
Issa Traoré · Ahmed Awad
Isaac Woungang Editors

Information
Security
Practices
Emerging Threats and Perspectives

Information Security Practices

Issa Traoré • Ahmed Awad • Isaac Woungang
Editors

Information Security
Practices
Emerging Threats and Perspectives

ISBN 978-3-319-48946-9 ISBN 978-3-319-48947-6 (eBook)
DOI 10.1007/978-3-319-48947-6

Library of Congress Control Number: 2016961242

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Issa Traoré
Department of Electrical and Computer

Engineering
University of Victoria
Victoria, BC, Canada

Isaac Woungang
Department of Computer Science
Ryerson University
Toronto, ON, Canada

Ahmed Awad
New York Institute of Technology
Vancouver, BC, Canada

v

Preface

With the rapid development of Internet-based technologies and the increasing
 reliance of society on these technologies, providing security and assurance to infor-
mation systems has become a critical endeavor for practitioners and the various
stakeholders impacted by information and system insecurities.

In fact, the omnipresence of threats of malicious attacks has raised the impor-
tance of devising new paradigms and solutions in addition to professional skills,
knowledge, and human resources in the area of information assurance. This book is
a compilation of peer-reviewed papers from the first International Workshop on
Information Security, Assurance, and Trust (I-SAT 2016), which introduce novel
research targeting technical aspects of protecting information security and estab-
lishing trust in the digital space.

The book consists of eight chapters outlined as follows.
Chapter 1 is a brief introduction on the context of emerging security threats and

a discussion of the need for new security paradigms in tackling these threats.
Chapter 2 presents contemporary and emerging botnet architectures and dis-

cusses best practices in protecting against such threats and how these protection
schemes could possibly be evaded.

Chapter 3 introduces a new approach for leveraging behavioral biometrics for
online fraud detection.

Chapter 4 introduces a suite of online tools to automate the complex computa-
tions involved in analyzing hardware Trojan viruses. This represents an important
step in mastering the complexity involved in locating malicious modifications in
integrated circuit design and implementation.

Chapter 5 presents a multimodal biometric system that combines at the feature
level mouse and eye movement biometrics for user authentication. In this system,
mouse movement and eye movement data are collected simultaneously and aligned
based on timestamps.

Chapter 6 takes on the pressing challenge of protecting online exam integrity by
introducing a multimodal biometric framework involving three modalities, namely,
mouse dynamics, keystroke dynamics, and face biometrics.

http://dx.doi.org/10.1007/978-3-319-48947-6_1
http://dx.doi.org/10.1007/978-3-319-48947-6_2
http://dx.doi.org/10.1007/978-3-319-48947-6_3
http://dx.doi.org/10.1007/978-3-319-48947-6_4
http://dx.doi.org/10.1007/978-3-319-48947-6_5
http://dx.doi.org/10.1007/978-3-319-48947-6_6

vi

Chapter 7 tackles lingering limitations in anomaly detection in computing
 systems (e.g., false alerts, low detection accuracy) by presenting an enhanced
CUSUM algorithm for network anomaly detection. The new algorithm enables
modeling various features from different sources and reporting alerts according to
some decision strategies.

Chapter 8 provides a final summary of the research presented in previous chap-
ters and discusses future trends and challenges in tackling emerging cybersecurity
threats.

Victoria, BC, Canada Issa Traoré
Vancouver, BC, Canada Ahmed Awad
Toronto, ON, Canada Isaac Woungang

Preface

http://dx.doi.org/10.1007/978-3-319-48947-6_7
http://dx.doi.org/10.1007/978-3-319-48947-6_8

vii

 1 Introduction: Emerging Threats Call for New Security Paradigms 1
Issa Traoré, Ahmed Awad, and Isaac Woungang

 2 Botnets Threat Analysis and Detection ... 7
Anoop Chowdary Atluri and Vinh Tran

 3 Collective Framework for Fraud Detection Using Behavioral
Biometrics .. 29
Ahmed Awad

 4 The Hardware Trojan System: An Online Suite of Tools
for Hardware Trojan Analysis ... 39
Nicholas Houghton, Samer Moein, Fayez Gebali,
and T. Aaron Gulliver

 5 Combining Mouse and Eye Movement Biometrics
for User Authentication .. 55
Hongwei Lu, Jamison Rose, Yudong Liu, Ahmed Awad,
and Leon Hou

 6 Ensuring Online Exam Integrity Through Continuous
Biometric Authentication ... 73
Issa Traoré, Youssef Nakkabi, Sherif Saad, Bassam Sayed,
Julibio D. Ardigo, and Paulo Magella de Faria Quinan

 7 An Enhanced CUSUM Algorithm for Anomaly Detection 83
Wei Lu and Ling Xue

 8 Conclusion: Future Trends and Challenges ... 97
Issa Traoré, Ahmed Awad, and Isaac Woungang

Index ... 101

Contents

1© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_1

Chapter 1
Introduction: Emerging Threats Call for New
Security Paradigms

Issa Traoré, Ahmed Awad, and Isaac Woungang

1.1 Emerging Threats Landscape

Hacking incidents have become so commonplace that no organization seems out of
reach for hackers. Even the US National Security Agency (NSA) seemed to have
been the victim of successful hacks, as witnessed by recent public document dumps
related to sensitive cyber warfare tools and technologies used by this organization.
No day passes by without news reports on new hacking incidents. While two
decades ago, most hackers were script kiddies motivated primarily by simple curi-
osity or the need for fame, many hackers, today, are professionals seeking financial
gains, or conducting political activism, or involved in state-sponsored cyber
espionage.

Today’s hackers are emboldened by the unprecedented level of sophistication of
the current hacking utilities. There is an underground software industry which
develops and licenses malicious software tools and payloads for cybercriminals.
The organizations involved in this illicit market provide to their customers the same
services as legitimate software companies (e.g., regular updates), except that those
customers are criminals.

The pinnacle in the sophistication is the so-called Exploit Kits (EKs), which
federate in automated platforms most of the emerging hacking threats vectors
(Eshete et al. 2015). These kits are professionally developed hacking apparatus,

I. Traoré (*)
Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada
e-mail: itraore@ece.uvic.ca

A. Awad
New York Institute of Technology, Vancouver, BC, Canada

I. Woungang
Ryerson University, Toronto, ON, Canada

mailto:itraore@ece.uvic.ca

2

which include sophisticated command and control (C&C) software servers, and fed
from constantly updated repositories of malware payload and exploit code. EKs are
marketed in the dark web (underground cyber world) and make heavy use of auto-
mation by making it possible to install malware payload on remote machines and
controlling infected machines from a remote Web site. Infection happens when
potential victims visit a compromised site (under control of the criminals) or click
on links (sent by spam or instant message) to a Web site with the exploit kit installed.
By fingerprinting the victim’s browser, the kit selects which exploit to use according
to the country of origin, browser type and version, operating system type and ver-
sion, etc. Successful exploitation is then followed by installing malware code and
taking control of the victim’s machine. The scariest aspect of this is that it all hap-
pens automatically and transparently in the background without the victim’s knowl-
edge about it. In a few clicks, your machine is infected with the latest malware and
becomes part of a network of zombies controlled remotely.

