is called the target trace. The device, from
which the target trace is obtained, is the target device. The fact that only one target
trace is necessary for the attack, makes it possible to attack scalar multiplication
algorithms with ephemeral scalar and with randomized scalar.

2. The attacker is generating template traces after having obtained the target trace.
These traces are called (online) template traces.

3. The attacker obtains the template traces on the target device or a similar device
with very limited control over it, i.e., access to the device to run several executions
with chosen public inputs. The attacker does not rely on the assumption that the
secret data are the same for all template traces.

4. Atleast one assignment in the exponentiation algorithm is made depending on the
value of particular scalar bit(s), but there are no branches with key-dependent com-
putations. Since the doubling operation is attacked, this key-dependent assign-
ment should be during doubling. As a counterexample, it is noted that the binary
right-to-left add-always algorithm for Lucas recurrences [32] is resistant to the
proposed attack, because the result of the doubling is stored in a non-key-
dependent variable.

3

The attack methodology is as follows:

e Acquire a full target trace from the device under attack, during the execution of a
scalar multiplication.

e Locate the doubling and addition operations performed in each round.

e Find multiples of mP, where m € Z, m < k and k is the scalar. These points are
used to create the template traces.

The methodology offers a generic attack framework, which does not require any
previous knowledge of the leakage model nor a specific type of curve. It is applicable
to various forms of curves (Weierstrass, Edwards and Montgomery curves), scalar
multiplication algorithms and implementations. Contrary to the doubling attack [37],
OTA can be launched against right-to-left algorithms and the Montgomery ladder.

The basic idea, as depicted in Fig.3.4 consists of comparing the traces for the
inputs P (target trace) and 2P (online template trace) while executing scalar mul-
tiplication and then finding similar patterns between them, based on the hypothesis
on a bit for a given operation. The target trace is obtained only once. For every bit
of the scalar, an online template trace with input kP, k € Z is obtained, where k is
chosen as a function of a hypothesis on this bit.

In the original paper, pattern matching is performed using the Pearson correla-
tion coefficient, p(X, Y), which measures the linear relationship between two vari-

3Similar device means the same type of microcontroller running the same algorithm.
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Fig. 3.4 Schematic representation of OTA [66]

ables X and Y. For power traces, the correlation coefficient shows the relationship
between two points of the trace, which indicates the Hamming-weight leakage of key-
dependent assignments during the execution of a cryptographic algorithm. Extension
to other distinguishers from machine learning is performed in [62].

The template matching corresponds to a list of correlation coefficients that show
the relationship between all samples from the template trace to the same consecutive
amount of samples in the target trace. If the hypothesis on the given key bit is correct,
then the pattern match between the template traces at the targeted operation will be
high (in experiments it reached 99 %).

In this way, the first i bits of the key can be recovered. Knowledge of the first i bits
provides the attacker with complete knowledge of the internal state of the algorithm
just before the (i + 1)th bit is processed. Since at least one operation in the loop
depends on this bit, a hypothesis can be made about the (i + 1)th bit, a template
trace based on this hypothesis is computed, and this trace is correlated with the target
trace at the relevant predetermined point of the algorithm.

OTA on scalar multiplication algorithms The core idea and feasibility of the attack
is demonstrated through an example based on the double-and-add-always algorithm
described in Algorithm 1. Table 3.1 shows two executions of the algorithm for two
different scalars k = 100 and k = 110. The first execution of the loop always starts by
doubling the input point P, for all values of k. It is assumed that k,_; = 1. Depending
on the second-most significant key bit k,_,, the output of the first iteration of the
algorithm will be either 27P or 3P. For any point P it is, therefore, possible to get a
power trace for the operation 2P, i.e., the attacker lets the algorithm execute the first
two double-and-add iterations. In the proposed setup, the authors could zoom into
the level of one doubling, which will be the template trace. Then, the attacker can

Table 3.1 Two executions of the double-and-add-always algorithm [65]

k =100 k=110
Ry=P Ro=P
Ry =2P, Ry =3P, return 2P Ry =2P, Ry =3P, return 3P
Ry =4P, Ry = 5P, return 4 P Ry =6P, Ry =7P, return 6 P




68 L. Papachristodoulou et al.

perform the same procedure with 2P as the input point to obtain the online template
trace that he wants to compare with the target trace. If it is assumed, that the second-
most significant bit of k is 0, then he compares the 2P template with the output of
the doubling in the first iteration. Otherwise, he compares it with the online template
trace for 3P.

Assuming that the first (i — 1) bits of k are known, he can derive the ith bit by
computing the two possible states of R after this bit has been treated and recover
the key iteratively. Note that only the assignment in the ith iteration depends on the
key bit k;, but none of the computations do, so it is necessary to compare the trace
of the doubling operation in the (i + 1)th iteration with the original target trace. To
decide whether the ith bit of k is zero or one, the trace that the doubling operation in
the (i 4+ D)th iteration would give for k;; = 0 is compared with the target trace. For
completeness, he can compare the target trace with a trace obtained for k;; = 1 and
verify that it has a lower pattern match percentage; in this case, the performed attack
needs two template traces per key bit. However, if during the acquisition phase the
noise level is low and the signal is of good quality, an efficient attack can be performed
with only the target trace and a single trace for the hypothetical value of Ry, .

Attacking the right-to-left double-and-add-always algorithm of [32] can be done

in a similar way, since it is a type of key-dependent assignment OTA. The attacker
targets the doubling operation and notes that the input point will be doubled either
in the first (if ko = 0) or in the second iteration of the loop (if ko = 1). If & is fixed
he can easily decide between the two by inputting different points, since if ko = 1
he will see the common operation 2 O. If k is not fixed, he simply measures the first
two iterations and again uses the operation 2 O if the template generator should use
the first or second iteration. Once he is able to obtain clear traces, the attack itself
follows the general description of an OTA.
Montgomery Ladder The main observation that makes OTA attacks applicable to
the Montgomery ladder is that at least one of the computations, namely the doubling
in the main loop, directly depends on the key bit k;. For example, if it is assumed
that the first three bits of the key are 100, then the output of the first iteration will
be Ry = 2P. If it is assumed that the first bits are 110, then the output of the first
iteration will be Ry = 3P. Therefore, if the attacker compares the pattern of the
output of the first iteration of Algorithm 3 with scalar k = 100, he will observe a
higher correlation with the pattern of Ry = 2P than with the pattern of Ry = 3P.
This is demonstrated in the working example of Table 3.2.

Table 3.2 Two executions of the Montgomery ladder [65]

k = 100 k=110

Ro=P,R =2P Ry=P,Ry =2P

b=1 Ry =3P,Ry=2P b=0 Ro=23P,R| =4P
b=1 R =5P,Ry=4P b=1 R =7P,Ry=06P
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Side-channel atomicity

Simple atomic algorithms do not offer any protection against online template
attacks, because the regularity of point operations does not prevent mounting this
sort of attack. The point 2P, as an output of the third iteration of Algorithm 4, will
produce a power trace with a pattern that is very similar to the trace that would have
the point 2P as an input. Therefore, the attack will be the similar to the one described
for the binary left-to-right double-and-add-always algorithm; the only difference is
that instead of the output of the second iteration of the algorithm, the attacker has
to focus on the pattern of the third iteration. In general, when an attacker forms a
hypothesis about a certain number of bits of k, the hypothesis will include the point
in time where R will contain the predicted value. This means that he would have to
acquire a larger target trace to allow all hypotheses to be tested.
Practical results The feasibility and efficiency of OTA is shown in [65] with prac-
tical attacks on the double-and-add-always scalar multiplication running on the
ATmegal63 microcontroller [67] in a smart card. The scalar multiplication algo-
rithm is based on the curve arithmetic of the Ed25519 implementation presented
in [68], which is available online at http://cryptojedi.org/crypto/#avrnacl. The ellip-
tic curve used in Ed25519 is the twisted Edwards curve E : —x? + y? = 1 + dx?*y?
with d = —(121665/121666) and base point

P = (15112221349535400772501151409588531511454012693041857206046113283949847762202,
46316835694926478169428394003475163141307993866256225615783033603165251855960) .

For more details on Ed25519 and this specific curve, see [69, 70]. The whole under-
lying field and curve arithmetic is the same as in [68]. This means in particular
that points are internally represented in extended coordinates as proposed in [71].
In this coordinate system, a point P = (x, y) is represented as (X : Y : Z : T') with
x=X/Z,y=Y/Z,andx-y=T/Z.

Experimental results of OTA with extended projective coordinates of 256 bits,
extended projective coordinates with reduced 255-bit input and input points with
affine compressed coordinates are presented in [65]. The attack targets the output
of the doubling operation and then performs pattern matching based on the Pearson
correlation coefficient.

The correct key bit guess (k, = 0) gives 97 % correlation of the target trace with
the template trace for 2P. On the other hand, the correlation of the target trace
with the template trace for 3P is at most 83 %. These high correlation results hold
when one key bit is attacked. For every key bit, the pattern matching will give
peaks as in Fig.3.5. Attacking five bits with one acquisition gives lower numbers
for pattern matching for both the correct and the wrong scalar guess, mainly due
to the noise that is higher for longer acquisitions. However, the difference between
correct and wrong assumptions is still remarkable; correct bit assumptions have 84—
88 % matching patterns, while the correlation for the wrong assumptions drops to
50-72 %. To determine the value of one bit, it is thus necessary to compute only one
template trace, and decide on the value of the targeted bit depending on whether the
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Fig. 3.5 Pattern Matching 2P (blue) to target and 3P to target (brown) [65]

correlation is above or below a certain threshold (in this case, the threshold can be
set to 80 %.

Error-Detection and Correction The idea of Online Template Attacks was extended
by Dugardin et al. in [66] with an adaptive template attack on scalar multiplication.
The authors propose a generic method to distinguish matching templates and using
two templates per key bit, they manage to detect and correct errors for wrong bit
assumptions. This fact increases the success rate of the attack significantly compared
to the original OTA, reaching 99.8 % when 100 average template traces are used. They
also take advantage of the horizontal and vertical leakage, which occurs in the broadly
used software implementation of mbedTLS during the modular multiplication of
large numbers (256-bit elements).

Classification Algorithms for Template Attacks The fact that the template-building
phase in OTA is not necessary, significantly simplifies the process of retrieving the
key, leaving the overhead of the attack in the template-matching phase. The template-
matching technique used for both OTA papers [65, 66] is based on the Pearson
correlation coefficient. In [62], more efficient techniques from the field of Machine
Learning are used as distinguishers, and the proposed attack reaches a success rate
of 100 % with only 20 template traces per key bit. This work is the first step toward a
framework for “automating” the template-matching phase. The attack can be classi-
fied as a form of OTA having the same attack model and assumptions. The proposed
classification techniques from the field of Machine Learning (k—Nearest Neighbor,
Naive Bayes, SVM) provide an efficient and simplified way to match templates dur-
ing a Template Attack with very high success rates. A practical application of this
attack is demonstrated on the scalar multiplication algorithm for the Brainpool curve
BP256r1 implemented in mbedTLS (formerly PolarSSL, version 1.3.7).

3.5 Countermeasures

To prevent first-order DPA attacks [1, 4], it is not sufficient to make the operations
time-constant and the power traces indistinguishable. The most common counter-
measure applied in ECC implementations is randomization of the secret values. In
this way, developers make it more difficult to extract useful information from secret
values. This section first covers different types of randomization. Further, we focus
specifically on countermeasures against OTA attacks.
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3.5.1 Randomization Countermeasures

Scalar randomization Instead of a point multiplication with the scalar k, the blinded
scalar k’ is used, which is computed as follows:

K'=k+#E-r.

Here, #E is the number of points on the curve and r is a random number [31].
Because k P and k' P always result in the same point on the elliptic curve, this method
is effective against first-order DPA attacks when the random number is changed for
every execution of the point multiplication.

Projective coordinate randomization In addition to scalar randomization, another
countermeasure against DPA attacks on elliptic curve point multiplication is pro-
jective coordinate randomization. This countermeasure exploits the fact that the
Z-coordinate can be chosen randomly when using projective coordinates [31]. This
comes down to choosing a different Z-coordinate for each point multiplication during
the conversion of the input point P to projective coordinates.

Base point splitting Using this technique, the scalar multiplication is not performed
on the point P, but on the point P 4+ R, where R is a random point on the curve.
After the point multiplication k(P + R), the value kR is subtracted from the result.
Elliptic curve isomorphism randomization The idea to protect scalar multipli-
cation by transforming a curve through various random morphisms, was initially
proposed by Joye and Tymen in [72]. Assume that ¢ is a random isomorphism
from £ — &'k, whichmaps P € g — P’ € £ k. Multiplying P’ with k will give
Q' = [k]P’ € £ k. With the inverse map ¢~' we can get back to Q = [k]P. An
attacker needs to know the internal representation of the point in order to perform a
successful attack, so if P’ is on a curve that the adversary does not know, he cannot
create input points in the correct representation.

3.5.2 OTA Countermeasures

Given that an attacker needs to predict the intermediate state of an algorithm at
a given point in time, we can assume that the countermeasures that are used to
prevent DPA will also have an effect on the OTA. There are methods for changing the
representation of a point, which can prevent OTA and make the result unpredictable
to the attacker. Most notably those countermeasures are randomizing the projective
representation of points and randomizing the coordinates through a random field
isomorphism as described in [73]. However, inserting a point in affine coordinates
and changing to (deterministic) projective coordinates during the execution of the
scalar multiplication (compressing and decompressing of a point), does not affect
the OTA type of attack, as it is shown with practical experiments in [65].
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Chapter 4
Practical Session: Differential Power
Analysis for Beginners

Ji¥i Buek, Martin Novotny and Filip Stépanek

4.1 Introduction

Differential Power Analysis (DPA) is a powerful method for breaking the crypto-
graphic system. The method does not attack the cipher, but the physical implemen-
tation of the cryptographic system. Therefore, even systems using modern strong
ciphers like AES are vulnerable to such attacks, if proper countermeasures are not
applied.

The DPA method uses the fact that every electronic system has a power consump-
tion. If you measure the power consumption of digital system, you will probably see
the power trace like in Fig.4.1 with its peaks on rising and falling edges of clock.
If the digital system runs an encryption and if you run this encryption several times
using various input data, you may notice slight variations in power traces, as shown
in Fig.4.1. These variations are caused by many factors (varying temperature, etc.),
but one of them are varying processed (inner) data. DPA utilizes the fact that power
consumption depends on processed data (e.g., number of ones and zeros in processed
byte) to break the cryptographic system.

To demonstrate the power of power analysis we prepared this tutorial for you.
Before we start, please, download all necessary materials from the web. You will
find the compressed archive at the address http://users.fit.cvut.cz/~novotnym/DPA.
zip (the file has about 250 MB). Uncompressed materials can be found also at address
http://users.fit.cvut.cz/~novotnym/DPA, which might be useful if you have problems
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Fig. 4.1 The figure shows 500 power traces in the same time interval of 200 samples. Each power
trace is run for unique input data, power traces are overlapped. Variations in power traces are caused
by variations in processed data

to download the whole archive. The compressed archive contains two folders. In
folder Analysis you will find files used in Sect. 4.2. Files used in Sect. 4.3 are available
in folder Measurement.

You do not need to perform any measurement with an oscilloscope, as we have
done these measurements for you. In folder Analysis you will find two sets of mea-
surements, one set for aknownkey 00 11 22 33 44 55 66 77 88 99 aa
bb cc dd ee ff, and one set for an unknow key. These sets will be used in
Sect.4.2. You are also provided with sample codes in MATLAB that you can use in
your program/script.

However, if you are equipped with an osciloscope (e.g., PicoScope), you can make
your own measurement. Several advices you will find in Sect.4.3.

4.2 Differential Power Analysis—Key Recovery

At this point you are either given or were able to measure the power consumption
(traces) of the SmartCard yourself. For each power trace you have a pair of the
plaintext and the encrypted ciphertext. Therefore you have all the information you
need, except of the secret key. It is the goal of the differential power analysis to extract
the secret key using the mentioned traces, plaintext, ciphertext, and the knowledge
of the encryption algorithm by creating the hypothesis of the power consumption
and correlating it to the measured traces.
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4.2.1 Method

We are not going to explain the method here. If you are not familiar with the method,
you may find its explanation, e.g., in the book [1], p. 119, or you will find presentation
dpa_Lisbon.pdf in downloaded materials.

To summarize the method, you shall go through following steps:

1. Choose an intermediate value that depends on data and key

2. Measure the power traces while encrypting the data

3. Build amatrix of hypothetical intermediate values inside the cipher for all possible
keys and traces

4. Using a power model, compute the matrix of hypothetical power consumption
for all keys and traces

5. Statistically evaluate which key hypothesis best matches the measured power in
each individual time.

The right key (part of the right key) is determined by key hypothesis — interme-
diate value — consumption, best correlating to actually measured consumption at
some moment. We repeat the analysis for other parts of key, until we determine the
whole key.

4.2.2 Schedule of Your Work

We reccommend you to proceed according to the following steps:

1. Plot one trace in the program you are using (MATLAB/Octave, Mathematica,
etc.). Check that it is complete.

2. Plot several traces (e.g., 1st, 10th, 50th). Check the alignment of traces (they
overlay correctly, triggering works).

3. Select the appropriate part of the traces (e.g., containing the first round). Read in
the appropriate number of traces.

4. Depending on your measurements, you may have to perform a correction of mean
values (if your measurements “wander” in voltage over time). You can do so by
subtracting from each trace its mean value.

5. Recover the secret key using the DPA with correlation coefficients. The method
is summarized in Sect.4.2.1.

4.2.3 Training Sets

In folder Analysis you will find two sets of measurements. One set is for known key
00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff,theotherset
is for unknown key.
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4.2.3.1 Training Set for Known Key 00 11 22 33 44 55 66 77
88 99 Aa Bb Cc Dd Ee Ff

To implement and debug your program/script, we provide testing traces of 200
AES encryptions (AES 128, with 10 rounds). We encrypted 200 plaintexts (file
plaintext-00112233445566778899aabbccddeeff.txt), obtaining 200 ciphertexts (file
ciphertext-00112233445566778899aabbccddeeff.txt. During encryptions we mea-
sured power traces (traces-00112233445566778899aabbccddeeff.bin). Each trace
has a length of 370 000 samples (in this case). Each sample is represented by 8 bit
unsigned value (i.e., the length of the file is 370 000 bytes * 200 traces = 74 MB).

If your program/script is correct, then you should reveal the key 00 11 22 33
44 55 66 77 88 99 AA BB CC DD EE FF.

4.2.3.2 Training Set for Unknown Key

If you are successful with the set above, you may try to recover the unknown key.
We made 150 AES encryptions (AES 128, with 10 rounds).

Files plaintext-unknown_key.txt and ciphertext-unknown_key.txt contain plain-
texts and corresponding ciphertexts, which were produced by an AES encryption
with an unknown key. File traces-unknown_key.bin stores power traces recorded
during encryptions of above plaintexts. File traceLenght-unknown_key.txt contains
information on trace length, i.e., 550000 samples in this case.

You can easily check whether you found correct key. Just take any plaintext
from the file plaintext-unknown_key.txt, encrypt it with the key you determined by
the analysis, and compare the resulting ciphertext with a corresponding ciphertext
from the file ciphertext-unknown_key.txt. If the ciphertexts match, you found the
correct key.

4.2.4 Tools

We will use a system suitable for numerical calculations. MATLAB seems to be a
system best-tailored for our needs (matrix operations with large matrices). We also
can use freeware alternative Octave, that is compatible with MATLAB in its basic
functions.

Mathematica is also one of alternatives. Mathematica can Import data in MAT-
LAB format (.mat).

You may also use other computer algebraic systems—your possible experience
is welcome!
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4.2.4.1 MATLAB—Using the Prepared Functions

The following code samples show, how to use the prepared functions (files) to speed-
up the key recovery process.

measurement.m  the code template for the key recovery process

myin.m loads the content of the text files (plaintext.txt, ciphertext.txt) gen-
erated during the measurement

myload.m loads the content of the binary files (traces.bin) generated during
the measurement

mycorr.m is used to calculate the correlation coefficient later during the

recovery process

All the files are available in archive in the folder Analysis and should be placed into
your MATLAB project directory. The following code snippets show in more detail,
how to load the appropriate data using the prepared functions and are all included in
the template measurement.m.