EKs represent a unifying framework for the latest cyber security attack vectors
and tools. Around EKs revolves a nebula of emerging cybersecurity threats, includ-
ing botnets, ransomware, and banking Trojans. Since its appearance a decade ago,
botnet technology has evolved in sophistication, by adopting more complex com-
mand and control architecture and communication schemes, and less-prone to dis-
ruption domain naming scheme (Zhao et al. 2013).

Early botnets used centralized architecture for transmitting C&C messages. The
most prevalent communication protocol used in those earlier botnets was the
Internet Relay Chat (IRC). However, this type of botnet is easy to detect and disrupt
due to the single point of failure embodied by the IRC server, which manages the
C&C communications. Once the server is shut down, the botmaster loses control of
the network of bots.

The next generation of botnets, which started appearing a decade ago, addressed
the aforementioned weakness by using peer-to-peer (P2P) protocols (e.g., eDonkey)
for command and control (Zhao et al. 2013). Due to its distributed and resilient
control structure, P2P botnet is harder to shut down than an IRC-controlled botnet.
However, in the last few years, as more knowledge has been acquired about P2P
botnets, more effective solutions have been proposed to detect them and mitigate
their impact.

As a result, more recently, there have been a shift in the control of many botnets
from IRC and P2P channels to Web sites, using HTTP—a common protocol. Due to
the prevalence of http communications and sites, detecting botnets that use http
protocols is much harder (Garasia et al. 2012; Venkatesh and Nadarajan 2012; Tyagi
and Nayeem 2012). Many organizations host Web sites for regular business activi-
ties and as such enable http communications. Hence, it is easy for http-based botnets
to evade detection by hiding their command and control messages in legitimate http
traffic.

Based on exploitable vulnerabilities, different kinds of payloads can be installed
on the victim’s machines, capable of achieving specific goals. One of the most com-
mon and deadliest ones consists of taking remote control of the machine. This
allows the hacker to spy on the activities of the victim and steal private information

I. Traoré et al.

3

(e.g., photos, credit information, social security numbers, and emails). Such
 information can be used to blackmail or embarrass the individuals. For instance, in
the case of politicians and celebrities, it can be used in a more targeted ways to
achieve specific outcomes, such as influencing election results or discrediting the
victim.

This may also be used to install specialized Trojans and spy or interfere with the
victim’s online banking transactions. Furthermore, taking remote control of the vic-
tim’s machine provides a pathway to enrolling it in a botnet (which is merely a
network of enslaved machines), and using such botnet to conduct large-scale activi-
ties such as spreading spams or conducting distributed denial of service (DDOS)
against potential targets. Instead of using directly enslaved machines, some hackers
specialize in renting them to other scammers through the criminal black market.
Those scammers can then use the machines to carry out directly the aforementioned
scams.

Another deadliest type of payloads, which appeared in the last few years, is ran-
somware (Lee et al. 2016). After infecting the victim’s machine, the malware col-
lects basic machine identification information (e.g., Mac address, IP address, user
account information) and sends those information to the hacker’ C&C server. The
C&C server generates a pair of public/private key (using algorithms such as RSA),
stores locally the private key, and sends the public key to the malware client on the
victim’s machine. The malware uses the public key to encrypt selected files (which
are in general important data files) and then displays a message for the victim. In
general the message will inform the victim that his/her files have been encrypted
and that he/she should pay a ransom to be able to recover those files. The message
will also contain directions to pay, which most of the time consists of opening a
bitcoin account and transferring the ransom payment using such currency. Quite
often, the message will include a payment deadline beyond which the amount will
increase (e.g., double, triple, and so on). In case, where the ransom is paid, the vic-
tim will receive the private key and can then decrypt and restore the files.

To make it harder to trace them, hackers use privacy-preserving networks such as
TOR for communications. It is the same line of thought which is behind using bit-
coins for payment. While electronic cash such as bitcoins has been designed origi-
nally to exhibit the same traits as paper cash (i.e., user and transaction anonymity,
payment and cash untraceability, and cash transferability), those same characteris-
tics are turned on its head by criminals to perform illicit cash transactions online.
Tracing those transactions is extremely difficult due to the underlying e-coin system
design.

Malware designers and writers have become better and better at evading detec-
tion by using an arsenal of sophisticated deceptive techniques. For instance, differ-
ent techniques are used to identify the presence of specific brands of antivirus
software and circumvent them or fight back when virus scan is triggered, for instance
by launching a denial of service against the victim.

One of the lifeline of most malware is the ability to communicate with the C&C
server hosted by the hacker. While this is crucial for the malware, it makes it vulner-
able, as antivirus software can monitor and detect such communications. The

1 Introduction…

4

address of the C&C server used to be hard coded in some of the earlier malware
payload. However, it became quickly clear that either through reverse-engineering
of malware code or by monitoring the C&C traffic, it is easy to identify, block, and
blacklist the C&C address. In the last few years, more sophisticated techniques
using fast flux DNS technique and domain generation algorithms (DGA) have
appeared that increase stealthiness.

Fast flux DNS consists of linking a fully qualified domain name with a large
number (hundreds or thousands) of individual IP addresses and swapping these IP
addresses around in extremely short time periods (e.g., a few seconds or minutes)
(Zhao and Traore 2012). Fast flux networks establish a level of indirection, by hav-
ing the front end nodes serving only as redirectors to backend servers which actu-
ally serve requests. When some query is made to a malicious domain, the redirectors
forward effectively the request to the actual C&C server which then processes it and
returns the response.

DGA may either build or not on the fast flux network infrastructure. DGA con-
sists of a mechanism used by malware to generate on the fly new domain names that
would be used to contact the C&C server (Schiavoni et al. 2014). The generation of
the new domain may be based on a seed and environmental factor such as time/date,
and location, known only by the C&C server and the malware payload. The mal-
ware payload will generate a bunch of these domains and try to connect to the C&C
server through trial and error until one of the domains is successful. The C&C server
operators executing the algorithms and knowing the correct parameters will gener-
ate, register, and activate only one or a few of these domains. Such process is
repeated on a regular basis, enabling hackers to move the C&C servers around con-
tinuously, making detection extremely harder.

In the emerging threats landscape, one of the serious threat vectors is stolen iden-
tity. Stolen identities are hot commodities in the underground online black market.
Often now and then, we hear such and such site has been hacked and private users
information such as social security numbers, addresses, credit card information (and
so on) have been compromised. Quite often, such hacks go unnoticed for a long period
of time. The proceeds of these hacks typically end up being sold online in the black
market. Stolen identity pieces are packaged as what is known as “fullz” and sold for
pennies to cyber criminals, who can use them to create seemingly legitimate accounts
and conduct illegally transactions such as online auctions and online banking.

1.2 Next Generation Cybersecurity Systems

In the emerging threat landscape outlined above, we are faced with an arms race,
where hackers are turning defensive technologies on their heads by coming up with
smarter and increasingly sophisticated malicious software tools and payloads.

In this context, security researchers and practitioners must develop new security
paradigms by rethinking conventional protection approaches and architectures. The
new paradigms should provide more reliable means of defining and enforcing

I. Traoré et al.

5

human identification. Since digital identity is central to any actions on computing
devices, ensuring the integrity and genuineness of such identity is crucial. Due to
the increasing role of automation in malicious activities, it is also important to
define reliable signatures and patterns exposing malicious automation agents and
activities. By the same token, differentiating human-driven activities from robot-
driven automated actions is essential.

The Information Security, Assurance, and Trust (I-SAT) workshop series has
been established with these goals in mind. Its primary objective is to bring together
security practitioners and researchers from government, academia, and industry to
present and discuss ongoing work and innovative solutions against emerging secu-
rity threats.

A diversity of themes are covered in subsequent chapters. Specifically four dif-
ferent themes are tackled in the proceeding. The first theme is a discussion on botnet
architecture and evasion techniques against existing botnet protection strategies.
The second theme relates to the analysis of hardware Trojans. While in the security
community there is greater awareness of malicious software, malicious hardware is
still an esoteric topic for most researchers and practitioners. However, the threat of
malicious hardware is real and represents a great concern in areas such as cyber
warfare and cyber terrorism.

The third theme revisits some key limitations of existing intrusion detection sys-
tems, which have been persisting, and proposes a different take on how these could
be addressed.

Finally, the fourth theme covers new approaches and applications of software-
based biometrics. Software-based biometrics represent a growing field of research
which seeks to answer critical challenges related to the genuineness of human iden-
tity, and by extension how human behavior can be discriminately accurately from
automated robot-driven behaviors.

As an indication of the importance of this emerging field, DARPA (US Defense
Advanced Research Project Agency) has launched in January 2012 a new Research
and Development program for innovative software-based biometric modalities to be
used by over two million US military personnel (DARPA Broad Agency
Announcement 2012).

According to the DARPA announcement, the main rational behind the new pro-
gram is the fact that traditional approach for “validating a user’s identity for authen-
tication on an information system requires humans to do something that is inherently
difficult: create, remember, and manage long, complex passwords. Moreover, as
long as the session remains active, typical systems incorporate no mechanisms to
verify that the user originally authenticated is the user still in control of the key-
board. Thus, unauthorized individuals may improperly obtain extended access to
information system resources if a password is compromised or if a user does not
exercise adequate vigilance after initially authenticating at the console.”

The main goal of the new program termed by DARPA as the “Active Authentication
Program” is “to change the current focus from user proxies (e.g., passwords) when
validating identity on DoD IT systems to a focus on the individual. Within this pro-
gram, the intention is to focus on the unique factors that make up the individual, also

1 Introduction…

6

known as their biometrics, without requiring the deployment of additional hardware
sensors. Research resulting from this BAA (Broad Agency Announcement) will
support that overall program intent by investigating novel software-based biometric
modalities that can be used to provide meaningful and continual authentication
when later integrated into a cybersecurity system.”

References

DARPA Broad Agency Announcement # DARPA-BAA-12-06 (2012) http://www.darpa.mil
Eshete B, Alhuzali A, Monshizadeh M, Porras P, Venkatakrishnan V, Yegneswaran V (2015)

EKHunter: a counter-offensive toolkit for exploit kit infiltration. In: NDSS symposium, 8–11
February 2015, San Diego, CA, USA

Garasia SS, Rana DP, Mehta RG (2012) HTTP Botnet detection using frequent pattern set mining.
Int J Eng Sci Adv Technol 2(3):619–624

Lee JK, Moon SY, Park JH (2016) CloudRPS: a cloud analysis based enhanced ransomware pre-
vention system. J Supercomput. doi:10.1007/s11227-016-1825-5

Schiavoni S, Maggi F, Cavallaro L, Zanero S (2014) Phoenix: DGA-based Botnet tracking and
intelligence. In: Dietrich S (ed) DIMVA 2014, LNCS, vol. 8550. Springer, Heidelberg,
pp 192–211

Tyagi AK, Nayeem S (2012) Detecting HTTP Botnet using Artificial Immune System (AIS). Int
J Appl Inf Syst 2(6):38–45. ISSN: 2249-0868, Foundation of Computer Science FCS,
New York, USA. www.ijais.org

Venkatesh GK, Nadarajan RA (2012) HTTP Botnet detection using adaptive learning rate multi-
layer feed-forward neural network. In: Askoxylakis I, Pöhls HC, Posegga J (eds) WISTP 2012,
LNCS, vol. 7322. International Federation for Information Processing (IFIP), Laxenburg,
pp 38–48

Zhao D, Traore I (2012) P2P Botnet detection through malicious fast flux network identification.
In: 7th International conference on P2P, parallel, grid, cloud, and internet computing-3PGCIC,
12–14 November 2012, Victoria, BC, Canada

Zhao D, Traore I, Sayed B, Lu W, Saad S, Ghorbani A, Garant D (2013) Botnet detection based on
traffic behavior analysis and flow intervals. Comput Secur 39:2–16

I. Traoré et al.

http://www.darpa.mil/
http://dx.doi.org/10.1007/s11227-016-1825-5
http://www.ijais.org/

7© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_2

Chapter 2
Botnets Threat Analysis and Detection

Anoop Chowdary Atluri and Vinh Tran

2.1 Introduction

A botnet is a collection of Internet computers that have been set up to execute
unintended operations. The owners of these machines often are not aware of the
status of their devices, which is due to a lack of protection on the computers (e.g.,
no antivirus or firewall). When a computer without basic protection is used to
browse the Internet, the user may click on a number of different links as well as
download many types of files. If the files are Trojan/malware, they can automati-
cally create a backdoor to communicate to the command center and hide their
processes from the end user.