In case you are new to MATLAB, you can see some basic examples in the
Sect. 4.2.4.2.

MATLAB code example—loading the data

WITTTTTTTTTTTTTTT T o
% LOADING the DATA %
WITTTTTTTTITTTTTT T o

% modify following variables so they correspond
% your measurement setup

numberOfTraces = 200;

traceSize = 350000;

% modify the following variables to speed—up the measurement
% (this can be done later after analysing the power trace)
offset = 0;

segmentLength = 350000;

% for the beginning the segmentLength = traceSize

% columns and rows variables are used as inputs

% to the function loading the plaintext/ciphertext
columns = 16;

rows = numberOfTraces;

TITIITIITITIITIITTIII I o
9% Calling the functions %
TITIITIITITIITIITTIIII T o

% function myload processes the binary file containing the

% measured traces and stores the data in the output matrix so
% the traces (or their reduced parts) can be used for the key
% recovery process.

% Inputs:

% "file > — name of the file containing the measured traces
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%  traceSize — number of samples in each trace

%  offset — used to define different beginning of the power trace

%  segmentLength — used to define different/reduced length of the
power trace

%  numberOfTraces — number of traces to be loaded

%

% To reduce the size of the trace (e.g., to speed—up the

% computation process) modify the offset and segmentLength

% inputs so the loaded parts of the traces correspond to the

% trace segment you are using for the recovery.

traces = myload(’traces.bin’, traceSize, offset, segmentLength,
numberOfTraces) ;

% function myin is used to load the plaintext and ciphertext

% to the corresponding matrices.

% Inputs:

%  file ' — name of the file containing the plaintext or ciphertext

%  columns — number of columns (e.g., size of the AES data block)
%  rows — number of rows (e.g., number of measurements)

plaintext = myin(’ plaintext.txt’, columns, rows);

ciphertext = myin(’ciphertext.txt’, columns, rows);

TTITTIIITIITTITIITIITTIITTITTITTITTIITTIITII o
9% EXERCISE 1 — Plotting the power trace(s): %
TTITTTIITIITTITIITTITTIITTITTITTITSIITTIITII o
% Plot one trace (or plot the mean value of traces) and check
% that it is complete and then select the appropriate part of
% the traces (e.g., containing the first round).

% —> create the plots here <—

MATLAB code example—using the correlation coefficients

WIIITTTITTIITTIITIITTIITIIIT T o

% EXERCISE 2 — Key recovery: %
WITITTTITIITTTIITIITTIITIII T o

% Create the power hypothesis for each byte of the key and then
% correlate the hypothesis with the power traces to extract the
% key .

% Task consists of the following parts:

% — create the power hypothesis

% — extract the key using the results of the mycorr function

% variables declaration
byteStart = 1;
byteEnd = 16;
keyCandidateStart = 0;
keyCandidateStop = 255;

% for every byte in the key do:
for BYTE=byteStart:byteEnd

% Create the power hypothesis matrix (dimensions:
% rows = numberOfTraces, columns = 256).
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22 % The number 256 represents all possible bytes (0x00..0xFF).
23 powerHypothesis = zeros(numberOfTraces,256);

24 for K = keyCandidateStart:keyCandidateStop

25 % —> create the power hypothesis here <—

26 end;

27

28 % function mycorr returns the correlation coeficients matrix
29 % calculated from the power consumption hypothesis matrix
30 % powerHypothesis and the measured power traces. The

31 % resulting correlation coeficients stored in the matrix CC
32 % are later used to extract the correct key.

33 CC = mycorr(powerHypothesis, traces);

34

35 Yo —> do proper operations here <—

36 % —> to find the correct byte of the key <—

37

38| end;

4.24.2 MATLAB for Beginners

Here you find several useful commands. We are working in certain working directory
where all working files and scripts (files .m) are placed.

Almost all MATLAB objects are matrices. Column or row vector are special cases,
however, generally we are working with n-dimensional arrays. Almost all numbers
are of type double.

1|% example (this is a comment)

2|% matrix creation:

3la =1[1,2,3;4,5,6;7,8,9]

41% we have defined the variable a, the result has been printed

5/b = rand(100,100);

6% semicolon (;) suppresses printing the result (important for huge
data)

7% showing part of a matrix b:

8| b(1:10,5:7)

91% matrix multiplication (addition/subtraction/division) works:
10| ¢ = [2,0,0;0,2,0;0,0,2]

11|a % ¢

12|% for entry—by—entry multiplication, we use .x

13|a .x ¢

Vectors are special cases of matrices

1{% vectors are special cases of matrices
2lv = [1,3,5,7] % row vector

3lv(l,:) % equivalent to v
4|v(1,3:4) % part of v

5(% transposition

6|v’ % creates column vector
7% special matrices



11

12|% indexing by a vector

13

14| v(iv)

15

16| v

17
18

19| v(ones(1,5) ,:)
20{v’(:,ones(1,5)) % works only in Octave

Graph plot
1% graph plot
2le = rand(1,100);
3| plot(e)
4/ f = rand(1,100);
5| hold on % adding the second trace into the graph
6| plot(f)
7% if x is a matrix:
8| plot(x) % plots the set of traces by columns of x
9| plot(x’) % plots the set of traces by rows of x (using
transposition)
Cycles
1% how to write cycles
2| for i=1:10
3 for j=1:20
4 x(i)=bitxor(v(i),w(j));
5 end
6| end
Manipulating files
1% Manipulating files
2
31% open file for reading:
4| MyFile = fopen (’myFile.bin’, 'r’);
5|% skip in Myfile from current position (’cof’) by Offset:
6| fseek (MyFile, Offset, ’cof’);
7% read Number of uint8s to the vector Values (from the current
position):
8| Values = fread (MyFile, Number, ’uint8’);
9% close MyFile:
10| fclose (MyFile) ;
11
12|% Manipulating text files
13
14|\% open file for reading:
15| TextFile = fopen(’myTextFile.txt’,’r");

8| zeros(3,3)
9| ones (3,3)
10| eye(3,3)
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rand(3,3)
iv = [3,4,1,2]
% by indexing we can create originally not existing components

v([1,11,1:3)
V([1,1,17,:)
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16|% reading line from TextFile:

17| Line = fgets(TextFile );

18|% reading 16 values from the Line according to the pattern (like in C
):

19| [values, 1] = sscanf(Line, "%02x ’, 16);

Printing data in hex-form

% suppose the key is stored here in the key array:
key=[1,2,3,4,5,6,7.,8.,9,1,2,3,4,5,6.7];

for i=1:16
fprintf(’Byte %d of the key is 0x%2.2X \n’, i, key(i));

1
2
3
4% to print it in hex—form run the following for—cycle:
5
6
7| end;

4.24.3 MATLAB/Octave Tips

e For xoring of values you may use the bitxor function. This function also per-
forms bit-wise xor of vectors and matrices (of the same size).

e The average value (mean value) is calculated by the function mean. If a is a matrix,
then mean (a) is a (row) vector of mean values of columns, while mean (a, 2)
is a (column) vector of mean values of rows (which is probably what we want).

e If you like to extend (copy) the column vector into matrix, use indexing (e.g., you
like to extend vector b into matrix having 100 columns):

1. By indexing: b_mat = b(:,ones(1,100));
2. By replication: b_mat = repmat (b,1,100);

e You can use arrays SubBytes and byte_Hamming_weight (see the file
tab.mat). Remember that the first index of an array is equal to 1, therefore
you probably need to increment index by 1, e.g..; a = SubBytes(x + 1);
b = byte_Hamming weight (a + 1) ; This works also for matrices (!)—
if x is a matrix, then SubBytes applies to all its elements (the result is a matrix
again).

4.2.4.4 Mathematica—Tips
Mathematica can import files in MATLAB format (matrix format, .mat) using func-

tion Import. Function Import may be highly memory demanding, as it always
imports the whole file.

$HistoryLength = 0; (xsaving the memoryx)
SetDirectory [ NotebookDirectory []]

NUMBER = 500;

t = Import["traces—part.mat" J[[1]][[]1 ;; NUMBER]];

N W N -
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{MemoryInUse[], MaxMemoryUsed[]} (xchecking the occupied memoryx)
ListLinePlot[t[[1l ;; 100, 1 ;; 100]]]

Use the function Mean for elimination of a systematic error of measurement
(different DC component between traces). Mean applied to a matrix returns a vec-
tor of means of columns. However, we need means of rows, i.e. we have to use
Mean [Transpose[...]].

4.3 DPA—Measurement with an Oscilloscope

First we will set up a basic measurement of the smart card consumption. We will
use JSmartCard Explorer to communicate with the card, and PicoScope 6 GUI to
establish basic parameters of the measurement. Then, we will switch to a separate
program that will control both the card and the oscilloscope and will perform a series
of measurements needed for the DPA attack.

4.3.1 Preparation of the Measurement

1. Connect the card reader to your computer and insert the SmartCard into the
reader, as shown in Fig.4.2.

2. Run JSmartCard Explorer from Primiano Tucci [2]. (In Java. Compiled JAR
file you find either on web [3] or in file JSmartCardExplorer.jar in downloaded
archive).

e Pressthe Connect button to connect to the SmartCard. (Status should be green.)

e Fill-in the fields Class (80), INS (60), P1 (00), P2 (00), Data IN, and Le (10)
as shown in Fig.4.3 (all in HEX).

e Press Send. The card should run AES encryption over the entered data and
return the ciphertext, as shown in Fig. 4.3.

Fig. 4.2 Connect the card reader to your computer and insert the SmartCard into the reader



4 Practical Session: Differential Power Analysis for Beginners 87

[ ssmartCard Explorer 104 Primiano Tucc - httpe/ fwww.primianotuccl.com =100x|
Reader Settings
Reader |[x] ACS CCID USB Reader 0 bt G |Protocot: Auto bt Card ATR: 2BBA11001181244649545F 435655542428
status: | 1/ Connect | Load project [ save project
APDU History _
Cla| INS| P1| P2 |PV.| Len Data (Hex) | W Response (verbose) Data Out (Hex) Data Out (String) | Full ResponselHelel
80|60 00 |00 [10 |10 |0123455789abcdedd. . |90 00 No further qualification (36 3E FF 8C DE 1AD__[6>1._D <N 36 3EFFSCDE1AD.. |
o. [ms [P [Pz [ic [ Data Sent (Hex) e 5w | Data Recv (Hex)
| 'y | o= [ms [er [Pz [ic | Data IN (Hex) Le
™ " | [s0] [60] [00] [00]| [10] [o123456789abedefon23456789abedet 10
Send
Last command status: Mo further gualificats

| send APDU | saved APDUS | Data view | FileSystem Data (Experimenta) |

Fig. 4.3 Fill-in proper fields and press Send

Fig. 4.4 Insert card into the measuring adaptor (green PCB), then insert the measuring adaptor
into the reader

3. To measure the card power consumption, we will be using Picoscope 5204 (and
5203) and two oscilloscope probes. Connect the probes to channels A (blue,
trigger), and B (red, trace measurement).

4. Remove the card from the reader and insert it into the measuring adaptor (green
PCB), then insert the measuring adaptor into the reader. See Fig.4.4

5. Connect the Picoscope probes to the measuring adaptor. Unlike to Fig.4.5, set
the trigger probe (channel A, blue) to the X10 position and the measurement
probe (channel B, red) to the X1 position.

6. Connect the Picoscope to a free USB port of your computer (if not already
connected).

7. For the measurement you need the following software:

e PicoScope 6 software with drivers. You can download it from [4]. You can
find it also in downloaded materials as a file PicoScope6_r6_8_11.exe.
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Fig. 4.5 Connect the Picoscope probes to the measuring adaptor. Set the trigger probe (channel A,
blue) to the X10 position and the measurement probe (channel B, red) to the X1 position

10.

o Software Development Kit. The relevant files should be included in the Visual
Studio project below. If not, you can download the SDK from the web [5] or
you may find it in downloaded materials as a file PS5000sdk_r10_5_0_32.zip.

e Library for working with smart cards (WINSCard.lib). This should be included
in the installation of Visual Studio. (It is a part of Microsoft Windows SDK.)

Run the PicoScope 6 program
You should make the following settings:

Timebase: 500us/Div, x1 (zoom), 1 MS (samples)
Channel A: +-1V DC

Channel B: +-1V DC

Trigger: Auto (after tuning the settings, switch to Repeat)
Trigger Event: Simple Edge, Rising

Trigger Channel: A

Trigger Threshold: 200 mV

Warning: These settings may need to be adjusted according to the particular card
and other circumstances.

Set the Single measurement at the oscilloscope, and send data to the card using
JSmartCard Explorer from Primiano Tucci. You should see a waveform like in
Fig.4.6.
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Fig. 4.6 Powertrace of one encryption

Fig. 4.7 Menu Properties of

PicoScope program Properties

Sample interval 8ns
Sample rate 125 MS/s
Add View » MNo.samples 625,000
Channels » L Channel A
- K-Aois » Range +10V
Grid Layout » Coupling DC
Auto-arrange axes Channel B
Reset View Layout Range 21V
Reference Waveforms ~ » " Capture Date 472014
Capture Time 16:36:30

Add Measurement

11. Display the Properties panel by right-clicking somewhere in the window and

selecting View Properties (see Fig.4.7).
12. From the Properties panel remember the following values:

e Sample interval,
e Sample rate,
e No. samples.

We will need these values later, when setting the measurement program.
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4.3.2 Compilation of Program for Measurement

At this stage, you should have verified that the SmartCard works correctly (responds
to the command for AES encryption), and that the signals from the card look rea-
sonable. Press Disconnect or close JSmartCard Explorer, and close PicoScope 6
GUI. We will use a separate program to control both the SmartCard reader and the
oscilloscope.

For measurement it is necessary to adjust and compile C++ program stored in
an archive Pico5000.zip. Zip file contains source files and Microsoft Visual Studio
project. After extracting the archive and opening the project in Microsoft Visual
Studio you have to check the following settings in project properties:

1. Paths to include and library directories, see Fig.4.8.

2. Paths to additional dependencies, see Fig.4.9.

3. In source file main.cpp set up the measuring channels, trigger voltage level, and
number of measurements.

Compile the program (Build — Build Solution). Before running the program do
not forget:

e to disconnect the card in JSmartCard Explorer and
e quit the PicoScope program,

otherwise the card and/or the PicoScope would be occupied, hence the measuring
program will not be able to connect to it.

Configuration: | All Configurati v| Platform: | Active(Win32) v| | Configuration Manager...

b Common Properties General

4 Configuration Properties ecutable Directories S(VC_ExecutablePath _x26);5(WindowsSDK_ExecutablePath
General Inglude Directories \sdk5000;5({IncludePath)
Debugging Refdgnce Directories (VC_ReferencesPath_x26);
VIC++ Directories | LibranMirectories -\sdk5000;S(LibraryPath)
B C/Ces gl wsSDK_MetadataPath);
b Linker iredori S(VgF SourcePath);
b Manifest Tool irectd (C_includePath):S(WindowsSDK_IncludePath);$(MSBuil

b XML Document Generator
b Browse Information

b Build Events

b Custom Build Step

b Code Analysis

| Executable Directories
Path to use when searching for executable files while building a VC++ project. Comesponds to

< » | | environment variable PATH.

Cancel Apply

Fig. 4.8 Visual Studio project setup—include and library directory paths
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Configurati All Configurati v | Platform: .ncli\ot(WinSZJ ¥  Configuration Manager... .
General ~ \Additional Dependencies PS5000.kib;wi d.lib;%(Additional D dencies)
Debugging dpore All Default Libraries
VC++ Directories Igniye Specific Default Libraries

b C/C+s
4 Linker
General
Input
Manifest FR
D"’“ig'"g Assembly Link Redqurce
Optimization
Embedded DL
Windows Metadata Check the values
Advanced
Al i [
Ci::;un':ﬁne :
A v | | Specifies additional items to add to the link command line [i.e. kernel32.lib]
< >
[ Cance || apply

Fig. 4.9 Visual Studio project setup—additional dependencies

Measured data are in file traces.bin, plaintext and cipher text in files plaintext.txt
and ciphertext.txt and length of one measurement is stored in file rraceLength.txt.
Now you have measured data to be used for DPA.
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Chapter 5

Fault and Power Analysis Attack Protection
Techniques for Standardized Public Key
Cryptosystems

Apostolos P. Fournaris

5.1 Introduction

The basic building block of any security protocol is its cryptographic algorithms and
their primitive operations. While there exist many cryptographic algorithms only
few of them are standardized. In several of them, their cryptographic primitives have
considerable similarities. This is especially true in public key cryptography where the
real, day-to-day, security scene is dominated by security products relying on public
key cryptography schemes that are based on RSA, El Gamal or ECC approaches.
So, considerable research is focused on enhancing the security of such standardized
schemes implementations without reducing those implementation performance.
The mathematical backbone of RSA, El-Gamal and ECCs is the integer factoriza-
tion problem (IFP), the discrete logarithm (DLP) and elliptic curve discrete logarithm
problem (ECDLP) respectively. Those problems rely on the arithmetic operations of
modular exponentiation (ME) and scalar multiplication (SM) that from number the-
oretic perspective are very closely related. RSA and El-Gamal is structured around
7 multiplicative and additive cyclic group, i.e., where addition and multiplication
operations are defined. Modular exponentiation in Z; for RSA is defined as ¢ mod n
where ¢ is an RSA message, e is the exponent (public or private RSA key) and 7 is
the public modulus. To reduce high bit length of involved numbers needed to keep
the IFP or DLP hard, we can replace Z, with a different abelian group where these
problems are harder. Such group is the Elliptic Curve group E(F) where F is a
finite field. However, since this group is additive, all Z; multiplication operations
are replaced by their additive equivalent. Thus, in ECC schemes, all Elliptic Curve
points P : (x, y) are defined over the additive group E(F) where F is a finite field
in which each EC point’s coordinates (x, y) belong to F' and instead of Z; multipli-
cation, addition between EC points is performed while instead of Z; squaring EC
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doubling (as a special case of addition) is performed. Z; ME can be realized as series
of modular multiplications and squaring operations. Similarly, due to the equivalence
of Z; multiplication to E(F) EC point addition, E(F') scalar multiplication (SM),
defined as e - P where P € E(F) (P is denoted also as base point) and e € F, from
engineering perspective, is equivalent to Z ME and can be realized as a series of
E(F) EC point addition and E (F) point doubling operations.

Regardless of the fact that Z operations and F operations (i.e., operation between
EC point coordinates) can have significant differences (e.g., when F is a binary
extension field), the Z; multiplication to EC(F) addition equivalence hints that
the two public key cryptographic primitives design (ME and SM) follow similar
principles for achieving efficiency in hardware terms (chip covered area, resources,
computation time, power consumption). Traditional ME and SM algorithms like
multiply and square or double-and-add algorithms respectively are very close in
concept.

Similar ME and SM design principles, however, lead to common implementation
attack techniques and approaches. Implementation attacks target an actual implemen-
tation of a cryptographic algorithm and exploit information leakage (side channel
attack) or faulty behavior (fault injection) of the implementation’s physical charac-
teristics (power dissipation, timing, electromagnetic emission, etc.). As expected,
side channel (SCA) and fault analysis (FA) attacks in ME or SM designs require
similar SCA-FA countermeasures. In this book chapter, apart from FAs, our research
interest is focused on SCAs relying on power dissipation, known as power analysis
attacks (PA) but the proposed countermeasures can be also applicable to other SCAs
(e.g., relying on electromagnetic emission or timing).