This chapter gives a walkthrough of the botnet phenomenon by centering the
discussion on some famous examples, which are also representative of some of the
main bot families available.

The chapter starts with a brief historical review and a discussion of botnets archi-
tectures. This is followed by a review of famous botnets examples, a discussion of
techniques used by botnet to evade detection, and finally, a review of protection
techniques and strategies.

2.2 Evolution of Botnets: History and Topologies

Botnet evolution started with Sub7 (a trojan) and Pretty Park (a worm) in 1999; both
introduced the concept of a victim machine connecting to an IRC channel to listen
for malicious commands (Ferguson 2015a, b). Then it comes to the Global Threat

A.C. Atluri • V. Tran (*)
New York Institute of Technology,
701 West Georgia Street, 17th Floor, Vancouver, BC, Canada, V7Y 1K8
e-mail: ranlucvinh@gmail.com; atlurianoop.4@gmail.com

mailto:ranlucvinh@gmail.com
mailto:atlurianoop.4@gmail.com

8

Bot (Gtbot) in 2000; this botnet is based on the mIRC client which makes it possible
to run custom script depending on the IRC commands. One of the most famous
Gtbot attacks is to scan for host infected with Sub7 and update it to Gtbot.

In 2002, two new botnets were introduced, called SDBot and Agobot. SDBot
was a single binary file, written in C++. The corresponding code was commercial-
ized, and as a result, many new botnets were born inspired from it. Agobot, on the
other hand, was considered a more advanced botnet, which suggested the principle
of modular, staged attacks as payloads. Agobot infection comprises of three stages:
first stage consists of installing a backdoor, then trying to disable the host antivirus,
and lastly blocking access to websites of known security vendors.

In 2003, Spybot was created, as a transformation of SDBot. This new botnet
introduced some new functionality such as keylogging, data mining, and SPIM
(instant messaging spam). Rbot was also surfaced in the same year. This bot
introduced the SOCKS proxy and included DDOS feature and information steal-
ing tools. Moreover, the bot was also the first one to use compression and encryp-
tion to avoid detection. The year 2004 saw the rise of Bagle and Bobax, the first
spam botnets. In 2006, ZeuS or Zbot was introduced and is still now one of the
world most famous botnets. The year 2007 saw the birth of Storm, Cutwail, and
Srizbi botnets.

The history of botnets closely correlates with the evolution of botnets topologies
and architectures. Botnets are implemented using different topologies, including the
following four main architectures (Ollman 2009):

• Star: This hierarchy (see Fig. 2.1) allows the bot to communicate directly with its
master. This approach helps the simplest one; it facilitates bot management and
makes sure the communication between both the parties are fast and accurate.
However, it suffers from single point of failure and system administrators can
easily block the connection to the master.

• Multi-server: This topology (see Fig. 2.2) is a more advanced form of the Star
architecture. It tackles the problem of single point of failure and also makes sure
that the bots can reach its closest geographical master (assuming the C&C serv-
ers are set up in multiple countries). Nevertheless, this hierarchy requires more
effort to set up and plan from the master.

• Hierarchical: This topology (see Fig. 2.3) allows a bot to act as a supervisor for
a group of other bots. The supervisor bot can directly connect to the master and
update instructions/code base. This approach hides the presence of the master
and makes tracing back to the master more difficult. Also, botmaster can easily
share/lease/sell a portion of the botnet to other botmaster. Nonetheless, this
architecture adds a level of latency to the update between bots, because the
lower-level bot needs to wait for instructions sent from the supervisor bot, mak-
ing real-time attack harder than the previous topology.

• Random (Peer to Peer): The last design (see Fig. 2.4) is called random or peer to
peer (P2P). This is by far the most advanced topology in botnet. Any bot agent
can send/forward commands to the next one; these instructions are often designed

A.C. Atluri and V. Tran

9

Fig. 2.1 Star formation

Fig. 2.2 Multi-server formation

2 Botnets Threat Analysis and Detection

10

in a way that it can pass on to the next available node in the net. This method
allows the botmaster to avoid detection/shutdown, as it would take a considerable
amount of time to trace the communication between bots. However, the design
helps researchers to track down the infected hosts easily, since monitoring one
bot can reveal information about its communication with others.

Fig. 2.3 Hierarchical formation

Fig. 2.4 Peer to peer
formation

A.C. Atluri and V. Tran

11

2.3 Famous Botnets

There are a great number of botnets worldwide; however, most botnets have similar
functionality and often are variants of some previous botnet. This chapter only
focuses on ZeuS, Koobface, and Windigo as examples of popular botnets. The rea-
son for picking these is that ZeuS is one of the early botnets that still remains famous
until now, and it has gone through multiple waves of revolution. As for Koobface,
this botnet represents a new form of malware that spreads through online social
network, and using user’s friend list as a means of propagation. Lastly, Windigo
represents one of the few famous botnets targeting primarily Linux platforms.

2.3.1 ZeuS or Zbot

Overview: ZeuS is a family of credentials-stealing trojans which first surfaced
around 2007 (Andriesse and Bos 2014). Since then, ZeuS has grown to be one of the
world’s most famous botnets. Older versions of ZeuS, which relied on IRC
Command Center, have been studied by scientists and security professionals
(Falliere and Chien 2009). In 2011, a more advanced version of ZeuS was intro-
duced, called GameoverZeuS. This variant uses P2P with encryption instead of IRC
channel. The modern Zeus versions with advanced features such as encryption and
communication pattern not only harden detection process but also prevent the net-
work from being infiltrated by “outsiders.”

Encryption: Early versions of ZeuS use a simple mechanism for encryption, known
as “visual encryption,” which basically encrypts each byte by XORing with the
preceding byte (Andriesse et al. 2013). Later versions introduce RC4 encryption.
“Outsider” bots, which are used by researchers and security personnel, to penetrate
the network, becomes counterproductive, since the fake bot needs to know under
what identifier it is known to other bots in the network in order to decrypt the
message.

Communication pattern: (Andriesse et al. 2013) Zeus maintains a passive and an
active thread. The passive thread acts like a server, listening for incoming request.
The sender’s information of any successful handled request is stored in a bot’s peer
list. On one hand, if the receiving bot already has more than 50 peers in its list, the
sender bot data will be saved in a queue for future peer list update. However, the
sender bot will be automatically added if the peer list is 50 or less. On the other
hand, if the sender identifier is already on the list, all information (such as IP and
ports) is updated, to keep a fresh connection with its peer.

The active thread runs in a cycle and automatically repeats after a specified
amount of time. In each iteration, the bot attempts to connect every peer in its list,
asking for updated version of binary and configuration file. Each peer has five
chances to reply to the request; if there is no response after five times, the bot will

2 Botnets Threat Analysis and Detection

12

first check if it actually made the request to the recipient by checking for Internet
connection; then depending on the Internet status, it will drop the unresponsive peer
and update the list. Moreover, if the bot has less than 25 peers, it will try to connect
to all its neighbors asking for the neighbor’s peer list. This mechanism assures the
botnet network always stays fresh and long-period-disconnected bot can recover
quickly even with a minimal number of peers.

2.3.2 Koobface

Overview: Koobface is one of the first malwares to target online social networks
(OSN) (Baltazar et al. 2009; Thomas and Nicol 2010; Sophos Press 2007). The
botnet first appeared around early 2009 and has caused severe damage to social
networks users. The koobface malware, unlike others, has its binary split into mul-
tiple modules, each of which has a separate functionality that handles different type
of OSN. Additionally, instead of spreading through spam email, the malware uses
OSN messaging service to propagate. This is a very effective way to escalate the
infection, as people often have no doubt about their friend’s messages (Fortinet
White Paper 2013). Once clicked on the link in the message, user will be redirected
to a fake page, created by social engineering toolkit (usually fake YouTube page).
Here, users will be asked to install a fake plugin in order to view the content. The
fake plugin is the koobface downloader, which will attempt to find out the OSN the
user is using and then download the necessary components accordingly. As of 2009,
the malware was able to identify a significant amount of various OSN such as
Facebook, Twitter, MySpace, Friendster, Hi5, Netlog, Bebo, and so on.

Features: This botnet not only breaks captcha by forcing other infected machine’s
user to solve it but also creates fake OSN accounts in order to befriend with poten-
tial victims. Research has shown that a normal user has 41 % probability to accept a
friend request from strangers on Facebook (Irani et al. 2011); this is why KoobFace
has become so successful and led the way for a new form of malware that spread
through OSN.

2.3.3 Windigo

Overview: The botnet has a long history (Bilodeau et al. 2015), starting from 2011;
it comprises of a few different malwares which take care of different tasks. Most of
the modules (e.g., Linux/Ebury, Linux/Cdorked, Linux/Onimiki), however, are spe-
cialized in compromising linux servers (e.g., web, dns servers). There are also two
other malwares (Win32/Boaxxe.G and Win32/Glubteta.M) targeting Windows
computers’ end users. Like any other modern botnet, Windigo also carries out a
number of tasks ranging from sending spams, drive-by downloads, advertisement

A.C. Atluri and V. Tran

13

fraud, and credentials stealing; however, one important point to notice is the main
victims are Linux servers, which mean they have more resources, bandwidth, and
also have more potential to reach end users via web servers. The main Linux com-
ponents are summarized in the following.

Linux/Ebury (Bilodeau et al. 2015): main functions are creating backdoor shell and
credentials stealing. One of the outstanding attributes of this malware is its ability
to run in a very stealthy way, because maintaining an SSH backdoor shell is a dif-
ficult task. In order to do this, the creator has applied many different techniques, and
some of them are as follows:

• Utilize linux pipes as much as possible
• Leave no information in log files
• Alter OpenSSH binaries code at runtime instead of modifying the current files on

disk
• Use a centralized backdoor in a library

Linux/Cdorked (Bilodeau et al. 2015): It is used to redirect traffic from infected
servers to malicious sites; some of the most common web servers (apache, nginx)
have been infected with variants of this malware. In order to deploy this malware,
the botnet uses previously installed Linux/Ebury to download a complete source
code of the web server; it also gets another patch from an infected server. Then the
patch is applied on to the new source code and a new binary is compiled, after that,
the original web server binary is replaced by the new malicious binary. When mak-
ing a redirection, the malware tries to guess if the current user is a system admin by
checking a number of url keywords and cookies; this mechanism allows the mal-
ware to act under the radar and thus avoid detection.

Linux/Onimiki: It is a domain name service component which acts together with
Linux/Cdorked. Whenever a redirection is made from a Cdorked infected
machine, Onimiki will try to resolve the domain name in the url. It is also noted
that Onimiki uses BIND name server and this offers a number of advantages,
such as the following:

• It is stateless and requires no configuration when Onimiki is installed, thus allow-
ing the malware to act alone without any further interaction with the operators.

• It allows fast rotation of subdomains and legitimate domains.
• Its reputation of the legitimate domains helps Onimiki avoid blacklisting.

Table 2.1 summarizes the main features of the three botnets examples considered
above.

2.4 Botnet Detection Evasion Techniques

Botnet uses many different methods to avoid detection; some popular techniques
are as follows:

2 Botnets Threat Analysis and Detection

14

• Domain generation algorithm (DGA or Domain Flux): According to Khattak
et al. (2014), DGA is an approach to dynamically generate the C&C address. The
botmaster builds a specific mechanism to randomly create the server address and
sets up the DNS record to point the address to the C&C. An example using this
technique is ZeuSGameover malware (Andriesse et al. 2013); the algorithm is
triggered when all peers are unresponsive or the bot fails to update for more than
a week.

• IP flux (Shin and Gu 2010): this technique is similar to DGA, but instead of
associating multiple domains with one IP, it attempts to alter DNS records to
have various IP addresses linked to one domain. The method is aided with the
help of Dynamic DNS. IP flux has two different types:

 – Single FLUX: the idea is to have intermediaries between the bot clients and
bot master, providing a layer of anonymity for the bot master. These middle
layer machines are often called “proxy bots,” which are also infected machines
chosen by the master.

 – Double flux: is an advanced version of single flux, which abstracts the domain
name and IP address of the proxy bots. When bot agents try to connect to
proxy bots, they will be redirected to name servers controlled by the master.
These name servers will handle the domain name matching and generating,
and make sure that name and IP pairs change frequently so the connection
will not be blacklisted or blocked.