In this book chapter, expanding the work of [1], the concept of a unified SCA-FA
protection mechanism both for ME and SM is explored. This mechanism is capable
of thwarting a wide range of existing PA and FA attack approaches. The proposed
approach is a variation of the Montgomery Power Ladder algorithm for ME/SM that
is sufficiently modified in order to counter “vertical” and ‘“horizontal” simple and
advanced SCAs (focusing on PAs). To achieve that goal, the randomization technique
is adopted in the proposed algorithm by introducing a random element €Z; or E(F’)
along with the message/base point in every algorithmic round. This randomization
is propagated and extended in each round and is only removed after the last round
of the proposed algorithm. The high regularity of the Montgomery Power Ladder
algorithm and its intrinsic parallelism provide high performance as well as addi-
tional resistance against SCAs-PAs. The proposed algorithm takes advantage of the
intrinsic mathematical coherence between intermediate algorithmic values, offered
by Montgomery Power Ladder, to detect possible faults (following the infective com-
putation principle) thus providing FA resistance. Attempts to bypass successfully the
fault detection mechanism by injecting a second fault lead to non-usable information
by an attacker since the ME/SM result is released (unblinded) only after passing the
fault detection check. The above countermeasures are combined in an harmonic way
so that they do not introduce new vulnerabilities.
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The rest of the paper is organized as follows. In Sect. 5.2 existing SCA-PA and
FA approaches and countermeasures on ECC and RSA systems are presented. In
Sect. 5.3 the proposed approach is described and a security analysis of the algorithm
is made in Sect. 5.4, while Sect. 5.5 concludes the paper.

5.2 Public Key Primitive Fault and Power Attacks
and Countermeasures

5.2.1 Side Channel Attacks and Countermeasures

To model side channel attacks we can adopt the approach described in [2, 3]. Assume
that we have a computation C (which can be an RSA modular exponentiation or EC
scalar multiplication) that consists of series of Oy or O; operations that require
inputs X and X, respectively (thus O;(X;) fori € {0, 1}). During processing of the
C computation, each operation can be linked to an information leakage variable L;.
A side channel analysis attack is possible if there is some secret information s that is
shared between O; and its leakage L;. The ultimate goal of a side channel analysis is,
by using a strategy, to deduce s from the information leakage L;. The simplest way
to achieve that is by examining a sequence of O; operations in time to discover s.
Simple SCAs (SSCAs) can be easily mounted in square-and-multiply/double-and-
add algorithms used in ME/SM and are typically horizontal type of attacks meaning
that they are mounted using a single leakage trace that is processed in time. When
SSCAs are not possible, advanced SCAs (ASCAs) must be mounted to a ME/SM
architecture to extract s.

Advanced SCAs do not focus only on the operations (eg. O;) but also on the
computation operands [3]. Advanced SCAs are focused on a subset of the calculation
C (and/or O;) and through collection of sufficiently large number N of leakage traces
L;(t) for all t € {1,..., N} using inputs X; () exploit the statistical dependency
between the calculation on C for all X; and the secret s. ASCAs follow the hypothesis
test principle [2, 4] where a series of hypothesis s on s (usually on some bit j of s,
i.e., 5; = 0or 1) is made and a series of leakage prediction values are found based
on each of these hypothesis using an appropriate prediction model. The values of
each hypothesis are evaluated against all actual leakage traces using an appropriate
distinguisher § for all inputs X; so as to decide which hypothesis is correct.

SSCAs and ASCAs can follow one of two different leakage collection and analy-
sis strategies, as originally described in [2], the vertical or horizontal approach. In the
vertical approach, the implementation is used N times using either the same or differ-
ent inputs each time 7 in order to collect traces-observations L; (¢). Each observation
is associated with z-th execution of the implementation. In the horizontal approach,
leakage traces-observations are collected from a single execution of the implemen-
tation under attack and each trace corresponds to a different time period within the
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time frame of this execution. As expected, in horizontal attacks the implementation
input is always the same.

Many SSCAs fit on the horizontal analysis strategy, as long as they are based
on a single implementation execution leakage collection. Such attacks enable the
attacker to discriminate O;: modular multiplication (RSA) or point addition (ECC)
from Oy: Modular squaring (RSA) or point doubling (ECC) in time thus revealing
all bits of the secret s (the exponent (RSA) or secret scalar (ECC)). There also
exist ASCA horizontal attacks that take advantage of the fact that each O; operation
when implemented in an existing generic processor, is broken into a series of digit
based operations (e.g., word-based field multiplications) that are all associated to
the same bit of the secret exponent/scalar. Such attacks are the Big Mac attack [5],
the Horizontal Correlation Analysis attack (HCA) [6] or the Horizontal Collision
Correlation attack (HCCA) [2, 3] that are described both for RSA and ECC designs.

There is a very broad range of vertical approach-based attacks on ME/SM imple-
mentations including sophisticated SSCAs and most of the ASCAs. Such SSCAs that
require more than one ME/SM executions (e.g., two executions) include comparative
SCAs (originally focused on Power attacks (PAs)) like the doubling attack (collision
based attack) [7] (DA attack) and its variant, relative doubling attack (RDA attack)
[8] or the chosen plaintext attack in [9] (also known as 2-Torsion Attack (2-TorA) for
ECC). Vertical SSCA include also attacks applied specifically to SM, like the refined
PA (RPA) or zero PA (ZPA) where a special point P, (that can zero a P coordinate) is
fed to an SM accelerator, thus enabling scalar bit [ recovery through a vulnerability
at round /.

Most ASCAs follow the vertical attack paradigm. Their success rate is associated
with the number of traces that are needed to be processed vertically in order to
reveal the secret s. The most widely used ASCA vertical attack is Differential Attack
(DSCA) originally proposed by Kocher in [10] that is later expanded into the more
sophisticated Correlation SCA (requiring less traces to reveal the secret than DSCA)
[11] and collision correlation attack [12—14] that can be mounted even if the attacker
does not have full control of the implementation inputs.

Recently, researchers have shown that appropriate combination of vertical and
horizontal attacks can enhance SCA success rate even against implementations that
have strong SCA countermeasures [14, 15]. These publications are mainly based on
vertical attacks that use horizontal attacks to bypass randomization/blinding coun-
termeasures.

Countermeasures: SSCAs are thwarted by making the leakage trace of O, indistin-
guishable from the leakage trace of Oy. This can be achieved by more sophisticated
(regular) ME/SE algorithms, like the square-and-multiply always/ double-and-add
always technique or the Montgomery power ladder (MPL) technique [16] (presented
in the following Table) or by applying the atomicity principle in the existing square-
and-multiply / double-and-add ME/SM algorithm. Atomicity is realized by brak-
ing each O; operation into atomic blocks (e.g., the same field operations) that are
arranged in such way in time that they follow the same sequence for both O; and Oy.
On the other hand, regular ME/SM algorithms provide SSCA resistance by making
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MPL for ECC primitives
Input: P, € E(F),e =
(er—1,€-2,...e0) € F
Output: S = (e - P)
Initialization: 7o = O, T} = P
Fori=t—1to0

MPL for RSA primitives

Input: c,e = (1,¢,2, ...e0) € Z;;
where 7 is the public modulus
Output: S = c® mod n
Initialization: 7o = 1, T} = ¢
Fori =t—1to0

If ¢; — 1 then If ¢; = 1 then
2 i=2-T
Ty =T{ modn
_ To=To+T
To=Ty-Ty modn
else else
To =2-T
T0=T02m0dn 7(.)_7, OT
Ty =Ty Ty modn 1=To+h
! 04 Return: 7y

Return: 7y

the number of O; operations constant in each ME/SM round (that processes one
bit of the secret exponent/scalar). Unfortunately, the above countermeasures can be
bypassed when each O; operation is realized by Z operations or F' operations (for
ME or SM respectively) that are implemented as a series of word-based operations
(typical case in software implementations). In such case, horizontal attacks like the
Big Mac, HCA, HCCA are still successful. Furthermore, the above countermeasures
are thwarted by all vertical type of attacks including DA, RDA, and 2-Torsion and
all ASCAs.

Randomization is a favorable solution for countering ASCAs (both horizontal
and vertical). Using randomization, the sensitive information (exponent or scalar)
is disassociated from the leakage trace and is hidden by multiplicatively or addi-
tively blinding this information using a random Group (Z; or E(F)) element. This
hiding/blinding involves exponent, public modulus or message multiplication with a
random number in the RSA case, or adding a random R point to the SM base point
P, multiplying with a random element of F the base point’s projective coordinates as
well as applying EC or finite field random isomorphisms (Coron’s Countermeasures
[17]). Many of the above countermeasures do not fully protect an ME/ SM architec-
ture from CSCA, CCSCA (and the SM specific attacks of RPA, ZPA [18]). This is
more evident in ECC SM implementations where attackers have managed to defeat
all 3 of Coron’s countermeasures (for some regular SM algorithms). For example, in
SSCA resistant algorithms, like the BRIP method [19] (presented below) where the
same random number is added to each round’s point values (thus creating a vulner-
ability [20]), randomization (base point blinding) may not prevent RDA or 2-TorA.
Researchers have also shown that blinding cannot protect an ME/SM implementation
if Z; operations or F operations (for ME or SM respectively) are implemented as
a series of word-based operations. In such case, horizontal attacks (HCA, HCCA)
or vertical-horizontal attack combinations are successful in revealing the secret s
[14, 15]. Yet still, message/base point blinding can resist horizontal attacks as long
as the bit length of the employed random element is large enough [6].
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BRIP for RSA primitives
Input: ¢, B, B le=

(1, e;-2, ...e0) € Z;; where n is
the public modulus

Output: S = c® mod n

BRIP for ECC primitives
Input: P, B,€ E(F),e =
(e;—1,€1-2,...0) € F
Output: S=¢- P

Initialization: 7o = B, T} = Bil, Initialization: To = B, Ti = —B,
1 Th=P—-B
T)h=c-B " modn .
. Fori=t—1to0
Fori=t—-1to0 T =2.T
To = T2 mod n 0__ 0
0 If ¢; = 1 then
If ¢; = 1 then _
To = To - T» mod To=To+ T
L 0=to- 2 modn else
else To=To+T

To =Ty Ty mod n

Return: Ty = Ty + T
Return: Ty = Ty - Ty mod n eturn: Tp v+ T

5.2.2 Fault Attack and Countermeasures

Fault attacks can be injected in various parts of the RSA/ECC implementation includ-
ing storage elements, control instructions or computation units as a whole. Bellcore
researchers introducing FAs in public key systems, have shown that RSA, especially
CRT! RSA, is very vulnerable against fault attacks [21]. Similarly, FAs have been
very successful in ECC implementations. There exist various FAs aiming the SM
implementation, like C and M safe error attacks where the value of a single bit of
the scalar e is changed and it is observed if this action leads to a different point
multiplication outcome or not (safe error). There also exist FAs focusing on a weak
curve-based fault analysis including invalid base point attacks where by injecting
a fault in the SM base point, this point with high probability becomes a point of a
weak curve.” This approach can be expanded into invalid curve attacks, where any
unknown fault in any part of the hardware implementation (memory, buses, registers
etc.) influencing any EC parameter can possibly lead to a transition to a weak curve
[22]. By specializing the fault injection process to the x EC point coordinate (as long
as the y coordinate is not used), more promising attack results can be provided by
transferring SM calculations to a weak twist of the original EC with high probability
(twist curve FAs) [23].

Apart from the patented approach of Shamir [24] (Shamir’s trick), early attempts
to thwart the Bellcore attack and EC SM fault attacks were based on infective com-
putation [25]. Through this approach, any computational errors introduced by a fault
will propagate throughout the computation, “infecting” all intermediate variable thus
ensuring that the final result always becomes faulty and appears random and use-
less to the adversary in the end. After an initial attempt on this concept by Yen in
[26], in the case of RSA, insecurities were found by Blomer et al. [27], thus the
infective computing approach was enhanced with a fault detection mechanism based
on the introduction of public modulus (7) multiplicative masking (BOS scheme).

IChinese Remainder Theorem.
2 A weak elliptic curve is a curve that can be cryptanalyzed easily.
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BOS scheme was insecure in several possible thread models [28], as shown in
[29, 30]. More than one fault can be carefully injected, as shown by Kim and
Quisquater in [31], in certain parts of the CRT and non-CRT RSA to bypass the
fault detection operation as a whole; thus revealing the public modulus or its pri-
vate factors (KQ scheme). This attack consists of injecting two faults, one during
exponentiation and another during fault detection. To prevent such attack, the RSA
outcome should be revealed and stored only after fault detection. This attack of more
than one fault injections can also be applied to ECC designs to bypass the fault
detection mechanism.

In the case of ECCs, similar countermeasure steps where introduced by
researchers, including infective computation and fault detection [32]. However, to
thwart the transition to weak ECs due to fault injection additional countermeasures
could be taken into account, including point validation and EC integrity checks for
invalid point and invalid curve (EC parameter) attacks. In general, the fault detection
mechanism for both RSA and ECC schemes is focused on a coherency check between
intermediate values during ME (RSA) or SM (ECC). This check is usually a mathe-
matical connection between those intermediate values that is retained throughout the
computation flow and is disrupted when an fault is injected. A coherency sensitive
mechanism can check if the mathematical connection between those values exists or
not, thus detecting an attack [33-35].

RSA and ECC implementations are very susceptible to SCA and especially
power attacks (PA) especially when such attacks are combined with Fault attacks
[36, 37]. Providing protection for FA or PA independently can thwart only one kind
of hardware attack while adversaries usually apply a combination of different attack
techniques to compromise an RSA/ECC hardware architecture. Combining more
than one type of countermeasure as well as adopting and combining well-established
resistance principles in an RSA/ECC implementation can achieve long-term SCA-
FA resistance against such attacks [33, 34, 38]. However, combining FA and PA
resistance approaches may introduce new vulnerabilities that can be exploited to
attack the public key implementation system [16, 19, 37, 39, 40] thus reducing the
RSA/ECC implementation overall physical attack resistance.

5.3 Proposed Approach

The broad variety and heterogeneity of PA and FA attacks implies that it is hard to
design countermeasures capable of providing wide scale protection. This is further
supported by the fact that PA and FA combinations apart from eliminating vulner-
abilities may introduce new ones. Apart from specific design oriented countermea-
sures like dual rail logic and power balancing [41, 42] that must be fine-tuned to a
single implementation in order to be effective, algorithmic-based countermeasures
may offer a more generic protection approach that can be applied to a wide range
of RSA/ECC implementations regardless of the architecture those implementations
follow. Our goal is to describe such algorithmic approaches for PA and FA resistance
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that combine effectively different PA and FA countermeasures and offer long-term
PA-FA resistance against known attacks. This research approach focus point is on
well-established PA-FA resistance principles rather than specific resistance counter-
measures on ME and SM accelerator units.

As a basis of the proposed algorithm approach on PA-FA resistant ME/SM, the
MPL algorithm is used. The MPL algorithm is resistant against many of the men-
tioned attack in Sect. 5.2.1, it does not rely on dummy operations in order to hide the
computation flow during ME/SM execution (modular multiplication or squaring for
ME or point addition and doubling for SM) and also favors operation parallelism thus
leading to fast implementations. The original MPL algorithm though offers SSCA
resistance (and more specifically Simple PA resistance) and under some restrictions
is horizontal attack resistant. To further enhance the MPL with ASCA resistance,
we must introduce some blinding technique through additive or multiplicative ran-
domization. Such countermeasure follows the protection technique of message/base
point blinding, since it constitutes an approach that under careful application in the
MPL algorithm cannot be bypassed or introduce considerable performance overhead
to a ME/SM implementation. Other techniques like exponent/scalar blinding are not
very efficiently implemented and are found to have vulnerabilities [36, 37]. However,
message/base point blinding must be realized in such a way that it should not suffer
from vulnerabilities similar to the BRIP method [20].

Assuming that all operations in the proposed algorithm are defined in a group G,
where G is either the multiplicative group Z; (for RSA) or the additive group E(F)
(for ECC), we introduce a random element B € G and its inverse B~! € G into the
MPL computation flow that can blind the message multiplicatively (B - ¢ mod n,
i.e., message blinding for RSA) or the base point P additively (B + P, i.e., base
point blinding). In contrast to similar approaches, where in each ME/SM round the
round’s computed values are blinded with the same random element, in the proposed
approach, a round’s values are randomized with a different number in each round (a
multiple of the random element B).

Concerning FA resistance, our approach adopts a combination of the infective
computation and fault detection resistance principles, following the intermediate
values mathematical coherence characteristic of the MPL algorithm. As observed in
[16] and by Giraud in [33], the T and 7; value in an MPL round always satisfy the
equation Ty = ¢ - Ty mod n or Ty = P + T, for ME or SM, respectively. Injecting a
fault during computation in a 7} or T variable will ruin this coherence and by intro-
ducing an MPL coherence detection mechanism in the end of the MPL algorithm,
this fault will always be detected. Finally, efficiency of the proposed approach is
achieved by employing Montgomery modular multiplication for ME and by exploit-
ing the intrinsic parallelism that exist in the MPL algorithm. The proposed PA-FA
resistant algorithm is presented below in two formulations, ME for RSA and SM for
ECC schemes.

FA-PA Montgomery ME algorithm for RSA primitives
Input: ¢, B, Bl e=(l,e_s,...e) € Zy where n is the public modulus
Output: (so, 51, 52, 54) = (B¢ - ¢ mod n, B! . ¢ mod n, B - ¢* mod n, B¢
mod n)
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Initialization: T= R2mod n, so = sy =bg = B- Rmod n, s3 = s4 = 55 = br, =
B~!. R mod n, where R = 272

1. Tk =T -c- R ' mod n
2. S2=bR'TR'R_1 mod n
3. Fori =0tor—1

(a) If ¢, = 1 then
So = S -5 - R~ mod n,
s4=254-53- R"' mod n
else
51 =51 -85 - R~ mod n,
ss =s55-53- R~ mod n
(b) s, = sg -R~'mod n, 55 = 532 - R~"'mod n

4. so=50-b"' R modn,s; =s;-c-R " modn
s5=s-1-R"modn,ss =s4-b-R " modn

5. If (values of i, e are not modified and s - s; - R"! mod n =5, -1 - R~! mod n)
then return s, 51, 52, 54 else return error

The above algorithm can be used for non CRT RSA or as a building block for
CRT RSA primitive. It employs as inputs the message ¢, the random number B and
its multiplicative inverse B!, the public modulus n and the exponent e. Note that ¢;
corresponds to the i-th bit of e and that j is the bit length of the modulus . We assume
that the multiplicative inverse of B exists, meaning that gcd(B, n) = 1 (B and n are
relatively prime). Possible fault injection attack can be detected by checking s - 57 -

R~ 'modn = 52 - R™! mod n (Z} MPL coherency check). If no fault is injected, the
above equation is always true.> The exponentiation result can be found after fault
detection by performing sg - 54 mod n = B¢ - ¢ - B~ mod n = ¢° mod n.

FA-PA SM algorithm for ECC primitives
Input: P, B,B~' € E(F),e = (l,¢,_5,...e0) € F
Output: (Sy, S1, S2,S4) = (¢-(B+ P),(e+1)-(B+ P),2" - (B+ P),(—e) - B)
Initialization: So = S| = B,s3 =s4 =55 = —B

1. S =B+ P
2. Fori =0tor—1

(a) If ¢; = 1 then

So = So + $2,
S4 =384+ 83
else

Si =81+ 5,
S5 =854+ 83

) $=2-5,5=2-5

3Note that 2 is logical NOT of e and that e +2 = 2/ — 1.



102 A.P. Fournaris

3. S=8S—-B,51=85+P
S4 =84+ B

4. If (values of i, e are not modified and Sy + S; = S>) then return Sy, S;, S,, S4
else return error

The above algorithm can be applied to any EC type (Wierstrass, Hessian,
Montgomery, Edwards curves etc.) under any coordinate system (affine, projective,
mixed). It employs as inputs the base point P, a random point B and its additive
inverse B~! = — B, along with the scalar e. Note that e; corresponds to the i-th bit
of e and that j is the bit length of all involved finite field elements. Similar to its ME
version, possible fault injection attack can be detected by evaluating the E(F) MPL

coherence check Sy + S = S,. If no fault is injected, the above equation is always
true and only then can the exponentiation result be released (after fault detection) by
performing Sy + Sy4 calculation.

5.4 Security Analysis

The MPL algorithm due to its regularity in the number of O; operations performed
in its round, provides resistance against SSCAs (and more specifically PAs). Thus,
simple PAs, the simplest form of horizontal SCAs, are not successful against MPL.
The atomic block approach, that has been found to be vulnerable to advanced hor-
izontal attacks, like Big Mac, HCA, HCCA attack [2, 3, 5, 6], is not applied in
MPL (the algorithm uses no dummy data and is by design highly regular). However,
some ASCA horizontal attacks can be successful even against MPL. This problem
can be thwarted by the use of message/base point blinding (with a high bit length
random element) and by avoiding the use of digit serial Z; or F operations (mainly
multiplications).

The adopted blinding technique of the proposed algorithm prevents vertical
SSCAs (vertical SPAs) (like DA, RDA) since the connection between two con-
secutive messages/base point inputs is lost (they are blinded with different random
numbers/points). However, message/base point blinding randomization, as indicated
in [8], is not enough to provide protection against 2-TorA. So, it is imperative that
the intermediate computation results are blinded with a different random element
of G in every ME/SM round. This is achieved by exponentiating/scalar multiplying
the random element B along with the message/base point without normalizing the
random element to B at the end of each ME/SM round, as is done in similar blinding
techniques (e.g., in the BRIP approach [19]).

The random element involvement in each of the proposed algorithm’s round with
out normalization (apart from the end of the algorithm) enhances message/base point
blinding and makes the proposed approach highly resistant against ASCAs (and more
specifically advanced PAs). DPA and CPA are not successful against the proposed
message/base point blinding approach.
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Regarding fault injection attacks, the proposed algorithms, as already mentioned,
rely on the MPL round coherence check introduced at the end of a single ME or SM
operation. This enhances the principle of fault infective computation introduced in
[43]. However, a clever attacked could try to bypass the fault detection mechanism by
introducing an additional fault after this function complementing an already injected
fault during the main algorithmic process [31] (similar to the KQ attack). This two
fault approach is not applicable in the proposed algorithm since the faulty result
after fault detection remains blinded. Unblinding correctly this result will require a
correct value (not faulty) to be used after fault detection. By bypassing the detection
mechanism the attacker cannot discriminate if the ME/SM output is a blinded correct
result or a faulty result. Thus, this result is useless for fault analysis.

5.5 Conclusion

In this book chapter, a common protection approach against SCA-PA and FA attacks
is introduced both for RSA and ECC primitive operations of modular exponentiation
and scalar multiplication, respectively. Our approach adopts and extends the MPL
algorithm by introducing message/base point blinding, extension of the randomiza-
tion operation per ME/SM round through a random element exponentiation/scalar
multiplication in every round and infective computation along with a fault detection
mechanism that releases the correct result only after passing the MPL coherency
check. The proposed algorithmic solution constitutes a protection framework against
a wide variety of SSCA and ASCA attacks (focusing on PAs) as well as FA attacks
that introduce one or two faults and process them statically or statistically.
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Chapter 6
Scan Design: Basics, Advancements,
and Vulnerabilities

Samah Mohamed Saeed, Sk Subidh Ali and Ozgur Sinanoglu

6.1 Introduction

Security of Integrated Circuits (IC) is a major concern. Cryptochips, which apply
encryption and decryption algorithms, are used in many applications such as cell
phones, computers, avionics, smart cards, and medical applications to provide a
secure environment. As any IC should be tested for defects, which are physical
imperfection in the IC, to screened out defective chips, cryptochip can be hacked
using the test features in the chip itself. Thus, cryptochip’s test infrastructure can be
turned into a backdoor to leak secret information of the chip.

Manufacturing test process targets ensuring a high level of quality and reliability
of the chips with a minimum test cost. Providing a high test quality and low test cost is
a major challenge in the test process. Test patterns are applied to detect faults, which
represent defects at an abstracted functional level as a result of defects. To maximize
the fault coverage, and, thus, the test quality, a large number of test patterns can be
applied to detect as much defects as possible resulting in a large test data volume
and, and thus, a long test time. The limited bandwidth as well as number of channels,
which is used to transfer test data between the tester and the chip, can further prolong
the test time. Although increasing the number of test channels can reduce the test
time, it incurs higher tester cost. The end result is a high test cost. These interrelated
challenges need to be tackled to ensure low-cost high-quality test.
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The semiconductor industry develops and adopts Design for Testability (DfT)
techniques that modify the IC design, while maintaining its functionality. DfT tech-
niques provide internal access to the chip, which includes controlling and observing
the content of the storage elements to ensure a high quality. While DfT methods pro-
vide low-cost high-quality test, the IC is no longer secure against attackers that misuse
the internal access to the IC to leak secret information from the chip. Throughout
this chapter, we highlight the advanced DfT techniques for manufacturing test and
shed light on the vulnerability of these techniques in security critical applications.

6.2 DIT

DAT [1] techniques enable comprehensive testing of the chip, enhancing the test qual-
ity. Unlike combinational circuits, in which a set of input combinations should be
exercised to archive maximum fault coverage, sequential circuits, in addition, need
to be traversed through all possible states. Thus, a sequence of test vectors may be
required to detect any fault in a sequential circuit. However, having access to the
primary inputs and outputs of the chip may be insufficient to cover all the states
of the design, which can reduce the fault coverage, and, thus, the test quality. DfT
modifies the design by adding hardware to enhance the test quality and minimize the
test cost without affecting the functionality of the circuit itself. Testability, which
represents the level of difficulty of testing internal signals in the design, is measured
by controllability and observability of each signal line, where controllability mea-
sures the difficulty of setting a signal line to the required value, while observability
measures the difficulty of propagating the logic value of a signal line to the output.
DT improves observability and controllability by providing access to the internal
nodes of the design, which enhances the testability at the cost of limited hardware
and performance overhead.

Many DAT techniques have been proposed to address the testing challenges. Struc-
tural DfT techniques, such as scan, partial scan, and boundary scan, are applicable
to any circuit. Scan provides full access to the flip flops, turning them into scan cells,
through the scan input/output pins so that the state of the design can be updated via
shift-in operations. Partial scan provides full access to a selected subset of flip flops,
providing a trade-off between area/performance overhead and testability. Boundary
scan enables the test of the interconnect of logic using scan cells directly connected
to the primary inputs and the outputs of the logical block. Next, we will describe in
detail each one of these DfT approaches.

6.2.1 Scan Design

Scan design [1] is one of the most effective structured DfT solutions. It enables
controlling and observing any internal state of the circuit. The scan design converts
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every flip flop to fully accessible scan cell by adding multiplexers to select either the
output of the previous scan cell or the corresponding output of the combinational
circuit to update each scan cell. All the scan cells, namely registers (flip flops), are
linked together to form a chain, in which the first scan cell is driven by an input pin and
the last scan cell drives an output pin. The scan design is illustrated in Fig. 6.1. If all
the registers have the scan property, the design is considered as full scan. Otherwise, it
is partial scan. While in the normal mode the chip performs its functional operations,
the test mode in the scan design supports two different modes, which are the shift
mode and the capture mode. Scan enable signal can be used to switch between these
two modes. In the shift mode, the test stimulus is shifted into the scan chain through
the scan input pin, while the test response is observed through the scan output pin one
bit at a time. Shifting the test stimulus necessitates activating the shift mode until the
whole pattern is shifted in. In the capture mode, the test stimulus already shifted into
the scan cells is applied to the combinational logic circuit and then the test response
is captured in the same scan cells. The captured test response can be observed, while
shifting in a new stimulus pattern. As a result, sequential logic circuit can be treated
as a combinational circuit, in which each flip flop can be treated as an input and an
output at the same time. Therefore, the test quality is improved.

For larger designs with tremendous number of flip flops, shifting each test stimulus
through a single scan chain results in a long test application time. A scan chain can
be divided into many chains of shorter length as in Fig. 6.2, which can be accessed
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Fig. 6.2 Basic scan architecture: an example with 7 scan chains with a scan depth of 4
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simultaneously. The length of the longest chain represents the scan depth. A group
of scan cells of equal distance to the input/output pins is denoted as a scan slice.
Increasing the number of chains reduces the scan depth, and, thus, the test application
time at the cost of additional channels and pins, that are connected to the scan chains.
Thus, there is a trade-off between the test time and the test cost.

6.2.1.1 Test Data Compression

Although the scan design enhances the testability, the test cost is dramatically
increased for complex designs due to the long test time and the large tester memory
requirement. To ensure high test quality, a large number of test stimulus and response
patterns are stored. They occupy a large space on the external tester’s storage. The
storage capacity should be expanded to accommodate the larger number of patterns.
The limitation of the bandwidth and the number of tester channels to transfer the
test data between the tester and the chip increases the number of test cycles, and,
thus, the overall test time. The test time can be reduced either through the reduction
of the number of test patterns or the increase of the number of channels. However,
the former one results in fault coverage loss, while the latter one is too costly to
implement.

Test data compression [2—4] has been developed to address the problem of large
test data volume and test time. Two components are added to the basic scan architec-
ture, which are the stimulus decompressor and the response compactor. A stimulus
decompressor expands a few number of tester channels into a much larger number
of internal scan chains. A response compactor collects the responses from a large
number of internal scan chains and feeds a small number of tester channels as illus-
trated in Fig. 6.3. Scan depth is reduced due to the increased number of internal scan
chains while retaining the number of channels. As a result, the number of clock
cycles for loading test stimuli and unloading the test responses is reduced, resulting

Compressed test stimulus

Chip Decompressor

Tester

Compactor

Compacted output response

Fig. 6.3 Test data compression
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in a reduction in the overall test time. Furthermore, since the size of each test vector
is determined by the number of dedicated tester channels, the required tester storage
is also reduced, resulting in a reduction in the overall test data volume. Therefore,
test data compression reduces the test cost.

Test Stimulus Compression

Each test vector targets a specific set of faults. Only some bits of a test vector are
utilized to activate and propagate the fault effects, while the remaining bits are left
unspecified, referred to as don 't-care bits. Test pattern generation tools can randomly
specify these bits as 0’s and 1’s. A decompressor exploits the high density of don’t-
care bits in a stimulus (test pattern), compressing the test stimuli.

While adding a stimulus decompressor into the scan architecture reduces the
test data volume, this scan architecture can degrade the test quality. The stimulus
decompressor introduces correlation among the delivered bits to the chains, which
depends on the decompressor structure. As a result, a stimulus decompressor maybe
unable to deliver the desired test pattern; if a test pattern does not comply with the
correlation induced by the decompressor, the test pattern is said to be unencodable.
Faults that can only be detected by unencodable test patterns may remain untested in
the presence of a stimulus decompressor. The internal structure of the decompressor
determines the correlation, and, thus, delivery constraints.

A stimulus decompressor can be either sequential, such as Linear-Feedback Shift
Register (LFSR), or combinational, such as fan-out and XOR-based decompres-
sors [5]. An LFSR randomly generates the test pattern. Fan-out decompressors intro-
duce correlation in the form of repeated bits within a slice fragment, whereas XOR-
based decompressors introduce linear correlation among the bits delivered into scan
cells. As shown in Fig.6.4a, any 0—1 conflict within a slice fragment results in an
unencodable pattern for the fan-out decompressor, as such a pattern fails to com-
ply with the expected correlation. For XOR-based decompressors, the encodability
of patterns is determined via solving a system of linear equations. Figure 6.4b pro-
vides an example of an unencodable pattern by highlighting the bits that result in
unsolvable linear equations. In this figure, x’s denote don’t-care bits.

Typical test application procedures include a second phase, where unencodable
patterns are applied serially by bypassing the decompressor [6]. As the second phase
delivers no compression, every pattern applied in this phase degrades the overall
compression level attained. Targeting an aggressive compression level, by increasing
the number of internal scan chains, can reduce the test data volume per pattern in the
first phase due to reduced scan depth. Yet, having to apply more patterns in the serial
phase may offset the compression benefits of the first phase. A predictive analysis can
help the designer in selecting the best possible configuration for a given compression
technique at an early design stage, in order to find the balance between the test cost
and the test quality.
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Test Response Compaction

While a stimulus decompressor reduces the test data volume for the input stimuli,
output responses can be similarly compressed by a response compactor. However,
a response compactor may degrade observability. Some information is lost due to
compaction, which can affect the observability and the fault coverage of the circuit.
Some fault effects that were observed in the original circuit maybe masked due to
output response compaction. The main underlying reasons are the unknown values
and the fault aliasing. Unknown values can mask the fault effects captured in scan
cells. Fault aliasing refers to the situation where multiple fault effects mask each other.
An example of fault aliasing is illustrated in Fig. 6.5, where fault effects of f 1 cancel
each other upon getting compacted. Unknown values can be captured in the scan cells
due to many reasons such as uninitialized memory and bus contentions. Unknown
value, denoted by x, can mask the fault effects in the presence of response compactor.
InFig.6.5, f2isundetected, as its effect goes through the compactor along with an x.
Although fault aliasing is a problem, the biggest concern is the unknown values due
to their severe impact. Unknown values can be either static or dynamic [7, 8]. Static
unknown values are discovered in the design time at the outputs of the un-modeled
blocks (memory (RAM)) or bus contentions. Dynamic unknown values appear later
after the design stage due to timing problems, the impact of operating parameters
(voltage, temperature), and the defects caused during manufacturing.
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Sequential compaction circuitries [9, 10], such as multiple input signature regis-
ters (MISRs), can be utilized for compressing the scan responses into a signature that
is observed at the end of the test application process. The output vectors of the internal
scan chains are compressed during different clock cycles to produce a signature that
represents the output response of a certain pattern. A typical MISR consists of flip
flops and XOR gates connected together into a register. MISR not only compresses
a long scan-out sequence in the absence of unknown values, but also minimizes the
aliasing impact on the fault coverage. However, one or more unknown values will
corrupt the corresponding signature. Also, it is difficult to directly identify the loca-
tion of the scan cell that captured a fault effect from the obtained signature of the
MISR.

Combinational compaction solutions [11, 12], mostly XOR-based, are also uti-
lized for response compaction. Every slice in the scan architecture is compacted
independently. Unknown values may mask some of the captured bits in the same
clock cycle, depending on the tolerance of a space compactor to unknown values per
shift. However, the space compactor is susceptible to the occurrence of aliasing and
offers reduced compaction levels than the time compactor.

Regardless of the compaction methods, unknown values can be handled in a vari-
ety of ways to achieve high fault coverage. Multiple XOR trees can be constructed
that propagate the unknown values to the corresponding compressed response out-
puts, while observing scan cells that are connected to different compressed response
outputs. Furthermore, DFT hardware can block unknown values before reaching the
scan cells [13]. It is also possible to mask the unknown values before reaching the
compactor [3, 14]. The response compactor can also be constructed to adapt to the
varying density of unknown values in the response patterns. For XOR-based com-
pactors for instance, the fan-out of scan chains to XOR trees within the compactor
can be adjusted per pattern/region/slice to minimize the corruption impact of the
unknown values in a cost-effective way [15, 16].

6.2.2 Boundary Scan

Boundary scan (also known as JTAG boundary scan) is a DFT technique, which is
used to test interconnects, clusters of logic, and memory, while selectively overriding
the functionality of each block of the logic circuits. The specification of the boundary
scan was standardized as the IEEE standard 1149.1-1990 [17]. A boundary scan cell
is connected to each input/output pin of a block. All the boundary scan cells in a
block are linked serially to form a long shift register. The input of the shift register is
called Test Data Input (TDI), while the output of the shift register is called Test Data
Output (TDO). TDI and TDO represent the input and the output of a JTAG interface,
respectively. A finite state machine, called Test Access Port (TAP) controller, controls
all the possible boundary scan functions based on three signals, which are the external
clock (TCK) signal, a Test Mode Select (TMS) signal, and an optional Test Reset
(TRST) signal. The boundary scan architecture is illustrated in Fig. 6.6.
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Fig. 6.6 Boundary scan architecture

The main advantage of the boundary scan architecture is the overall reduction
in the number of input/output pins of the chip, as the external tester supports a
limited number of tester channels. A serial two-pin interface helps access all the
internal block inputs/outputs. In the normal mode, the input pins can directly feed
the primary inputs of the logical block, while the primary output can be observed
through the associated output pin. However, in the test mode, there is no longer a
direct connection between the input/output pins of the chip and primary input/output
of the logical block. The input/output pins of the chip are reused in the test mode as
scan pins, which is a typical cost-effective implementation. During the shift mode,
the test vectors can be serially shifted into the shift register through TDI, and response
can be observed through the TDO. During the capture mode, the boundary scan cells
drive the chip input pins and capture the chip output pins.

6.3 Scan-Based Side-Channel Attack

The scan design is an effective DfT technique that enhances the testability by pro-
viding full controllability and observability of the storage elements (flip flops) of the
chip. However, the security may be compromised upon misuse of such capabilities.
Scan design exposes the internal elements of the chip. Although some applications
disable the scan chains after the manufacturing test by blowing fuses for example,
other applications necessitate in-field testing to provide debug capabilities. For cryp-
tochips, the scan design can be misused to leak the secret key of the chip. If the
key register is part of the scan chain, the attacker can retrieve the key by simply
shifting out the content of the scan chain. A good design practice is to exclude the
key register from the scan chain. However, this alone does not guarantee a secure
test environment. Scan-based side-channel attacks have been shown to leak secret
information of the chip.
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6.3.1 Attack Principle

Scan design can be exploited to circumvent the security of the chip. Some of the
scan cells include secret information of the chip that executes encryption algorithms.
The attacker targets the scan cells that store computation results of intermediate
operations of the encryption algorithm. A scan-based side-channel attack utilizes
the direct access to the primary inputs/outputs, and the scan-in/scan-out pins of
the chip to recover the secret key; It uses the load and unload capabilities of the
scan infrastructure. This attack applies differential analysis on different encryption
algorithms such as Data encryption Standard (DES) [18] and Advanced Encryption
Standard (AES) [19]. We will focus on the AES encryption algorithm throughout this
chapter. However, our analysis can be extended to different encryption algorithms.

6.3.2 Advanced Encryption Standard (AES)

AES [20] is a well-known block cipher that supports block lengths of 128-bits and key
lengths of 128, 192, and 256 bits. The AES algorithm consists of identical operations,
i.e., rounds. The number of rounds depends on the key length; 10 rounds for 128-bit
key, 12 rounds for 192-bit key and 14 rounds for 256-bit key. The AES encrypts the
input, referred to as a plaintext, to the output, referred to as ciphertext after the desired
number of rounds. The 128-bit input plaintext is represented as 4 x 4 matrix of input
bytes, where each column is a separate word. Each round comprises the following
four basic transformations, except for the last round, which omits MixColumns

e SubBytes (SB) is a nonlinear substitution operation. Each input byte to the
SubBytes operation is replaced by another byte using one-byte substitution table,
referred as S-box. This replacement is a one-to-one mapping.

e ShiftRows (SR) is the byte-wise permutation. The second, the third, and the
fourth row of the matrix is cyclically shifted by one, two, and three positions to
the left, respectively.

e MixColumns (MC) is a four-byte mixing operation. A linear transformation is
applied to every column in the matrix, where each input byte in a column affects
all the four bytes in the same column.

e AddRoundKeys (ARK) is XORing the state with the round key. Each output
byte of the MixColumns operation is XORed with the corresponding key byte.

Figure 6.7 shows the structure of first round of AES, which contains an extra key
XORing operation at the beginning. The intermediate results of every round is stored
in the round registers.
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Fig. 6.7 First round of AES: p; is the plaintext byte, k; is the initial key byte, ¢; is the SR output
byte, k; is the round key byte, and r; is the round output byte

6.3.2.1 Differential Properties of AES [21]

In AES S-box, for an input X and the input difference «, the output difference g is
represented as
B=SBX)®SB(X D) 6.1)

For a given («, B) pair, there could be no, two, or four solutions for X [22]. In the
case of two solutions, they will be §, and § & «, where § is any nonzero solution for
equation (6.1). In case of four solutions, they will be 8, § ® «, 0 and «.

Lemma 1 For a given input X and two nonzero differences o; and o, the output
differences B; and B; are

Bi =SB(X)® SB(X ® ;)

6.2)
Bi=SB(X®a,)®SBXDa, da)

For any value X, B; and B; are distinct.

Proof We prove this by contradiction. Let as assume that there is a value x of X for
which 8; = ;. Let’s define y = x ® «;. Then, we have two equations

Bi = SB(x) ® SB(x @& ;)

(6.3)

Bj =SB(y) ® SB(y ® o),
where f; = B; implies that x and y are the two solutions of Eq. (6.1) where 8 = §; =
Bjand o = o;. Then either y = x ® «;, or x and y must be zero and «; or vice versa.
In either case, a; = o; contradicting our assumption. Therefore, 8; and 8; must be
distinct. 0
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6.3.3 Traditional Scan Attack

The traditional scan-based side-channel attack misuses the test infrastructure of the
cipher [18, 19, 23-26]. As the round register is part of the scan chains, by switching
from the normal mode to the test mode to observe the round register, the secret key
can be recovered even if it is not included in the scan chain.