• Binary obfuscation (Shin and Gu 2010): the bot client uses various techniques to
defeat host-based security application, one of which is polymorphism. It is an
attempt to reconstruct the bot into different forms but still maintain the same

Table 2.1 Comparison of Zeus, Koobface, and Windigo

Zeus/Zbot Koobface Windigo

Infection
vectors

Infection vectors vary
widely; some main
mechanism are spam,
drive-by download

Mainly through online
social network

Spread through linux
servers

Features A DIY bot that is
features-rich, easy to use.
Underground criminals
can easily purchase a
copy of Zeus and build a
version of this malware.
Maintaining a
sophisticated P2P network
which makes taking down
operation harder

Can detect multiple
online social network
and has various
components that can
act differently
depending on the
detected online social
network. Break captcha
by forcing users to
solve it

Although this botnet
mainly targets linux
servers, it has the
ability to take control
of the windows
machines which
established connection
to the infected linux
servers

Availability
and
distribution

Freely available with
purchasability makes
Zeus the most popular
botnet

Not available for
purchase

Not available for
purchase

A.C. Atluri and V. Tran

15

functionality, by using encryption or packing. Some advanced packers can build
a completely different binary for every packed request. Despite success in hiding
its identity, the bot binary can still be detected while executing due to memory-
based detection approach. To work around this problem, the bot agent uses
another practice called metamorphism, which gives the bot the ability to be
rebuilt into different, but semantically equivalent code.

• Security suppression: When infecting a weak machine, the malware attempts to
disable all or several security services on the host. For example, (Bilodeau et al.
2015) the malware Conficker will attempt to disable some security service in
Windows when infected; it also sets up a blacklist which prevents users to access
certain security site.

• Anti-analysis: Certain botnets have the ability to scan the environment which
they are running on, and depending on the results, they can disable/change
their behaviors to appear harmless or mislead the researchers. This technique
was quite popular in the early days of botnet, but after the explosion of virtual
technology, this method is being forgotten as criminals also want to target vir-
tual users.

Table 2.2 summarizes the evasion techniques outlined above.

2.5 Botnet Detection Methodologies

Botnet Detection techniques can be grouped in various categories. Figure 2.5 depicts
those different categories, which include both active and passive techniques
(Plohmann et al. 2015; SANS Institute InfoSec Reading Room 2015).

Table 2.2 Botnet detection evasion techniques summary

Domain
generation
algorithm

A mechanism which allows bot agents to connect with master through a
variety of different domain names. The bot master takes care of generating
the domain name and sets up the servers; the agents will have a list of
names to try connecting to

Single flux Bot master chooses some infected machines to become proxy bots or fake
master. This technique helps the master to become harder to track down
and thus stay alive longer

Double flux An advanced version of single flux, which takes the connection to another
level by adding the complexity of domain name generation

Binary
obfuscation

To defeat the host-based defense, bot agents can be built into different
binary form, but still maintaining the functionality. This technique is
carried out often by encryption and packing

Security
suppression

Certain types of botnets have the ability to disable local security service
and also block users from finding a security solution

Anti-analysis Some early day botnets have the ability to change its behaviors based on
the environment it’s running on

2 Botnets Threat Analysis and Detection

16

2.5.1 Passive Techniques

Passive measurement techniques are a group of few methodologies where data is
gathered through monitoring and observation alone. Using passive measurement
techniques, we can track activities without interfering the production network or
making changes in any kind of evidence. There will always be a limited amount of
data which can be collected from passive methods and this data can be used for
analysis (Plohmann et al. 2015).

2.5.1.1 Packet Inspection

The most common methodology under passive botnet detection system is Packet
Inspection of local network data. The main objective of this technique is to ensure
various parameters of packets are matched like protocol field, identification, flags,
and content with huge database of predefined abnormal and suspicious behavior
which allows identifying bots by analysis of data only.

For instance, there might be a data packet consisting of shell script code which is
being used to inject malware in network and that particular malware is communicating

Botnet Detection
Methodologies

Passive

Packet Inspection Analysis of flow Sinkholing
DNS Cache
Snooping

Infilteration
Tracking of Fast-

Flux Network
Analysis of spam

records

Honeypots

Software feedback

DNS Based
Approaches

Analysis of
(application) log

files

Evaluation of anti-
virus

Active

Fig. 2.5 Botnet detection methodologies tree

A.C. Atluri and V. Tran

17

with the public address which can host the data. The predefined patterns are also
referred to as detection signatures.

The main characteristic of packet inspection approach is that it can be incorpo-
rated in typical Intrusion Detection Systems (IDS) where attacks are identified
based on predefined signature database. The inspection service runs in two deploy-
ment modes, which include as a single appliance for entire network that is known as
network-based detection system (NIDS), and Host-Based Network Detection service
(HIPS) where every node of the network runs a separate instance of the detector.

Intrusion detection system is primarily used to just detect the malicious activities
and they are reported to network administrator, and network administrators are
responsible to take action on infected areas.

Some commonly identified drawbacks of intrusion detection or prevention tech-
niques include the fact that when the network traffic flow is very high it is difficult
to perform complete inspection of the packets. If we make use of techniques like
packet sampling or packet filtering prior to analysis, chances of missing malicious
packets are too high.

Furthermore, intrusion detection systems are known for their high false alarm
rates, which is a serious limiting factor.

2.5.1.2 Analysis of Flow Records

Analysis of flow records can be considered as a technique for tracing network traffic
at a nonrepresentational level. In the packet inspection approach, the packet is
described to some level of details; each and every packet should be inspected in an
aggregated form. In the flow record approach, when a data stream is considered for
analysis it goes under a process where several parameters are matched. These
parameters include addresses of the source and destination, port numbers and the
protocol which is used in the packets, how many packets are transmitted, and size
and duration of the session.

Net flow can be considered as one of prominent examples for the analysis of flow
record format. Like with packet inspection, the main aim of flow record analysis is
to differentiate and identify the traffic patterns by creating a scheme to detect mali-
cious traffic.

2.5.1.3 DNS-Based Approaches

A connection should be initiated and established with infected hosts or command-
ing server by considering botnet infrastructure whenever hosts have been infected
by a botnet. This can usually be achieved by integrating a communication protocol
with the malware. This can be done in two ways as follows.

An IP address can be integrated into the bot, which will be executable upon dis-
tribution, but the IP address should be fixed. A predefined domain name should be
used, which will be contacted if the host system is compromised. To avoid downtime

2 Botnets Threat Analysis and Detection

18

by providing redundancy, multiple IP addresses can be associated or mapped with a
single domain name. On demand, these IP addresses can be changed to dynamic
whereby they are not configured for static use (Plohmann et al. 2015).

2.5.1.4 Analysis of Spam Records

Spam emails are irrelevant messages sent to a large number of users. Spam repre-
sents a common drive of botnets. The analysis of spam records provides a method
of identifying and anticipating botnet infection attempts. Unlike DNS-based
approaches, which target primarily the C&C phase, spam analysis aims at detecting
botnets at the infection phase, and this technique will eventually detect botnets that
essentially do spamming. Spam analysis involves identifying regular emails com-
munications and distinguishing illegitimate message contents.