6.3.3.1 Attack Assumptions

The traditional scan attack works under the following assumptions:

e The details of the encryption algorithm running inside the cryptochip is known to
the attacker.

e JTAG port, and, thus, the scan chains and the test capabilities, can be accessed by
the attacker.

e The execution time for one round of the cipher is known to the attacker. Thus, the
attacker can execute only one round operation and switch to the test mode.

e The registers for storing the round register key are not included in the scan chains.

6.3.3.2 Scan Attack on Basic Scan Architecture

With the chip in hand, the attacker can run the cipher in the functional mode with the
desired plaintext for a few cycles, and then by switching to the test mode, he/she can
shift out the content of the internal registers. These registers of the cryptochip hold
the intermediate results of the cipher execution. Thus, the attacker can access the
intermediate results of the cipher, and perform differential analysis on these results
to get the secret key.

In traditional scan attacks on AES [19], the attacker first determines the scan
chain architecture. The attacker identifies which bits belong to the round register as
follows:

1. Apply a plaintext from the primary inputs in the functional mode, run the cipher
for only one round in normal mode, then switch to test mode and shift out the
contents of the scan chain. Let us call this output response f;.

2. Repeat Step 1 for another plaintext with one-bit input difference, resulting in an
output response f>.

3. Compute the output difference of the previous two plaintexts (f1XOR f>). The
flip flops with a value of one correspond to the flip flops in the round register.

4. Repeat Steps 2 and 3 until all the flip flops of the round register are identified.

The previous steps of the attack identify each word of the round register; applying
an input difference to a word affects only one word as per MixColumns properties.

The second step of the attack is to recover the round key. The attacker utilizes the
basic differential property of AES, wherein among all possible S-box input pairs with
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Table 6.1 The S-box input pair for each unique hamming distance
Unique HD 9 12 23 24
S-box input pair | (226, 227) (242, 243) (122, 123) (130, 131)

one-bit difference in the least significant bit of a byte, only four pairs will produce
an output difference of the round register with a unique hamming distance. Unique
hamming distance refers to those hamming distances which correspond to a unique
S-box input pair. These four unique hamming distances are 9, 12, 23, and 24.

Thus, to identify the round key byte, the attacker applies all possible 128 plaintext
pairs with one-bit difference in the least significant bit of a byte, and observes the
hamming distance in the captured round output. If a unique hamming distance is
observed, he/she determines the corresponding unique S-box input pair. Table 6.1
shows the S-box input pair for each unique hamming distance, which is referred to
as HD.

Thus, the corresponding two possible values of the key byte can be determined
by just XORing the plaintext byte with each input of the S-box input pair. The
same technique is applied across all the bytes to determine the final key. For each
byte, attacker will obtain a pair of possible key byte values. Therefore, for all the
sixteen bytes, the attacker will obtain 2'® possible 128-bit keys. In the worst case, the
attacker has to apply 128 - 16 = 2048 plaintexts, while on average, 544 plaintexts
are sufficient to retrieve the 128-bit AES key.

6.3.3.3 Scan Attack with Advanced DfT

Improved scan attacks have been proposed to adapt to the advanced DfT techniques
such as partial scan [23], X-masking [24], and X-tolerant architecture [25, 26]. In
the presence of test compression, the attacker may no longer able to observe the key-
related flip flops (kffs) and compute the hamming distance of the output difference.
Key-related flip flops are the flip flops of the round register that can be used to derive
the secret key. Due to the presence of MixColumns operation, any byte of the input
will affect only four bytes of the output. Thus, there are 32 kffs in AES. The effect
of the response compactor on the scan attack depends on the distribution of the kffs
in the scan architecture.

Let us consider a scan architecture with an XOR-compactor, in which each slice is
compacted onto one channel. If each slice contains one kff as illustrated in Fig. 6.8a,
the traditional scan attack can still reveal the secret key. When applying two plaintexts
that differ in one byte, non-key-related flip flops will remain constant. Thus, the parity
bit of each slice will be one if the value of the corresponding kff in the generated
two responses is different and zero otherwise. On the other hand, when the kffs are
distributed over at most 31 slices, at least one slice contains two kffs as shown in
Fig. 6.8b. Thus, the hamming distance of the 32 kffs cannot be directly obtained by
observing the response compactor output. Let us consider the worst case where all
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Fig. 6.8 Scan architecture with a one kff in each slice, b with more than one kff in some slices

the kffs are in the same slice. The modified scan attack is summarized in Algorithm 1
[25, 26].

Algorithm 1: Secret key recovery in the presence of XOR-compactor

e For each pair of plaintexts a; and a; that differ in the least significant bit (a; = a> @ 1)

— Compute the output difference of the compacted responses of the two plaintexts
(R and Rp).

— If R; & Ry = 1 (0odd), consider the hamming distance 9 and 23. Otherwise, consider the
hamming distance 12 and 24.

— Compute the possible key byte using the corresponding S-box inputs and the plaintexts.
(similar to the traditional attack).

— Discard all the keys except the ones with the maximum occurrence k; (11 keys).

e Repeat the previous steps for each pair of plaintexts that differ in the second least
significant bit (a; = a> @ 2) and compute k; (13 keys).
e Take the intersection of the two key sets to be the correct key (k1 N k).

Thus, in the presence of an output response compactor, the modified scan attack
is always able to derive the whole key with a complexity of 16 * (2 plaintexts) =
212 = 4096 plaintexts and scan-out operations.

6.3.4 Test-Mode-Only Scan Attack

In order to retrieve the intermediate results of the cipher, the traditional scan attack
has to rely on the condition that the intermediate results in the round register should be
preserved upon a switch from the normal mode to the test mode. This condition can be
easily eliminated by an automatic reset operation (mode-reset countermeasure) [27]
upon a switch between the normal mode and the test mode. Therefore, all the existing
scan attacks that rely on mode switching will fail in the presence of the reset operation.
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Fig. 6.9 Test-Mode-Only attack operations

A Test-Mode-Only scan attack [21, 28] has been proposed to circumvent the
mode-reset countermeasure by staying in the test mode throughout the attack. In test
mode, one can apply the plaintext or the intermediate input in the form of a test vector
to the round operation of the target cipher and capture the corresponding response.
This response is the round output corresponding to the applied test vector input. The
test vectors are shifted in and the responses are shifted out through the scan input(S7)
and the scan output (SO) pins respectively; load and unload capabilities of the scan
infrastructure all within the test mode can be utilized for this purpose (Fig. 6.9).

6.3.4.1 Attack Assumptions

In addition to the assumptions of the traditional scan attack, the following are the
assumptions in the Test-Mode-Only attack:

e In test mode, the user key is being used which is either hardcoded in the chip or
stored in the memory.

e The global reset operation brings the chip to the first round by reseting the round
counter.

6.3.4.2 Test-Mode-Only Attack on Basic Scan Architecture

An attacker has to mitigate the following challenges while developing a Test-Mode-
Only attack.

1. Presence of boundary scan cells: In test mode, boundary scan cells drive the
primary inputs. They block the direct access to the primary inputs through the
chip input pins. Therefore, the attacker has only the S/ pins to feed the cipher
round.
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2. Scan cell to round register flip flop mapping: The attacker does not know the
mapping between the scan cells and the round register flip flops, as the physical
placement tools decide how these flip flops are connected. As shown in [18], the
flip flops are almost randomly connected by the physical placement tools. With
an m-bit round register, there could be m! possible mappings. For AES where the
round register is 128 bits wide, the attacker has to try 128! possible mappings.
We refer to the 128 scan cells that are associated with the round register as key
cells.

The attacker utilizes the SI and SO pins to launch the attack. The attack is per-
formed in four steps as the following:

Identifying the Key Cells

If an input difference in the AES round is applied, only the key cells will be affected,
while the other scan cells preserve their content. Thus, the key cells can be distin-
guished from the other scan cells. Suppose we have a scan chain of n scan cells.
We apply two test vectors V and V; with one-bit difference at the i-th scan cell, and
capture the responses. If we get a hamming distance greater than one in the difference
corresponding to the output responses, then the scan cell i is a key cell. We vary i
from O to n — 1, and determine all the 128 key cells.

Partitioning the Key Cells into AES Words

The second step of the attack relies on the fact that for AES, if an input difference
is applied to a word, the bit-flips in the output difference will confine within only
one word. It may be noted that in AES, the bytes in an input word and those in
the corresponding output word are different. The output word bytes are those which
get affected by the applied difference in the input word. In order to group the key
cells into words, we apply two pairs of test vectors (V, V;) and (V, V;), where the
one-bit difference is in the i-th and the j-th bit or key cell, respectively. If there is
any common bit-flip in D; and D;, then i and j correspond to the same word of the
round register. In that case all the bit-flips of D; and D; are in the same word. On
average, 5 such input pairs are sufficient to determine all the bits of a word.

Partitioning the Key Cells into the AES Bytes

Based on the Differential property of AES S-box in Sect.6.3.2.1, if we apply two
different S-box input pairs A and B with the same input difference «, the output
difference D4 and Dg should be different. Thus, we apply two pairs of test vectors,
(V,V;) and (V;,V;;) both with one-bit difference in the i-th bit, where V;; is generated
by flipping bits i and j in V. The output differences of the two pairs are different i
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and j belong to the same byte. We fix i and vary all the 31 possible choices of j (in a
word), and get the key cells corresponding to the byte of i. We repeat the procedure
for different values of i, and group the key flip flips into the four bytes of the word.
The order of the key cells is unknown to the attacker in the corresponding byte.
Therefore, the key recovery technique in [19] fails to retrieve the secret key.

Key Recovery Technique

The key recovery technique is based on a precomputed signature table. A signature
table is created by applying eight one-bit differences corresponding to the eight bit
positions of a S-box input byte. However, the differences are in the form (00000000,
00000001), i.e., an all-zero vector paired with a one-hot vector. There are eight such
one-bit differences based on the location of the 1. The eight hamming distances at the
one round output corresponding to the eight input differences are computed. These
eight hamming distances are unique for a key byte value. A signature table for all the
possible 256 values of the key byte is created. For each key byte value, each one of
the eight one-bit differences corresponding to eight key cells of a byte is applied and
the hamming distance of the output is computed. We compare the output hamming
distance with each row of the signature table. The correct key is the key associated
with the matching row. This attack requires only 9 test vectors to recover a key byte.

6.3.4.3 Test-Mode-Only Attack with Advanced DfT

In this section, we highlight the test mode-only-attack in the presence of the stimulus
decompressor [29] as an example of a Test-Mode-Only attack in the presence of
advanced DfT.

The stimulus decompressor imposes additional deliverability challenge on the
Test-Mode-Only scan attack. Unlike the traditional scan attack in which the attacker
applies the plaintext through the primary inputs in the normal mode, in the Test-Mode-
Only attack, S7 is the only input pin to load data, necessitating the data be loaded
through the decompressor. The stimulus decompressor expands compressed data into
bits delivered into scan cells, complicating the identification of the mapping between
the flip flops and the corresponding inputs to the AES round. Based on the Test-Mode-
Only attack on basic scan architecture, the attacker needs to apply independent bit-flip
to each key cell. However, the stimulus decompressor could unintentionally flip other
scan cells in the same slice which may lead to an erroneous result in the attack. This
is analogous to the test pattern encodablity problem explained in Sect. Test Stimulus
Compression, in which key cells in test patterns can be treated as care bits, while
non-key cells can be considered as don’t cares. Thus, the decompressor with higher
test pattern encodability leads to a scan attack that is more likely to be successful.

For the attack to be successful, the key cells of a word should be distributed such
that
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e One key byte of the word should be fully controllable, which can take any of the
28 possible values.

e Each one of the remaining three bytes, can take at least two values, while the other
bytes remain constant.

The following subsections describe the attack procedure.

Determining the Mapping with Multiple Correlated Key Cells

In AES, if one byte difference a is applied at the input of MixColumns operation,
the output difference spreads to four bytes, where the output bytes show difference
values of 2a, a, a, and 3a. The byte where the difference is applied will always
receive an output difference of 2a (we refer to this byte as the “2a byte”). Table 6.2
shows the four byte hamming distances in a sorted order; every column in this table
corresponds to one of 256 values of a.

The proposed attack relies on certain properties in this table; this means that
the scan attack should have the capability to apply all possible values of a, which
requires the identification of the controllable and the corresponding key value through
the existing Test-Mode-Only attack [21]. To be able to apply all possible values of
a, we need to apply all possible patterns V from the scan cells corresponding to the
2a byte, as the S-box output difference is given by a = SB(k) & SB(k & V), where
k is the key byte value.

Next, we target the other three bytes (a, a and 3a). In this attack, 2a byte captures
responses of the byte with one-bit difference; these are the first seven columns of
Table 6.2, for which Table 6.3 provides the actual difference values for the four bytes
(2a, a, a, 3a). The reason why we focus only on these seven columns of Table 6.2 is
(1) the bytes 2a, a and a all show a single bit-flip, (2) it is easier to distinguish byte
3a from other bytes by observing the bit-flip repetitions (e.g., the repetition of the
bit-flip in the fourth bit from the left in the top two rows of Table 6.3 hint that this bit
must belong to byte 3a). This way, all the bits of the 3a byte except for the leftmost
and the rightmost bits can be identified.

To identify the leftmost and the rightmost bits of the 3a byte, we choose two
values of a such that only one bit (leftmost or rightmost bit of the 3a byte) repeats.
To identify the leftmost bit of the 3a byte, for instance, we first apply the 2a value of
10000000 (fourth row of Table 6.3), followed up by the 2a value of 00010111. This

Table 6.2 Sorted Hamming distances corresponding to four bytes of a word, when one byte dif-
ference a is applied at the S-box output

2a 1 1 1 1 1 1 1 1 2 7 7 8
a 1 1 1 1 1 1 1 1 2 6 7 5

1 1 1 1 1 1 1 1 2 6 7 5
3a 2 2 2 2 2 2 2 4 2 3 2 3
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Table 6.3 Actual difference values for the four bytes corresponding to the first seven columns in
Table 6.2

2a a a 3a

00100000 00010000 00010000 00110000
00010000 00001000 00001000 00011000
00000100 00000010 00000010 00000110
10000000 01000000 01000000 11000000
00000010 00000001 00000001 00000011
01000000 00100000 00100000 01100000
00001000 00000100 00000100 00001100

would result in 11000000 followed by 10010001 in the 3a byte, creating a repetition
that can be used to identify the leftmost bit of the byte. The rightmost bit of the 3a
byte can be similarly identified.

Next, we target the two remaining bytes, a and a, and try to distinguish between
them. As shown in Table 6.3, the two bytes show identical behavior. As the 2a and
3a bytes have already been identified, any remaining bit-flips are known to belong
to one of these two bytes; the position of each of the remaining key bits can also
be discovered, but which one of the a byte they belong to remains ambiguous. For
instance, for 2a = 00100000 (first row), any observed bit-flip in the remaining two
bytes is known to correspond to the fourth bit position from the left; however, there
will be two such bit-flips, and which one of the two a bytes each bit belongs to will
not be known. This way, although the position of all the bits in the a bytes can be
identified, the bits of the two a bytes cannot be differentiated.

Recovering the Key

The key value for the 2a byte was already identified in the first step. Next, the byte
that was identified as the 3a is determined by applying any nonzero difference from
the corresponding scan cells of the byte and observe the output difference in the same
byte as in Sect.6.3.2.1.

For the remaining two bytes identified as the a bytes, the challenge is that the first
step was not able to accurately classify the 16 bits into these two bytes. Nonetheless,
by applying any nonzero difference as long as the difference is contained in one
of the bytes (second condition of the attack), observing the output difference in the
already identified bytes (2a and 3a bytes) will determine: (1) which of the a bytes
the difference was applied from based on the relationship between the content of the
already identified bytes (they can be either identical, or one can be thrice the other),
and (2) the actual value of the output difference. From the input and the output
differences, and the knowledge of which byte the difference was applied from, the
key value can be recovered for this byte. The same operation can be repeated for the
other a byte to recover its key.
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For the first step of the attack 32 bits are required to identify the 2a byte. To identify
the mapping of the remaining three bytes 28 test vectors are applied. Therefore, the
time complexity of the first step of the attack is 2%, and 256 + 32 = 288 test vectors
are required. To recover the key byte of the rest of the three key bytes, 3 pairs of test
vectors are required. Altogether, we need (288 + 6) - 4 = 1176 test vectors. In the
second part of the attack we know the circular order of the four bytes. Therefore, we
have four possible permutations of the four bytes. The search space of the key word
is 23 . 4 = 2°. The search space of the entire key is given by (2°)* - 4! = 2243 which
is also the time complexity of the attack.

6.4 Summary

The interdependence between testability and security is receiving a lot of attention.
While the manufacturing test necessitates deep access into the IC to enhance its
testability, this can inadvertently threaten the security of the IC in security critical
applications. On the other hand, although black box testing ensures security, it fails
to deliver a high-quality test.

We describe various DfT techniques that address the test challenges. These tech-
niques reduce the tester-induced costs. Then, we show the security vulnerability
of scan-based DfT techniques. We review a few scan attacks that target the basic
scan architecture as well as the compression-based scan architecture. We analyze the
limitations of the proposed attacks, hinting at ways to design testable yet secure DfT.
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Chapter 7
Manufacturing Testing and Security
Countermeasures

Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre
and Paul-Henri Pugliesi-Conti

7.1 Introduction

As described in the previous chapter, manufacturing test is the only process able to
ensure quality and reliability of manufactured integrated circuits. The fastest and best
cost-effective solution for digital testing is based on the use of scan chains. Unfor-
tunately, this solution might allow a malicious user to exploit this test infrastruc-
ture and retrieve secret information stored within the integrated circuit (see previous
chapter). The antagonism between scan-based Design-for-Testability (DfT) and secu-
rity comes from their competing goals: improving controllability and observability
of internal states for increased testability, and preventing control or observation of
these internal states for increased security.

In this chapter, we describe solutions from the literature to counteract pos-
sible attacks targeting malicious usage of scan chains and, more generally, test
infrastructures. Moreover, we present industrial practices and potential downsides
when implementing secure test infrastructures. Because increased security should
not be achieved at the detriment of product quality, we discuss potential testability
loss when secure-test approaches impacts the test procedure and expected feedback
compared to common practices.

Section 7.2 classifies countermeasures to test-based attacks according to the strat-
egy, i.e., using a secure control/usage of the embedded test infrastructure, deleting
the access to the test infrastructure by shifting test resources to the device under test
(DUT), or deleting the test infrastructure itself by changing the test approach from
structural to functional testing. According to this classification, the following sec-
tions provide deeper analysis and implementation details of major countermeasures

G. Di Natale (X)) - M.-L. Flottes - B. Rouzeyre
LIRMM (Université Montpellier [I/CNRS UMR 5506), Montpellier, France
e-mail: giorgio.dinatale @lirmm.fr

P.-H. Pugliesi-Conti
NXP Semiconductors Caen, Caen, France

© Springer International Publishing Switzerland 2017 127
N. Sklavos et al. (eds.), Hardware Security and Trust,
DOI 10.1007/978-3-319-44318-8_7



128 G. Di Natale et al.

proposed in the literature. In particular, Sect. 7.3 analyzes built-in test solutions where
the totality or only a part of the test resources as test pattern generation and/or test
response analysis are embedded in the DUT instead of being outsourced from/to an
external Automatic test equipment. Section 7.4 reports the major contributions in the
field of secure test access mechanisms in order to provide a comprehensive view
of all solutions. Section 7.5 discusses security and applicability of the DfT of some
selected solutions from an industrial point of view. Eventually, Sect.7.6 concludes
this chapter.

7.2 Countermeasures to Scan-Based Attacks

Several countermeasures to scan-based attacks have been proposed in the literature
and in the industry. We classify them in the following categories:

1. Functional Test. In this solution, no test infrastructure are embedded in the circuit
and its test is guarantee by applying functional test pattern through the primary
inputs of the circuit. Functional testing approaches are based on a functional model
of the system [1]; they attempt to reduce the complexity of the test generation prob-
lem of structural approaches by using higher level of abstraction. However, model-
ing complex systems at high-level remains difficult. (Pseudo-)Exhaustive testing,
that assumes that any permanent fault is possible (implicit fault model) suits well
with regular structures but not with arbitrary circuits, which requires either long
exhaustive and pseudo-exhaustive sequences or pre-partitioning. Explicit func-
tional fault models are likely to produce prohibitively large set of faults. Implicit
functional fault models have been however successfully used in testing RAMs or
microprocessors where test patterns can be developed as a sequence of instruc-
tions. Nevertheless, implicit fault models cannot be exploited for the generation
of test patterns for generic circuits. Lastly, functional test effectiveness is difficult
to evaluate.

2. Physically disconnecting the test infrastructures. A common technique (espe-

cially adopted by smart card providers) is to disable or disconnect the test circuitry
after manufacturing test by blowing fuses located at the ends of the scan chains
[2], as shown in Fig.7.1.
The main advantage is that the circuit can be fully tested at manufacturing time,
while the test mode cannot be accessed anymore after it. However, in-field main-
tenance and debug are compromise afterward. Moreover, invasive attacks based
on microprobing can re-build the test connection.

3. Built-In Self-Test. Within this solution, the circuit is self-tested thanks to an extra
test pattern generator (TPG) and an output response analyzer (ORA) embedded
with the DUT. Scan chains still exist in the design for sequential circuits, but Scan-
In and Scan-Out I/Os are not accessible from the DUT interface thus preventing
control and observation of the DUT internal states through the test infrastructure.
This solution can achieve high level of testability with no visible scan chain and
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negligible area overhead but it must be set and evaluated on a case-by-case basis.
On the other hand, BIST does not allow diagnosing possible fault location within
the circuit. More details about this solution are provided in Sect.3.1.

4. On-Chip Test Comparison. This approach is based on the concept of withholding
information. Scan-based attacks are based on the observation of the scan chain
content, which is shifted-out after executing a part of the encryption algorithm,
i.e., when the scan chains contains information that can be exploited to retrieve
the secret key. The idea is thus to compare test responses within the chip, so that
no secret information can be observed through scan-out operations. Both input
vectors and expected responses are scanned into the circuit and the comparison
between expected and actual responses is done vector-wise, so that it does not
provide information on the value of each individual scan bit for security purposes.
More details about this solution are provided in Sect.3.2.

5. Secure Test Access Mechanism. Many related approaches have been explored.
They consider either the use of standard test interface with Scan-In, Scan-Out, and
Scan-Enable signals or with nonstandard scan designs. In the first case, the test
interface is enabled iff an initialization or authentication mechanism is performed
earlier. After the execution of a secure protocol, the access to the scan chain is
granted. In the second case, nonstandard test interfaces are considered, from which
it is not possible to extract useful information and recover the encryption. More
details about these solutions are provided in Sect.7.4.

7.3 Built-In Self-Test

One approach for providing test solutions at different stages of an IC life cycle
consists in including built-in self-test (BIST) resources into the DUT. Classically,
storage elements are organized into scan chains and additional hardware is used for
feeding the scan chains with pseudorandom test data, and sinking the test responses
before analysis of the compressed signature [3]. Therefore, BIST does not provide
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controllability and observability of the internal storage elements from the circuit
interface. However, BIST must be implemented at low cost and its efficiency must
be demonstrated in terms of fault coverage and test duration.

In the next subsections, we propose dedicated built-in self-test solutions for cryp-
tographic cores, as well as partial-BIST solutions, where the test generation is per-
formed by the external tester while the response analysis is performed on-chip.

7.3.1 BISTed Cryptographic Cores

Random pattern testability of crypto-cores has been discussed in [4]. Authors show
how random data and possible errors can be easily propagated through typical oper-
ations involved in encryption algorithms.

Security provided by block cipher algorithms such as DES and AES relies on two
main properties named diffusion and confusion [5, 6]. Confusion refers to making the
relationship between the key and the ciphertext as complex and involved as possible.
Diffusion refers to the property that redundancy in the statistics of the plaintext is
dissipated in the statistics of the ciphertext. For diffusion to occur, a change in a
single bit of the plaintext should result in changing the value of many ciphertext
bits. These properties are supported by the Feistel network [7] for the DES and by
the substitution—permutation network for the AES. AES and DES also have two
common characteristics. First, they are iterative algorithms. DES is composed of 16
rounds while AES is made of 10 rounds. All rounds are (quasi) identical, i.e., the result
of around is used as the input of the next round. Second, since encryption/decryption
are bijective operations for a given key, each round is a bijective operation too (on a
set of 2% elements for DES on a set of 2!2® elements for AES).

The diffusion property is a very interesting feature with regard to the test of
their hardware implementation. It implies that every input bit of the round module
influences many output bits, i.e., every input line of a round is in the logic cone of
many output bits. In other words, an error caused by a fault in the body of the round is
very likely to propagate to the output. Thus, the circuit is very observable. Moreover,
since rounds are bijective, the input logic cone of every output contains many inputs.
In other words, each fault is highly controllable. Therefore, these circuits are highly
testable by nature whatever the implementations.

Example of BIST implementations are provided in [8, 9]. Figure 7.2 (except for
yellow area) presents a generic implementation of either AES [10] or DES [11] sym-
metric cryptographic algorithms. The hardware implementation is mainly composed
of a key-generation module and a Round module. In mission mode, after an initial
operation (XOR between Key and Plaintext for AES, and permutation of the plain-
text for DES), the plaintext block is looped around the Round module several times
(10 for AES, 16 for DES) before the final cipher is loaded into the output register,
possibly after a final operation like the final permutation in DES. The yellow area
in Fig.7.2 depicts the required modifications to support the built-in self-test of the
module itself.
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During the BIST mode, an initial message M is encrypted into M, = Round(M;)
and the process is repeated n times (M;1; = Round(M;), i €{1...n}). Finally, the
output data M, 4 is stored into the output register for comparison with the expected
golden value. Concerning round key generation, either the keys are precomputed and
stored in the circuit or the key generation module calculates the sequence of keys.
For the latter case, AES is modified in such a way that the tenth round key is used as
the primary key for the next round key generation. In this way, during self-test, the
key-generation module receives as many different stimuli as rounds. For DES, this
is not necessary because the key-generation module does not contain any logic. The
round keys are simply formed of subsets of bits of the initial key.

It has been shown that for DES, with several keys and initial input messages,
after 25 encryptions (i.e., 400 clock cycles), the whole circuit (round module and
control module) has always been fully tested [8]. In the same way, for AES the
experiments have been repeated with different plaintexts and secret keys as starting
points, obtaining test sequences ranging from 2100 to 2500 patterns [9].

Following the same principle, in [12] the authors propose a solution for the BIST
of public-key cryptocores. As the modular multiplication is at the heart of many
public-key algorithms, they considered the Elliptic Curve Cryptography (ECC) as
the appropriate choice for the public-key cryptosystem. The key idea is to configure
the multiplier such that it concurrently acts as both a test pattern generator and
signature analyzer. As in the previous solution, the outputs are fed back to the inputs
providing the test patterns. Concurrently, the multiplier compacts its outputs to the
final signature. Experimental results showed that very high fault coverage can be
obtained with a very limited number of clock cycles.

7.3.2 Built-In Test Comparison

Secure on-chip test comparison has been proposed as a solution to eliminate the need
of disconnecting the scan chains [13—15]. This approach is based on the concept of
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withholding information. This approach is not, strictly speaking, a BIST solution
since test patterns are not internally generated. The test procedure consists in pro-
viding both test vectors and expected test responses to the DUT and in performing
the comparison inside the chip.

Methods for on-chip comparison of actual and expected test responses have
already been explored in other contexts [16, 17], mainly to reduce the test data
volume to transfer from DUTs to test equipment. However, none of these solutions
achieves the target security requirements since individual bit values stored in the
scan chains can still be observed or deducted from observed data thanks to the test
circuitry.

In the standard scan-based test mechanism, Flip-Flops (FFs) are replaced by scan
flip-flops (SFF) and are connected so that they behave as a shift register in test mode.
The output of one SFF is connected to the input of next SFF. The input of the first
FF in the chain is directly connected to an input pin (Scan-In) while the output of
the last FF is directly connected to an output pin (Scan-Out). An additional signal
(Scan-Enable) selects whether SFFs have to behave normally or as a shift register.
The test procedure is composed of three steps: first, test patterns are shifted-in via
the scan chain (i.e., by keeping Scan-Enable = 1) for #SFF clock cycles (where #SFF
is the number of SFFs in the chain). Second, one or two functional clocks (i.e., Scan-
Enable = 0) are applied to capture the circuit’s response. Usually, one clock cycle
is used for static faults, while 2 (or even more) clock cycles are used for dynamic
faults. Finally, the content of SFFs is shifted out for #SFF clock cycles (again, with
Scan-Enable = 1) to allow the ATE to compare the obtained values with respect to
the expected ones.

The principle of the approach proposed in this solution is to compare the actual
responses with the expected ones within the chip boundaries instead of scanning-out
the actual responses and comparing it within the ATE. In order to guarantee that
secure data cannot leak outside the chip, the output of the comparison is not bitwise
delivered to the ATE, but only after applying and comparing the whole test vector
(i.e., after comparing the value of each SFF). Therefore, a potential attacker can no
longer observe the FFs content but simply pass/fail information for the whole test
vector.

The general scheme of the proposed secure comparator is shown in Fig.7.3.
Instead of directly shifting DUT’s responses (Scan-Out) out of the chip, the ATE
also provides the expected responses using the Sexp pin and the actual test response
is on-chip compared with the expected one. After having compared all #SFF bits
captured in the scan chain, the signal TestRes is asserted if the whole test response
matches the one with expected values. Indeed, if the result of the comparison was
accessible at each clock cycle instead of each test vector, an attacker could eas-
ily observe the scan chain content by shifting in “000...000” on the Sexp pin.
Each bit-comparison would then validate that either the actual bit was ‘0’ when
TestRes = 1 and vice-versa.

The Secure Comparator is composed of three parts: the Sticky Comparator respon-
sible for the comparison between the bitstream coming from the scan chains and the
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Fig. 7.3 Secure comparator

expected values; the Output Enabler triggering the final comparison result; the /O
Buffers allow keeping the test pin count as in a classic scan-based approach.

The sticky comparator performs a bitwise serial comparison between the bitstream
coming from S, and the one from Scx,. A FF (Flag in the figure) is initially reset and
then it rises to ‘1’ whenever one comparison fails. The reset of the flag is performed
when the scan operation is not enabled (i.e., S¢;, = ‘0’). This means then when the
circuit goes from capture to test mode, the flag becomes meaningful and its value
designates whether the two bitstream are equal or not.

The Output Enabler permits the observation of the TestRes only after comparing
the whole test vector. It is composed of a down counter with parallel load that loads
the value #SFF whenever the scan operation is not enabled. Therefore, when the
circuit goes to test mode, it start counting and after #SFF clock cycles its terminal
count allows outputting the TestRes signal through the AND gate.

The I/O Buffers allow sharing the same pin for Sin and TestRes. The proposed
solution requires, besides Scan-In and Scan-Enable signals (Sin and Sen), the Sexp
signal, which replaces the standard Scan-Out signal, and the additional TestRes.
However, Sin and TestRes are not used at the same time, therefore it is possible to
use bi-directional buffers shared between them, as shown in Fig. 7.3. During the shift
operation the pin can be set as input and used by the tester to feed the circuit with
the input vectors, whereas during the capture operation the pin is activated as output
to deliver the previous comparison result.

The secure comparator does not impact the fault coverage. In fact, each test
response is compared to the expected one as in a classical ATE-based test scheme.
Therefore, the achievable fault coverage is not altered. Test time is not increased
either, since the expected responses are scanned-in at the same time as the next input
vector is scanned-in.

Therefore, the proposed secure comparator allows similar diagnostic resolution
as it can be obtained with the classical scan scheme. The only difference resides
in the matching procedure between the obtained responses and those stored in the



134 G. Di Natale et al.

fault dictionary. In the classic scheme this is done off-line (i.e., after collecting all
responses from the circuit), while in this case all potential faulty responses must
uploaded on the DUT for comparison with the actual faulty response, thus requiring
additional time. The diagnosis is however limited to only modeled faults [13].

7.4 Secure Test Access Mechanism

Solutions presented so far make the assumption that the classical scan chain approach
is either not used (as in the functional test or BIST solutions) or partially used (as
in the on-chip comparison approach). In this section, we analyze all solutions that
consider the use of standard scan chains, with Scan-In, Scan-Out, and Scan-Enable
signals.

The idea in all the following solutions is that the circuit can be either tested or
used in normal mode (test mode vs. mission mode). In normal mode, the scan path is
not supposed to be used for shifting out the device internal state, while in test mode
the circuit can switch from scan mode (i.e., shift mode asserted by the Scan-Enable
signal) to capture mode and vice-versa.

The issues that are solved in all proposed methods are the following:

e How to start the test mode. The test mode can be activated through an addi-

tional signal (besides Scan-Enable), or by using an authentication procedure.
A password-based authentication method is proposed in [18]. In order to pro-
ceed with the standard test procedure, the user has to pass through an initial
authentication phase with several steps. In each step, the user has to insert the
test patterns, which contain a secret key that is compared to a golden one. Only if
the user correctly guesses the different keys in all steps, the test session starts (and
the scan output is observable). In [19], the scan chain contains k spare flip-flops.
When the user enters a test pattern, the values in the k flip-flops are compared
with a hardwired password. Only if all the bits match, then the response vector
can be observed. Similar solutions (also applied to test standards) are described in
[20, 21]. Moreover, in [22, 23], the authentication procedure can be restricted to
some of the cores in the circuit.
In [24] the authors use a finite state machine that observes the Scan-Enable signal.
Whenever the Scan-Enable is asserted (i.e., a scan shift operation is started), the
circuit goes automatically in test mode. The normal mode can be restored only by
resetting the circuit.

e What to do when switching from normal to test mode. As shown in [25],
by resetting all FFs when switching from normal mode to test mode, no secret
information can leak. In [24] the authors propose to flush the content of the scan
chain (by ANDing the Scan-Out with a control signal set to 0) for a number of
clock cycles equal to the number of flip flops in the scan chain, during the first
shift operation performed after switching from normal to test mode. The flushing
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operation guarantees that any secret will be kept inside the circuit, and any further
scan operation will not reveal then any confidential information.

e What to do in normal mode. When in normal mode, no shift operations on the
scan chain have to be tolerated. Therefore, several solutions have been proposed
to monitor the status of the scan chain in order to be sure that unauthorized shift
operations are not performed, or to scramble the content and the order of the FFs so
that, even in case of observation of the scan chain, no useful data can be obtained.
The hypothesis in all these solutions is that the attacker manages to bypass the
mechanism that allows switching from normal mode to test mode, thus control-
ling the shift operations.

Scrambling countermeasures ensure the confusion of the stream shifted out from
the scan outputs for unauthorized testers [26, 27]. In [28] the authors propose an
obfuscation technique based on the implementation of nonlinear functions between
two FFs in the scan chain, so that to alter the content of the scanned bitstream if a
shift-out operation is performed.

In order to obfuscate the content of FFs, the authors in [29] propose to add a latch
for every FF in the circuit. During shift operations, the content of the FF is XORed
with the content of the latch, which contains a past state of the FF. From the exter-
nal, the scan structure seems to be changed time by time. In [30, 31], the authors
propose to swap the position of the scan cells in a chain, by carefully selecting the
proper FFs to be swapped.

Concerning the intrusion detection (that would happen in normal mode), in [32]
the authors propose to detect unauthorized scan enable settings. This technique
consists of connecting some leafs and the root of the Scan-Enable tree to a com-
parator. When the authentication has been bypassed the Scan-Enable signals on
every SFF is supposed to be disabled, therefore any illegal shift will raise an alarm
by detecting that at least one observed Scan-Enable signal is active. The same
authors propose to add “spy” FFs in the scan-chain to detect unauthorized shift at
mission time. These spy FFs are inserted between actual SFFs and set to a constant
value (for instance 0) in normal mode. Then, the outputs of these FFs are compared
to check if they store the same value. Because illegal shifts will rapidly load these
spy FFs with a different value, intrusion can be detected.

e What to do in test mode. When in test mode, no secrets should be delivered.
Solutions have been proposed in order to mask the actual content of the secret key
and to use a shadow key instead, used only for test purposes [24, 25].

7.5 Industrial Solutions

Semiconductor Industry develops secure Integrate-Circuits (IC) for many different
application domains such as Banking, access enabler, e-government (ID, passport),
medical, communication (mobile, wifi...), Internet of Things. For such products,
security (i.e., Confidentiality, Integrity, Authenticity, Availability) has to be guaran-
teed during the whole lifetime of the product, from development to final application.



136 G. Di Natale et al.

At design time, the security must thus be questioned when implementing Design-
for-Testability features as well.

As detailed in the previous chapter, classical DfT approaches such as scan design
jeopardize data confidentiality, and thus, dedicated DfT solutions and structures have
to be used to ensure compatibility between security and testability. Standard-DfT
weaknesses are discussed from an industrial point of view in Sect.7.5.1. Section 7.5.2
focuses on industrial constraints when designing a Secure DfT solution. Section7.5.3
aims at describing generic secure DfT solutions able to be used in a standard design
flow. Section7.5.4 presents DfT solutions for the particular case of memories (both
RAM and ROM).

7.5.1 Standard DfT Weaknesses

In order to propose efficient secure DfT solutions, “standard” DfT practices have to
be analyzed to better understand potential weaknesses against attacks. In previous
chapters, several attacks have been described showing how DT structures could
be reused during attacks. As for any real industrial threat, we also need to identify
attackers to better understand their own objectives and capabilities in order to build
adapted protections.

Attackers are classified in the following way (as shown in Fig.7.4):

e Competitors, whose main objectives are reverse engineering and IPs cloning. We
assume they have high-level competencies in DfT techniques and a utilization
of up-to-date failure analysis tools. We can also assume knowledge from former
employees;
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Fig. 7.4 Taxonomy of DfT attackers
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e FPatent troll, whose main objective is to demonstrate patent infringement. Compe-
tencies in DfT are considered medium and they generally do not have access to
advance design analysis tools;

e Academics, whose main objectives are technical challenges resolution and fame.
Academic competencies in DfT are generally high and it is reasonable to consider
a full access to up-to-date failure analysis tools. We can also assume knowledge
from former employees;

e Hackers, whose main objectives are either cheating end user applications or adding
new features/backdoors. Their competencies in DfT are low to medium and they
generally do not have access to advanced IC analysis tools;

e Mafia, which have as main objective to earn money by stealing end user private
information or by selling counterfeit products. Mafia could have a high level of
competency and access to failure analysis tools. We have to assume that mafia has
also access to IC internal knowledge via employees’ intimidation.

e [nternet users, who are able to perform only software attacks, do not target DfT
logic as line of attack. Indeed they generally do not have DfT techniques back-
ground and fewer more DfT interfaces cannot be directly controlled by an internet-
controlled functional interface.

Based on the above-described characteristics of possible attackers, we can derive
general recommendations for a Secure DfT:

e Former employees: Secure DfT should respect Kerckhoff’s principle, i.e., full
knowledge of the protection implementation is not enough to “open” the system,
data integrity, and confidentiality must rely on a cryptographic key, not on the
knowledge of the cryptographic algorithm or its hardware implementation;

e Fault Analysis tools: Secure DfT should implement countermeasures to test-based
attacks in such a way that defense might not be disabled by tools, such as micro-
probing, focused ion beam (FIB) or laser beams;

e Side-Channels Attacks: Secure DfT implementation should take care of informa-
tion leakage.

General recommendations, from which we could extrapolate few specifications
for a Secure DfT implementation strategy, are listed in the following:

e Secure DT should embed a lock mechanism to avoid a direct access to test
infrastructures in any operational mode (test and mission modes);

e Secure DT should avoid facilities for free switching between mission and test
modes;

e Secure DfT should protect memories contents by avoiding direct read and write
accesses;

e Secure DfT should protect critical sequential elements (flip-flops, latches) contents
during test mode to avoid reverse engineering and application data extraction.