Distinguished patterns of spam mails are produced by the bot eventually forming
the foundation or base for botnet detection. The content of message offers a good
initiation point for matching and characterization of messages related to the email
protocol header and content.

The correct placement of spam traps will be helpful summation to this schema.
Usually spam traps are mailing addresses with no prolific functionality other than to
accept unrecognized and unwanted mails and can be distinguished as a distinct vari-
ety of honey tokens or honeypots.

2.5.1.5 Analysis of (Application) Log Files

It is common practice for devices and applications to maintain records of events
related to different operational aspects in the form of log files.

Log files analysis is a secondary approach of botnet detection system. The basic
analysis is done using network devices log files, which come as a basic match
method from entire network devices; this analysis can be done in parallel over entire
range of network devices.

2.5.1.6 Honeypots

Figure 2.6 depicts a network architecture with two honeypots (A and B). A honey-
pot is a dedicated machine with a purpose of exposure to outside (i.e., Internet) with
a focused goal to attract attackers and learn attacking methods or even to get com-
promised by malicious activities. In this setup, the network is always secured in the
backend and only honeypots are kept visible by exposing them to the outer world.
Honeypots help administrator to understand the attackers’ techniques against the net-
work and develop and deploy adequate security policies and mechanisms for
protection.

A.C. Atluri and V. Tran

19

There are different types of honeypots including the following:

• Client and server honeypots
• Low interaction honeypots

The main motive for using honeypots in botnet analysis is the opportunity to col-
lect different data about the practices and strategies used by inventors of malware
and hackers. In general, two types of data can be collected by honeypots:

• Types of attack vectors in OS and software used for attacks, as well as the real
exploit code which links to them.

• Actions done on an exploited workstation. These can be noted, while malware
loaded on to the workstation can be conserved for further analysis.

2.5.1.7 Evaluation of Antivirus

This approach simply consists of relying on existing antivirus software capability.
Different antivirus products have different signature databases, with some overlap-
ping signature set. New generation of antivirus systems not only pushes updates

Fig. 2.6 Honeypot network

2 Botnets Threat Analysis and Detection

20

regularly to their clients, but they also learn from new instances of viruses occurring
at specific endpoints, by pulling information from the clients. So it is a two-way
communication stream.

2.5.1.8 Software Feedback

Software installed in the user work stations and data flow in network are analyzed
and automated feedbacks of software reported to vendors. In this scenario of net-
work each host machine acts as a sensor and the entire network is converted into a
big sensor network (Plohmann et al. 2015).

2.5.2 Active Techniques

The group of active methods contains methods that involve communication with the
information sources being observed. While these allow deeper probing and analysis,
their application may leave traces that impact consequences or include events that
can be observed by the concerned. This can cause counter-reactions, such as a
DDoS attack or trigger other attempts at evading detection.

2.5.2.1 Sinkholing

This is a process of mitigating botnets by cutting off the source and breaking of
communication between bots and C&C server.

As shown in Figs. 2.7 and 2.8, sinkholing consists of redirecting requests from
the bot to the sinkhole (typically a server under control of the good guy) rather than
letting such communications go through to the C&C server.

If one or more domains with fixed IP addresses are used by the malware, then
discovering and blacklisting them will quarantine the specific malware examples
that rely on them, making those useless. By using the direct IP addresses, there is no
need of the DNS queries and the botnet can be terminated by deregistering the
domain name (Plohmann et al. 2015).

This approach could help discover more malicious activities beyond the initial
detection. For example, if a domain is identified as malicious, it is known that all
incoming queries for this entry are given out by infected hosts with high probability.

2.5.2.2 DNS Cache Snooping

As shown in Fig. 2.9, DNS Cache Snooping approach leverages the caching prop-
erty implemented and used by several DNS servers. If a DNS server is asked for a
domain for which it has no entry defined, it will issue a query towards the respon-
sible authoritative name server on behalf of the querying client and store the resul-
tant data record later in a local cache. Caching is mainly used to increase the
performance of a name server and reduce its traffic load.

A.C. Atluri and V. Tran

21

Fig. 2.7 Sinkhole attack

Fig. 2.8 Sinkhole redirection

2 Botnets Threat Analysis and Detection

22

Cache snooping approach consists of analyzing the caches to identify illegitimate
or unexpected DNS queries, which potentially could point to botnet presence.

2.5.2.3 Infiltration

Infiltration techniques can be divided into software- and hardware-based techniques.
Software-based infiltration technique can be used to monitor the traffic and bots
executable to achieve control of bots in network whereas hardware-based infiltra-
tion allows to access command and control server and also to wiretap the communi-
cation between the nodes.

This usually requires the reverse engineering of the botnet infrastructure. This infil-
tration is a precise analysis which is useful for identification of potential weakness of
infrastructure. The extracted knowledge is always very useful to achieve a command-
ing position in fighting back against botnet infection (Plohmann et al. 2015).

2.5.2.4 Tracking of Fast-Flux Network

Fast-flux networks consist of linking a single or few domain names with a large pool of
IP addresses controlled by the botmaster, as illustrated by Fig. 2.10. Botnets use fast-
flux networks to introduce secrecy of their actions and grow the consistency of their
network and command configuration. This increases the stealth of the botnet, making
detection of the C&C server much harder. Fast-Flux networks use promptly altering
DNS records, indicating at a large number of hosts, and substitute as supplementary

Fig. 2.9 DNS cache snooping

A.C. Atluri and V. Tran

23

proxy layer to hide the actual content delivery systems. The proxy nodes are usually
compromised workstations of the botnet itself (Plohmann et al. 2015).

Typically, the IP address assigned by the botmaster DNS Server is valid for only
a few minutes that is indicated by the Time to Live (TTL) value.

The detection approach used in this case consists of monitoring and identifying
the DNS server with low TTL values. Correlating such information with other
parameters could expose the presence of botnet activity.

2.6 Defense Against Botnet Using Network Security Devices

Traditional network security appliances and devices (i.e., IDS, firewall, antivirus) play
an important role in defending against botnet. Although taken in isolation these devices
may not be enough, but they are essential components in any protection strategy.
However, appropriate configuration must be performed for these devices to be effective
in the fight against botnets.

Fig. 2.10 Fast-flux network attack

2 Botnets Threat Analysis and Detection

24

2.6.1 Intrusion Prevention and Detection Systems

Intrusion Detection Services are performed on three different platforms: some
instances filter intrusions on each individual node of network with help of applica-
tions which are called host-based intrusion prevention systems, whereas some
other scenarios consist of a central device acting as an intrusion prevention system
and a single device serving the entire network needs. In very high-risk infrastruc-
ture a combination of Network and Host Intrusion prevention is used to detect
Botnets including when encrypted data is involved, as Network-Based Intrusion
Prevention cannot detect Botnet in Encrypted traffic (Andriesse and Bos 2014;
Ollman 2009).