Secure DT Techniques able to fulfill industrial constraints will be described in
following chapters.
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7.5.2 Secure DfT and Industrial constraints

Several secure DfT solutions have been already published, but almost all proposed
academic solutions target a single attack mechanism while real products have to be
protected against several types of attacks. Moreover, proposed secure DfT solutions
may not be supported by standard design tools used in IC industry and implemen-
tation issues may lead swiftly a secure solution that looks good on paper to turn to
a nightmare on real implementations. From an industrial point of view, a “good”
solution must thus be easily implemented thanks to computer-aided-design (CAD)
tools. In addition to the impact on the development time, the silicon overhead is
another very important criteria that also has to be considered.

To summarize, an effective industrial secure DfT solution should guarantee a high
level of security in parallel to fulfill several industrial constraints:

e Quality: Secure DfT must allow to achieve a high test coverage for targeted fault
models (Stuck-at, Transition, Bridge...) by reusing as much as possible exist-
ing tools capabilities, such as scan insertion and automatic test pattern generator
(ATPG);

e Low Cost: Secure DfT silicon overhead as well as manpower needed to implement
the solution, must be part of the criteria to select an industrial solution;

e Time-To-Market: The secure DfT flow must be inserted in an automated design
flow and its capability to be developed as a generic solution are important criterion
for an industrial Secure DfT solution.

Moreover, it is important to also consider the complete IC manufacturing process
during the DfT secure solution evaluation. Indeed, only a few Semiconductors Com-
panies are able to build an IC from design to final customer deliveries. Most of the
time, third part companies are used to execute parts of the manufacturing flow, such
as mask manufacturing, IC manufacturing, wafer test, wafer grinding and sawing, or
final manufacturing test. In these cases, it is important to review the complete security
concept, including DfT, to ensure that using a third company to execute one or several
manufacturing steps does not break the security concept, by creating a weakness that
could be used by one of the attacker defined previously. Generally, confidentiality
contract and details processes are defined between IC Company owner and third part
companies to reduce information leakage. Such processes are also internally used to
avoid leakage by employees.

7.5.3 Industrial-Constraint-Aware Secure DfT

Manpower resources, time-to-market constraints and incompatibility with industrial
DAT tools often avoid a direct implementation of state-of-the-art and academic secure
DAT solutions. The following subchapters aim at describing generic secure DfT
solutions able to be used in a standard design flow.
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Before going into details of secure DfT solution, it is important to note that for
a real product, security is never related to a single secure structure. Several secure
solutions are put all together, as several layers, in order to build at the end a robust
secure solution able to protect IC against several attack types. Therefore, while each
individual solution could be assessed as being not as secure against dedicated attack
as a single solution, it must be kept in mind that high security level is reached when
all security layers are implemented.

7.5.3.1 Test interface

In a bank office, security relies on the safe more than into the front door! This example
also applies to industrial test interfaces. The test interface is the main door for all
standard usages of the test structures, and it must be controlled at the different stages
of the product life:

o At die level, for wafer test;
e At package level, for final test;
e During product life, to analyze customer returns.

Except during these steps, the test interface must be locked, especially at end
user site, to avoid any unauthorized usage. Moreover, several solutions can be used
at the same time to protect the test interface. In industrial solutions the following
recommendation are often used:

e Test interface must not use dedicated pad, but must share functional pads to avoid
simultaneous usage between functional and test mode;

e Test interface must not use a standard communication protocol to avoid usage of
commercial tools (probes) to perform complex automatics attacks;

e Test interface must not be easily enabled, to avoid fast switch between test and
functional mode.

From a simple magic sequence detection, used to unlock the test interface, up to
a complex challenge-response authentication mechanism, those three points above
are referring design solutions for which each company should develop their own
solutions. It is important to notice that many test interface lock structures, are relied
on embedded non-volatile contents, which are by construction not known before the
first access. So we can assume that product security will start after the first test, in
which non-volatile elements are initialized.

Several structures can be used to detect wafer test phase, before to be permanently
modified for the next production flow step. The most common structure are:

e OTP (One Time Programmable) memory, Poly Fuse and Laser Fuse. Their imple-
mentation require an important area overhead, and they are easy to localized and
repaired;

e MTP (Multiple Time Programmable) memory, i.e., a non-volatile memory which
needs to be protected to avoid abnormal write access;
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Fig. 7.5 Saw Bow used to detect wafer step during test

e Saw bow (see Fig.7.5), i.e., an electrical connection based on strong pull-up and
weak pull-down, which are physical interconnected by a metal line across the saw
line of the wafer. Strong pull-up resistance will set the value before sawing the
wafer, while the weak pull-down resistance will set the opposite value after the saw.
Such a technique must be compatible with the production flow and technology.

Those wafer-test-step detection techniques can be associated to additional struc-
tures to build a secure test interface using different access mechanism during wafer
test or final test. In the example of Fig. 7.6, a password (1) has to be sent during the
first clock cycles after the reset (2) to enable the test interface, if wafer-test step is
detected (3). During wafer test or during the sawing, the structure used to detect wafer
level test is permanently disabled, then for all next test steps, a functional authenti-
cation, which could use an embedded encryption module, is required to enable the
test interface.

In order to avoid the usage of wafer test detection, a possible solution is based
on the challenge-response technique. In this case, the same test entry sequence can
be used for all test steps. The basic principle consists in tester authentication. For
example, the DUT can generate a random number and it encrypts this number with
a private key (asymmetric encryption). The encrypted random number is sent to the
tester, decrypted using the public key, then sent back to the DUT to be compared
with the original one. The result of the comparison will be used to enable or disable
the test interface. The main drawback for such implementation is the amount of
functional logic needed to perform the complete test entry sequence. Moreover, if

a fault affects the authentication module, it will be impossible to perform diagnosis
(i.e., fault localization).



7 Manufacturing Testing and Security Countermeasures 141

Functional Reset
Functional
Reset counter Auti(ljentication Test interface

@

%

E — OK? Test mode
unc interface — OR .
0) password AND enable

Wafer test ®

Fig. 7.6 Secure test interface

7.5.3.2 Test Control Register

Scan based design generally requires the implementation of extra test registers to
control clocks, resets, clock-gating structures, and analog interfaces. A test register
is considered as a standard design implementation without CAD tools limitation.
Because these test registers are good candidates for attack based on fault injections,
or to takeover scan chains control using micro-probing, some secure structures have
to be implemented for these registers. Basic security recommendation are based on
redundancy and control:

e Test control registers must be forced in reset state as long as test interface is locked

e Test control registers must be “write-only” registers

e Test control registers must be protected against fault injections by using Error-
Correcting Code (redundancy bits) to detect invalid register values for instance.

A multitude of design solutions exists to secure usage of a test control registers
using above rules; each company could apply its own techniques.

7.5.3.3 Secure Scan Test Structure

Scan test use a structured methodology supported by commercial tools:

e Scan Design: Scan chain creation (scan insertion) is often embedded into the
synthesis tools (e.g., Cadence RTL Compiler [33] or Synopsys Design Compiler
[34]) or sometime delivered as a standalone tool (e.g., Mentor Graphics Tessent
Scan [35]);

e Test Pattern Generation: test stimuli applied through direct scan chains access
or dedicated test decompression structures are automatically generated thanks to
Automatic Test Pattern Generator (ATPG) tools (e.g., Synopsys TetraMAX [36],
Mentor-Graphics TestKompress [37], Cadence Encounter [38]).
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Complexity of nowadays ICs requires usage of those automatic tools to rapidly
reach an acceptable test efficiency level. A default scan implementation will however
result in a poor implementation with regard to the security of the data processed by
the circuit. On the other side, any deviation from a standard scan structure could
result to a CAD tool blockage. In following paragraphs, we will describe several
tool-compatible secure scan test solutions. These solutions are classified into four
groups related to the scan chains structure, the scan chains usage, the scan chain
compression, and logic BIST.

Scan chains structures

Utilization of the scan chains to identify registers content or to perform reverse
engineering operation is simplified when the scan chain structure is known, i.e. when
the hacker knows the position of each scan flip-flop in the chain. This scan chain
structure can be easily identified when using a standard scan insertion flow. Scan
insertion tools are indeed using by default the flip-flop alphabetic order (including
design hierarchy) to interconnect registers within scan chains. For example the 128 bit
AES key flip-flops are most probably all connected together from bit 0—128 within
the same scan chain (in reality 0, 1, 10, 100, 101, 102, ..., 11, 110, 111, ..., 12, 120,
121, ..., 13, 14, ..., 2, 20, 21, 22, ..., 30, ..., 99).

In order to improve the scan chains security, a proposal consists in scrambling the
scan path by using a standard scan reordering flow for which only the functional paths
constraints are used for place and route, as shown in Fig.7.7. Scan interconnection
will be then based on flip-flop physical location (interconnected flip-flops which are
close to each other). The first drawback of this approach is that this technique could
generate a lot of hold timing violation that will have to be corrected. Anyhow, this
flow is supported by all scan insertion tools, and will perform a kind a random local
scan chains scrambling. In addition as demonstrated in paper [39], insertion of sev-
eral inverters on scan shift path will improve robustness against reverse engineering

Fig. 7.7 Scrambled scan
registers
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attacks. After the scan insertion step, you could randomly insert inverter on scan
shift paths (between scan flip flops), using netlist manipulation commands available
in synthesis or scan insertion tools. Those static inverters will be fully transparent for
the ATPG flow, which is already able to deal with scan chain inversion. Please note
that dynamic inverter as proposed in papers [40, 41] are not supported automatically
within an ATPG flow. The second drawback of this approach is that differential scan
chain analysis [41] allows to deal with unknown scan chain implementations and to
perform scan chain attacks anyway at the cost of longer computation time.

Scan chains usage

One of the most common scan chain attack is based on the utilization of the scan
chain to dump flip-flops values through the scan output thanks to the scan shift mode.
Attacks happen during a functional execution, which is stopped at a critical point
to dump, for example, data related to the secret key in a crypto-coprocessor. Micro-
probing techniques could be used to locally force the scan shift mode or to hack the
main test controller to control the whole scan chains. In order to improve the scan
test security, an efficient proposal is to insert sensors to detect abnormal scan shifts,
i.e. scan shift operations during mission mode. Several sensors are proposed in the
literature, but real implementation is not always easily feasible.

First proposal is to monitor the Scan-Enable signal at different locations in the
design, in order to detect a local shift mode by observing a value change on one of
the observed node [42], as shown in Fig.7.8. Unfortunately, this proposal is not so
easy to implement due to the fact that Scan-Enable signal is automatically connected
to all flip-flops during the scan insertion phase and buffer-tree append only during
Back-End phase which is normally too late to perform netlist manipulation.

A second technique based on the same basic principal is using spy flip-flops [42]
instead of direct observation of the Scan-Enable signal, as shown in Fig.7.9. The
spy flip-flops’ D inputs are tied to a fixed value, while there are inserted in the scan
chains at random position. All spy flip-flop’s Q outputs are observed and compared
to a central Scan-Enable signal. All those spy signals must be fixed during mission
mode, thanks to the tied flip-flop’ D (functional) inputs, while they will toggle during
scan shift mode allowing to detect an abnormal (local) scan shifts. It is possible to
implement this solution in a generic way, by creating a single “spy flip-flop” as a sub
module (hard macro) instantiated several times in the design to protect. Spy flip-flops
can then be spread over the scan chains using dedicated scan insertion constraints
command.

Test Register

Abnormal
utilization
detected

Secret Register or Key

System reset

Fig. 7.8 Scan-enable control
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A third solution to avoid observation of FFs’ functional values is to erase all func-
tional values before allowing any scan shift operation. As described in the previous
section, a generic solution is based on the utilization of a sensor able to detect the scan
mode (scan shift or scan capture) [24]. Scan mode sensor is a simple counter (not
“scanned”) reset thanks to the scan shift enable signal and clocked thanks to the scan
clock signal, as shown in Fig. 7.10. This counter counts scan shifts until a predefined
value, i.e. the number of flip flops in the longest scan chain, before enabling the scan
shift out. So, scan chain outputs are blocked until scan inputs values are replaced
all functional internal values. Meaning that for a standard scan usage, starting by a
complete scan shift input before a first scan shift output this implementation is fully
transparent, while switching from functional mode to scan shift mode is blocked.
This sensor implementation is fully transparent for ATPG or during standard scan
test execution.

A fourth solution is based on a kind of scan pattern watermarking. The solution
described in [43] uses a shift register (few bits) inserted at the end of one scan
chain which have to receive a predefined watermark (hardcoded value) to enable the
scan shift output paths, as shown in Fig.7.11. Inserting the watermark register at
the end of a scan chain, will ensure a complete scan shift input sequence has been
executed, before allowing any scan shift out. It has a similar objective as the previous
solution; functional values contained in flip-flops are erased by the scan shift input
needed to load the watermark code. The watermark value is validated at the end
of each scan shift input by the scan-enable signal transition (from scan shift to scan
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capture), in order to validate the following scan shift out. Regarding implementation,
the watermark shift register, has to be scan inserted at the end of the longest scan
chain using scan insertion constraints. Then during ATPG, the watermark code can be
easily forced using ATPG constraints, which allow to predefine scan capture flip-flop
values, even through a scan compression structure.

Scan chains compression

Scan compression structures proposed by standard ATPG tools, provide security, if
well implemented, by applying a one-way function on information. Compression
structure is basically reducing direct scan chain inputs controllability and scan chain
outputs observability, with a minimum coverage impact. However, scan compression
structure used alone is not sufficient to guaranty efficient security as demonstrated
in [41], but associated with others secure scan solution as proposed above, it could
bring security benefit. Anyhow, in order to be useful for security, test compres-
sion structures have to follow some rules regarding their implementation. First it
is important to notice that the 3 main ATPG providers, Cadence, Mentor-Graphics
and Synopsys, are using XOR tree as scan output compactor associated to X mak-
ing structure. XOR tree structure is linked to the selected compression ratio. You
have to select a big enough compression ratio, in order to always have several scan
chains combined together to generate one XOR tree outputs. Author experiments
show that output compression ratio of 20, will guarantee a minimum combination of
3 or 4 scan outputs to generate each XOR tree outputs. Moreover, special care about
X masking logic functionality should be paid, in order to avoid any setting able to
reduce the number of scan chain combination through the XOR compactor. Indeed,
some ATPG provide dedicated X masking mode, in which a single scan is observed
at the time, to improve observability (test coverage). Those modes must be carefully
removed from the design implementation in order to use scan compression structure
as security element. After such modifications, you may have to use dedicated ATPG
commands to avoid usage of those special X Making modes by ATPG during test
stimuli generation.
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Logic BIST

Logic BIST solution as proposed by main CAD tool providers is really attractive
for a security point of view. Few commands are send from outside and as response
the Logic BIST provide PASS / FAIL information. No data leakage, scan chains
are loaded and compared internally. Moreover, BIST can be executed in application
to ensure IC integrity before each usage, feature that could be part of the security
strategy. Main problems for an industrial point of view are the silicon overhead
required by LBIST solutions, especially to test a complete IC, and the fact that
LBIST solution does not provide diagnosis capability. So recommendation is not to
use LBIST as a solution to protection internal data during production test, but as a
test solution to be used in application for an integrity test.

7.5.4 RAM/ROM Test

In secure ICs RAMs and ROMs, contents must be protected against unauthorized
read-out and no functional data must be directly writable. For all RAMs embedded
in a secure IC few DfT rules must be guaranteed:

e Test sequence must start by a complete erase of the functional value;

e RAMs access must be disabled during scan test mode, to avoid data read-out
through scan chains;

e Direct access to RAMs contents from pad level must be avoided.

In order to fulfill those secure requirements, a classical solution is based on the
use of standard March-Test algorithms. March-Test is actually the most common
test method used within semiconductors industry to test RAM. In order to secure the
memory, March-Tests must be associated to isolation structures able to avoid RAM
access during scan test mode.

On the other side, ROMs embedded in a secure IC must also follow few DfT rules
in order to protect their contents against abnormal read-out operations:

e Direct access to ROMs contents from pad level must be avoided;
e ROMs access must be disabled during scan test mode, to avoid data read-out
through scan chains.

In order to fulfill those secure requirements, standard ROM BIST associated to a
MISR (Multiple-Input Signature Register) can be used, to create a signature based on
ROM contents. Such a structure is a standard ROM test solution within semiconductor
industry.

7.6 Conclusions

DfT and security are often presented as antagonist, indeed the DfT has as objective to
maximize internal nodes observability and controllability, while security constraints
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do not allow any internal information to be controlled or extracted. However, we
showed that DfT can handle security constraints while being supported by com-
mercial tools. We described secure scan test solution and secure RAM/ROM test
techniques. Pro and cons of the insertion of such techniques in a design flow are also
being discussed.

To conclude, DfT and Security could be compatible if carefully implemented.
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Chapter 8
Malware Threats and Solutions
for Trustworthy Mobile Systems Design

Jelena Milosevic, Francesco Regazzoni and Miroslaw Malek

8.1 Introduction

Rapid adoption of mobile devices and their increased usage to perform financial
transactions and to send or store sensitive information, attracted the attention of
criminals and all sorts of trouble makers and increased their interest in tampering
with these devices to gain profit, to collect private and sensitive data, or simply to
cause malfunctioning. To guarantee the security of a mobile device, it is necessary
to provide it with robust and trusted hardware. Trusted hardware means that the used
components should not contain hardware Trojans, which are malicious modifications
of the underlining hardware in order to access maliciously the target device. Robust
hardware means being resistant against physical attacks.

Being mobile and widely present, mobile devices can get into physical possession
of the attacker, which makes them prone, as the large majority of other embedded
systems, to threats caused by physical attacks. Physical attacks are attacks which aim
at gaining access to sensitive information by exploiting the physical leakage of the
implementation of security primitives. The most notable example of these attacks
is by using power analysis [22], where the secret key is extracted by analysing the
dependency of the power consumed by the device and the secret data being processed.
However, using power analysis is not the only physical attack which exists. There
are also other methods that may exploit timing and that were successfully used in
the past: timing difference [21], electromagnetic emissions [29], and deliberate fault
injection [19].

However, state-of-the-art mobile devices are not composed of solely hardware
(including several cores and dedicated accelerators like GPUs) but also a plethora of
software. For this reason, to guarantee the overall robustness of the device, it is not
sufficient to protect only the hardware but also software routines have to be trusted,
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since the number of security breach caused by software is significantly growing. This
is indeed visible in the reported number of malicious software or shortly malware,
which is increasing very fast. According to [6], the total number of mobile malware
samples grew 17 % in the second quarter of 2015. A different source [3], states that
currently about three over four applications in China are malware.

Malware is software deliberately created to harm the device where it will be
executed. Some of the effects which malware can have are stealing of sensitive
information, the possibility of taking control of the overall operation of the system,
and the damaging till the complete disruption of the device.

The number of encountered attacks on mobile devices is growing, so as the number
of malware samples and malware families. With increased number of mobile fam-
ilies, also the behaviour of malware is changing, progressing and becoming more
difficult to detect. Under these increasingly difficult circumstances, the detection
algorithms have to cope with the variety of malicious behaviour, and be able to pro-
vide an effective detection, without generating an amount of false positives that would
disturb users. The way to cope with it, and provide an effective solution, is mostly,
by increasing effectiveness of algorithms that in turn may require higher complexity
and taking into account more parameters about the system. However, mobile mal-
ware detection systems have to be run in resource-constrained and battery-operated
environments that neither have the computational power to run extremely complex
algorithms nor can support algorithms that drain the battery too quickly. Finding an
effective detection algorithm, that is at the same time suitable for battery-operated
mobile devices, is a challenging task.

In view of the increasing relevance that this problem has in mobile devices, and
considering the effect of malware in the whole trustworthiness of a system, this
chapter surveys existing mobile malware detection threats and proposed solutions
and sketches main research trends. The main goal of the work is to evaluate current
approaches with respect to the effectiveness of the solution, and its consumption of
resources.

8.2 Threats in Mobile Devices

For the second consecutive year, mobile devices are perceived as IT security’s weak-
est link [1]. The threats, that were previously mostly concern of governments, finan-
cial institutions, and security vendors, are becoming more relevant in small enter-
prises and in personal lives [6]. The focus of Internet security is shifting from the
desktop and the data centre to the home and Internet of Things, the pocket, the purse,
and, ultimately, devices and infrastructure of the Internet itself [4].

The most severe threat that can affect mobile devices is malware. It is being
able to completely damage a device or enable further attacks on the device that can
perform unwanted actions. Most present malware types in mobile devices are rootkits,
ransomware, bots, financial malware, logic bombs, viruses, worms and Trojan horses.
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e Rootkits are a type of malware that is able to access parts of software for which
regularly it does not have privileges. The access to privileged area is usually enabled
by performing an attack on the system, either by exploiting systems vulnerabilities
or guessing user’s passwords. Once the attacker has the access to the root privileges
of the system, the system is practically under full control of him or her and is prone
to further manipulation. Due to this, rootkit detection is a challenging task, and
sometimes the only way to cope with it is the replacement of the operating system.

¢ Ransomware is malware that locks the content of the user’s device, and then asks
the user to pay money, ransom, in order to enable normal usage. There are different
ways to perform such attack on the system, starting from locking the screen of a
device, or by using fake anti-virus software that, once installed on user’s device,
would prompt the message that the device is under attack and ask for money in
order to remove the discovered infection. More advanced ransomware encrypts the
data stored on the device and asks for money in order to provide the decryption key.
In the last few years an increased number of ransomware attacks was recorded.
More in detail, in the second quarter of 2015 their number increased by 58 %
comparing to the first quarter of the same year [6].

e Bots are self-propagating malware with the goal to infect host machine and later
connect to a server, bot master, and follow the obtained orders from it. Botnet
is a network consisting of many host devices infected with bots, being available
to perform Denial of Service attacks, send spam messages or simply enable fur-
ther infections on host devices. Additionally, bots collect information from host
devices and send it to the bot master. The collected information can be related to
private user’s data, financial transactions, user passwords, etc. Botnets, that until
recently were mostly related to personal computers, since 2010 also attack mobile
devices. One example of mobile bots with a goal to propagate malware is Plankton
that appeared in 2011 and currently has more than 2000 different variants. More
information about Plankton can be found in [37].

e Financial Malware has a goal of collecting accounts credentials and sending
them to the attackers. Current Android malware can intercept text messages with
authentication codes from customer’s bank and forward them to attackers. Also,
fake versions of legitimate banks mobile applications exist, hoping to trick users
into giving up account details. Number of encountered attacks related to financial
malware is increasing. This can be especially seen in the increase of banking
malware, which attacks online banking customers. According to [5], number of
encountered banking attacks increased from 71 to 83 % from first to second quarter
of 2015.

e Logic Bombs are pieces of code intentionally inserted into a software system
that set off a malicious function only when specified conditions are met. When
activated, a logic bomb can perform different actions: display spam messages,
delete or corrupt data, execute pieces of malicious code or have other undesirable
effects.

e Viruses are type of malware that propagates by inserting themselves into another
program and spreading together with it. The level of severity of viruses can vary
from low, for example corrupting some files on the system, to very severe that
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can disable and completely damage the operating system. Viruses are spreading
together with the program they are attached to. It can happen by using Wi-Fi
network, Bluetooth, message or email attachments.

e Worms, as opposed to viruses that depend on a host program to spread itself,
operate more independently of other files. Still, same as viruses they are able to
self-replicate and spread. In mobile devices, worms spread without user’s knowl-
edge, by using existing communication channels: SMS, MMS, and Bluetooth. First
mobile malware, Cabir, that appeared in 2004, was a worm developed for Symbian
operating system and ARM architecture that was able to spread itself via Blue-
tooth. Since then different variants of worms exist in mobile devices, causing users
information leakage, disruption of services or sending premium rate messages.

e Trojan Horses (Trojans) are type of malware that appears as a legitimate soft-
ware, but actually has malicious intents. Also, they are able to open a backdoor
in a system, thus enabling further attacks. Due to their similarity with legitimate
applications, detection of Trojans is a challenging task. At the same time, they
are one of the most present malware types in mobile devices, especially devices
running on Android operating system. One of the most famous is Spitmo, a Trojan
which steals information from the infected smartphone, monitors and intercepts
SMS messages from banks and uploads them to a remote server [37].

Apart from malware, threats that can also appear in mobile devices are classified
as grayware or madware. According to [4], out of the 6.3 million apps analysed in
2014, one million were classified as malware, while 2.3 million were classified as
grayware. A further 1.3 million apps within the grayware category were classified as
madware.

e Grayware are all the programs that do not contain viruses and are not obvi-
ously malicious but that can be annoying to the user, like for example adware
(advertising-supported software), that automatically delivers advertisements.

e Madware consists of different aggressive techniques developed in order to place
advertisement in mobile devices, for example photo albums and calendar entries
and to push messages to notification bar.

Apart from the listed threats, there are various other forms of malware, grayware,
and madware that have different names and different forms. Some examples are
freeloading that uses other people’s phone by “freeloader” without permission of the
user, phishing is looking for someone to get “hooked” and load malware/grayware
or madware, and spoofing is pretending to be someone else (e.g. user’s bank), win
trust and exploit the credentials. Although the number of all possible threats that can
happen in mobile devices is much higher, in this chapter we focus on and discuss in
more detail the ones related to mobile malware, since it is currently the threat that
can cause the most severe damage to devices, and particularly the ones that currently
exist and are widespread in devices running Android Operating System, since the
Android OS is currently the most used OS for mobile devices. With growing number
of devices the complexity of systems is increasing, causing even more security threats
to appear. It is estimated that the number of connected devices will continue to grow
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both in volume and variety, and that by 2020 it may reach 200 billion [2]. Although
we have already seen attacks in ATMs, home routers, cars and medical equipment,
these are just beginnings of attacks on IoT [6]. Most of these devices connect via
Bluetooth that is known to suffer from many security flows, as stated in [2]. Apart
from being able to collect data stored on these devices, attackers can also abuse their
connections to smartphones. Symantec in [4] discovered that 20 % of applications
related to health sent personal information, logins, and passwords over the wire in
clear text.

The expansion of existing attacks is expected in the next years, so as appearance
of new ones. According to threats prediction in [7], some of the threats that will
become more aggressive and widespread in coming years are following: the rise of
machine-to-machine attacks, propagation of worms in headless devices, and two-
faced malware.

e Machine-to-Machine Attacks will take advantage of connected systems of
mobile devices like connected medical devices and their host applications, con-
nected home automation, smart TVs, and also connected home routers.

e Worms in Headless Devices refer to foreseen spread of worms within less complex
devices, like smartwatches, by means of communication protocols.

e Two-faced Malware is type of malware designed to execute an innocent task to
avoid detection system, and then, once it bypassed security checks, execute its
malicious payload.

8.3 Malware Detection Solutions

With increased number of mobile threats the need to protect from them is growing,
resulting in higher demand for effective detection systems. Reports indicate marked
growth in the usage of anti-virus and anti-malware solutions for mobile platforms,
which went from a 36 % rate of use in 2014 to 45 % in 2015 [1].

User’s expectation from detection systems are that they are able to detect malware
with high confidence without producing false positives and creating disturbance to
regular usage. Additionally, any security mechanism targeted toward mobile sys-
tems should take their battery-operated characteristics into account as they may
significantly limit the ability to run complex malware detection systems on devices.
Providing detection mechanisms that are at the same time effective, able to detect
variety of malware that exist today, and with low complexity, so that they do not sig-
nificantly affect battery life, is a challenging task, and most of the proposed solutions
are trade-off between these requirements.

Although number of threats is observed in variety of mobile devices, most of
existing malware is targeting mobile phones and tablets. Due to this reason, most of
current solutions are provided for them. In the rest of this section we discuss these
solutions in more detail. Existing detection solutions can be divided in: signature-
based, static, and dynamic.
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8.3.1 Signature-Based Detection

A method that is commonly used in current anti-virus and anti-malware solutions
is based on generation of representative signatures for existing malware samples
and maintenance of a database consisting of them. Once the signature is recognised,
malware is detected with high confidence. Although the number of false positives
with such systems is low, they heavily rely on the maintenance of the database with
signatures. Namely, it has to be frequently updated with new signatures that appear
on the market. In mobile environment, this might be difficult due to the fact that the
device is not constantly connected to the Internet, that sometimes is connected with
mobile data that is charged, or that the device does not contain enough memory to
store all available malware signatures.

8.3.2 Static Detection

These methods are focused on analysis of static features of applications (e.g. granted
permissions, API calls, source code debagging) and discrimination between malware
and trusted based on them.

One approach to static malware detection is proposed in [8] where high detection
accuracy is achieved by using features from the manifest file and feature sets from
disassembled code. Reported overhead is sub-linear. Its performance increases with
O(+y/m), where m is the number of analysed bytes. Also the mechanism presented
in [35] uses static features including permissions, Intent messages passing and API
calls to detect malicious Android applications.

Apple, Google, and Nokia use application permissions and review to protect users
from malware. The effectiveness of these mechanisms against malware in a given
data set is evaluated in [16]. In [16], sending SMS messages without confirmation
or accessing unique phone identifiers like the IMEI are identified as promising fea-
tures for malware detection as legitimate applications ask for these permissions less
often [17]. For example, nearly one third of applications request access to user loca-
tion but far fewer request access to user location, and to launch at boot time. The
authors concluded that although the number of permissions alone is not sufficient
to identify malware, they could be used as part of a set of classification features,
provided that all permissions common to the malware set are infrequent among non-
malicious applications.

In [34], as a feature for detecting susceptibility of a device to malware infection, a
set of identifiers representing the applications on a device is used. The assumption is
that the set of applications used on a device may predict the likelihood of the device
being classified as infected in the future. Nevertheless, observing just this feature is
not enough to give precise answer about device being attacked due to low precision
and recall [34].
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In the nutshell, static detection is an effective approach in terms of resource con-
sumption. However, due to the nature of this approach that analyses the applications
only based on their static features, it is not able to detect malware that appears at
run-time, it is prone to obfuscation [26], and cannot detect variations of existing
malware samples that are easy to create and distribute.

8.3.3 Dynamic Detection

Dynamic detection appears as a promising candidate able to detect variety of mali-
cious samples that currently exist on the market. The main advantage of this approach
is that dynamic system features are observed at run-time, such as for example sys-
tem calls and network behaviour, and based on them and previously trained models,
detection is performed. In this way, by observing the behaviour of the system at run-
time, systems are more resistant to variety of existing malware samples and more
difficult to bypass. The reasoning behind is that while attackers can obfuscate the
code itself it is difficult to obfuscate its behaviour.

Dynamic detection mechanisms are used in [10] to detect mobile worms, viruses
and Trojans. The authors start with the extraction of representative signatures. Later
on, a database with malicious patterns is created and Support Vector Machines are
used in order to train a classifier with both trusted and malicious data. The evaluation
of both emulated and real-world malware shows that dynamic detection not only
results in high detection rates but also detects new malware which shares certain
similarity with existing patterns in the database.

Power consumption, monitored through battery usage, also appears to be a promis-
ing approach [9]. One of the proposed solutions, VirusMeter [23], monitors and audits
power consumption on mobile devices with a power model that accurately charac-
terises power consumption of normal user behaviours. In [20] creation of a database
with power signatures is proposed, where a new power signature collected while the
system is used is compared with the ones already existing in the database. However,
to what extent malware can be detected on phones by monitoring just the battery
power remains an open research question [9].

SmartSiren, presented in [14], is a collaborative virus detection and alert system
for smartphones. It performs statistical and abnormality monitoring, detects abnor-
malities at both device and network level, and in case alerts being detected issues
alarm to the targeted population. This approach is tested and validated on viruses
spreading via Bluetooth and SMS and Windows Mobile 5.0 Smartphone Edition. The
used dataset consists of three weeks of SMS traces collected from Indian national
cellular service provider. The reported overhead is 33.6 % of the total messages.

In [31] the approach to identify the most representative features to be observed
on a phone running on Symbian operating system and then sent to the network
for further investigation is presented. After receiving the information about these
features on the server side it is decided if the phone state is abnormal or within
expectations. Following five features are identified as informative and used: RAM
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Free, User Inactivity, Process Count, CPU Usage, SMS Sent Count. More in detail,
RAM Free indicates the amount of free RAM in kilobytes, User Inactivity tells if
the user was active in the last ten seconds, Process Count indicates the number of
currently running processes, CPU Usage represents the percentage of CPU usage, and
SMS Sent Count represents the amount of SMS messages in the message directory.
This approach is validated by using as a dataset simulation of normal behaviour of
10 frequently used applications at that time, and one malware sample.

In [36] a probabilistic approach on detection of malware propagating through
Bluetooth and messaging services is presented. It observes unique behaviours of the
mobile applications and the operating users on input and output constrained devices,
and builds a Hidden Markov Model to learn application and user behaviours. Later,
based on this knowledge, it identifies behavioural differences between malware and
human users. The analysis is performed on Linux-based smartphone.

In [32], Andromaly, a framework for detecting malware, is proposed. It uses vari-
ety of features related to: touch screen, keyboard, scheduler, CPU load, messaging,
power, memory, calls, operating system, network, hardware, binder, and LEDs, and
compares False Positive Rate, True Positive Rate, and accuracy of the following
detection algorithms: Bayes Net, Decision Tree J48, Histogram, K-means, Logistic
Regression, and Naive Bayes. The algorithms that outperformed the others in detec-
tion of Android malware were Logistic Regression and Naive Bayes. The results
were obtained using 40 trusted applications and four developed malicious samples,
since no real malicious applications were available at that moment.

In [18] feature selection was performed on a set of run-time features related to
network, SMS, CPU, power, process information, memory and Virtual memory.
As a measure of features importance, Information Gain was used along with four
classification algorithms: Naive Bayes, Random Forest, Support Vector Machines,
and Logistic Regression. Results show that, in this scenario, Random Forest gives the
best performance. Random Forest is a combination of different tree classifiers [11].
Although it is a powerful algorithm in achieving high accuracy of detection, it also
has high complexity. Results have been obtained by considering 30 trusted and five
malicious applications.

In [33] automatic way to detect malware by using combination of static and
dynamic approach towards malware detection is presented. In order to extend cov-
erage of dynamic detection, static detection is used as a first step, where the authors
take into account applications Manifest file, decompiled code and requested permis-
sions. Further, they analyse the application in sandbox tracking native API calls of
the application taken into account. Malware samples taken into account are 136 000
applications from Asian and Google Play market and 7500 malicious samples. The
system is accessible via web interface for all the users that would like to test the
suspicious applications.

Work proposed in [12], is a crowdsourcing system that uses real traces of appli-
cation behaviour collected from users. The traces are analysed in the network by
usage of k-means clustering. Malware is detected by investigation of system calls,
and the authors argue that the monitoring system calls are the most accurate way to
detect malicious Android applications, since they provide detailed overview on the
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events. Dataset used is consisting of Trojan samples, more precisely, three samples
of self-written malware and two real malware application samples.

In [15] Madam, a Multi-Level Anomaly Detector for Android Malware, is pre-
sented. Madam is a framework that detects intrusions and malware actions on Android
devices. It does the detection by monitoring system OS events (system calls) and the
user activity/idleness. The evaluation of the system is performed by using 10 real
malware samples on Android Ice Cream Sandwich Version 4.1 Samsung Galaxy
Nexus phone. The reported overhead of the approach is 3 % of memory consump-
tion, 7 % of CPU overhead, and 5 % of battery. In order to use Madam, rooting of a
phone is required.

In [13] another approach that also uses system calls is presented. The approach
uses machine learning to learn connections between malicious behaviour (e.g. send-
ing high premium rate SMS or cyphering data for ransom) and their execution traces
and then exploit obtained knowledge to detect malware. As opposed to other systems,
where a limited set of system calls is taken into account, in this work, all system calls
are considered so as their sequences. The approach is tested on real device, with a
dataset consisting of 20000 execution traces and 2000 applications.

An approach presented in [25], takes into account dynamic features (memory and
CPU) and their importance in malware detection. It analyses these features and their
significance within the malware families they belong to, and takes into account the
most indicative ones for each family. It concludes that some features appear as good
candidates for malware detection in general, some features appear as good candidates
for detection of specific malware families, and some others are simply irrelevant. For
the analysis of importance of features, the authors use Principal Component Analysis.

A work proposed in [27] consists of two components: a host agent and a network
service. The main purpose of the host agent is to acquire files and send them to
the network service, whereas the network service performs analyses using multiple
detection engines in parallel to determine whether a file is malicious or not.

Another proposed solution is Paranoid Android [28], which uses the anomaly
detection principle. Based on phone execution traces, security checks are performed
on the synchronised copy of the phone that runs on a server. The phone used in the
analysis is HTC G1 phone, and on the server side QEMU was used. The results show
that battery life is reduced about 30 % and CPU load about 15 %.

The drawback of dynamic detection methods is that such systems might be too
complex for limited resources of mobile systems. In some cases, as previously men-
tioned, detection engines are offloaded to a cloud or a server, thus imposing new
challenges to the system related to data transmission, communication overhead and
data privacy. Additionally, although the systems based on dynamic detection are
more resistant than the ones based on static, if the detection is based on observance
of representative features, and the attacker develops completely new malware that
does have different behavioural pattern from the learned ones, it might happen that
the system would not be able to recognise it as malicious. Additional drawback is
that while systems are trained only a limited number of execution paths can be taken
into account, thus potentially not triggering the ones with malicious intent, which
might be exposed only later during run-time execution of the application on a device.
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8.4 Discussion

Increased number of mobile devices, together with their increased usage, attracted
also the attacker’s attention and motivated them to abuse these devices and get into
possession of users credentials such as private and sensitive data. As a result of this,
the increase in the number of encountered threats and their variety is observed. This
trend, together with the most representative mobile threats is discussed and explained
in more detail in Sect. 8.2.

Research community, anti-virus and anti-malware providers are trying to cope
with the attacks and provide effective and efficient solutions for detection. The solu-
tions have to be accurate in order not to disturb users with false alarms. Addition-
ally, solutions have to be efficient, and thus suitable for limited resources of mobile
devices. Existing detection methods, with their advantages and disadvantages, are
discussed in Sect. 8.3. Additionally, in Table 8.1, tabular representation of state-of-
the-art approaches is given, consisting of their characteristics related to: type of analy-
sis, type of threats, detection technique, operating system, detection side, dataset,
overhead, and publication year. Based on this information, we could spot different
trends and challenges that we discuss in the following part of the section.

8.4.1 Type of Analysis

As discussed in Sect. 8.3, current existing detection methods can be dynamic and
static. In some approaches both of these methods are combined. In Fig. 8.1 we present
the distribution of existing detection methods with respect to type of used analysis:
dynamic, static, and combined. As we can observe dynamic detection is prevailing.
Due to previously mentioned weaknesses of static detection, reflected mainly in
its inability to detect malicious behaviour at run-time, it is not surprising that the
most research is focusing towards development of dynamic solutions. The main
problem that a designer of a system may face when providing and developing dynamic
solutions is the complexity, which might limit their applicability on constrained-
resource devices.

8.4.2 Type of Threats

In Sect. 8.2 different existent threats that can affect mobile devices are discussed.
Among them, as the most dominant and the widespread, malware is identified and
different types of malware that currently exist are explained. In Fig. 8.2 we present
the distribution of threats taken into account in existing detection methods. As we
can see from Fig. 8.2 most of the existing solutions try to provide protection from
malware in general, without particularly focusing on its subgroups. While this trend
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Fig. 8.1 Distribution of existing detection methods with respect to type of used analysis
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Fig. 8.2 Distribution of threats taken into account in existing detection methods

is understandable and makes used mobile devices more resistant to variety of threats,
it also raises a question of the complexity of the solutions and its applicability on
mobile devices. Namely, with the increased number of threats to protect from and
their variety, also the solutions provided to detect them are increasing in complexity
and computational overhead.

8.4.3 Detection Techniques

In order to detect malware, dynamic and static analysis can be used. In order to
apply these approaches different detection techniques can be considered: anomaly
detection, supervised and unsupervised learning, and clustering.

Anomaly detection is a technique particularly suitable when there are no many
samples of malicious behaviour available. The main idea is to train the system with
expected behaviour (normal or trusted), and then once something that goes out of
ordinary happens, it is declared as an anomaly, outlier, or malicious activity. Mobile
malware detection approaches based on the anomaly detection were particularly
suitable in period when not so many real malicious samples were available.

Another way to detect malicious behaviour is to use unsupervised detection mod-
els. In this case, the developer is acquiring inform