2.6.2 Network Firewalls

Most of the network firewalls enabled with Botnet traffic filtering provide reputation-
based control in network based on ratings of IP address or domain name. This inte-
grates with an external central repository of database of known malicious devices
and domains, and dynamically stops the attacks originating from these sources. For
unknown attack sources, the firewall always checks for traffic flowing to/from com-
munication potential botnet C&C server reports/logs such occurrences.

Network firewalls filter traffic with the following components (Stawowski 2015).

2.6.2.1 Dynamic and Administrator Blacklist Data

Filtering is done using a central database of malicious domains and IP addresses
from central repository. This database is maintained by different vendors like cisco,
Websense, and IronPort (Cisco White Paper 2015).

2.6.2.2 Traffic Classification and Reporting

For classification of Botnet Traffic, the active filter associates the source and desti-
nation addresses of user data besides the IP addresses that have been revealed for
the several lists and logs and accounts the administrator and dynamic database
(Cisco White Paper 2015).

2.6.2.3 Domain Name System Snooping

To ensure the binding of IP addresses to domains that are listed in central reposi-
tory of database, the Network Firewall uses DNS Snooping in combination with
DNS Inspection. The Firewall matches DNS Snooping lookup with DNS replies.

A.C. Atluri and V. Tran

25

Firewall builds a reverse cache, which compares the IP address in user replies to
actual known legitimate domain; if the domain matches then it is considered as
clean traffic else it is flagged as bot traffic (Paquet 2015).

2.7 Security Measures Against Botnets

2.7.1 Network Design

Network sesign must be done is such a way that intruders and malware are not able
to exploit existing susceptibilities. Defense in depth strategy in network against
Botnet helps to mitigate even zero day attacks on network and helps to streamline
security operations.

This involves making use of layered security systems on each segment to ensure
security against bots (Boyles CCNA Security Study Guide) (Fig. 2.11).

Fig. 2.11 Security measures chart

2 Botnets Threat Analysis and Detection

26

2.7.1.1 Advance Threat Protection

Advanced threat protection systems must be used to mitigate layers 3 and 4 traffic
and block all unintended traffic and allow only traffic initiated for trusted network
and enable data control on edge of network (Cisco White Paper 2015).

2.7.1.2 Intrusion Prevention and Detection System

It enables the capability of deep packet inspection and anomaly detection by analyz-
ing data from layer 4 up to layer 7 of network and correlated the events to protect
network against botnets. Intrusion prevention is the most important component of
network filtering. Thus it is always good to deploy both host and also network-based
appliances, as while network-based detection fails to mitigate encrypted attacks, it
enables synchronizing with a central repository of malicious patterns of intrusions
and protects network against it [25, 26].

2.7.1.3 Email Security Systems

Email being most important component of work flow it’s very important to allow
mails and also filter threats associated with botnet infection using email filtering
engines.

2.7.1.4 Forensic Analysis

Forensic-enabled devices allow correlating the security events in network and trace
the origin of attack. This allows administrators to act efficiently on bots and protect
other network users against them (SANS Institute InfoSec Reading Room 2015).

2.7.1.5 Security Event Monitoring

Event monitoring allows keeping track of all events in network and gives a compre-
hensive report of threats against network and also enables the transparency in network
monitoring (Stawowski 2015).

2.7.2 Application Usage

Botnet can be prevented by monitoring and establishing normal patterns of usage
for applications on individual nodes. The following application natures can be used
to mitigate botnet against host.

A.C. Atluri and V. Tran

27

2.7.2.1 HIPS (Host-Based Intrusion Prevention System)

Host-based intrusion prevention systems are application model of network-based
IPS services to prevent network attacks on host (Scarfone and Mell 2007).

2.7.2.2 End Point Security

End point security applications monitor and protect the host against known viruses
and malware and also observe and identify malicious activities in the behavior of
the host computer; once if any abnormal activity is observed in the computing pro-
cess, the application itself stops the suspected processes (Scarfone and Mell 2007).

2.7.2.3 Application Firewall

Application firewall can be used to block unwanted ports especially common ports of
botnet attack such as ports 25 and 21 which are generally used by bots to transfer data.

2.8 Conclusion

In this chapter, we presented Zeus, Koobface, and Windigo as some of the most
impactful botnets. There are many other different ones which have their own tar-
gets (such as desktop end users or mobile devices), and also use diverse avoidance
techniques. The chapter also summarizes the passive and active countermeasures
against botnets as well as some defensive mechanisms which can be implemented
on the network.

References

Andriesse D, Bos H (2014) An analysis of the ZeuS peer-to-peer protocol. IR-CS-74, rev
Andriesse D, Rossow C, Stone-Gross B et al (2013) Highly resilient peer-to-peer botnets are here:

an analysis of Gameover Zeus. VU University of Amsterdam, Amsterdam
Baltazar J, Costoya J, Flores R (2009) The real face of KOOBFACE: the largest web 2.0 botnet

explained. Trend Micro Threat Research
Bilodeau O, Bureau P, Calvet J et al (2015) Operation Windigo. http://www.welivesecurity.com/

wp-content/uploads/2014/03/operation_windigo.pdf. Accessed 22 July 2015
Boyles T (2010) CCNA Security Study Guide. Indiana: Wiley Publishing, Inc., 2010
Cisco White Paper (2015) Combating botnets using the cisco ASA botnet traffic filter. http://www.

cisco.com/c/en/us/products/collateral/security/asa-5500-series-next-generation-firewalls/
white_paper_c11-532091.pdf. Accessed 26 July 2015

Falliere N, Chien E (2009) Zues: King of the bots. Symantec Corporation, Cupertino, CA

2 Botnets Threat Analysis and Detection

http://www.welivesecurity.com/wp-content/uploads/2014/03/operation_windigo.pdf
http://www.welivesecurity.com/wp-content/uploads/2014/03/operation_windigo.pdf
http://www.cisco.com/c/en/us/products/collateral/security/asa-5500-series-next-generation-firewalls/white_paper_c11-532091.pdf
http://www.cisco.com/c/en/us/products/collateral/security/asa-5500-series-next-generation-firewalls/white_paper_c11-532091.pdf
http://www.cisco.com/c/en/us/products/collateral/security/asa-5500-series-next-generation-firewalls/white_paper_c11-532091.pdf

28

Ferguson R (2015) The history of botnet—part I. http://countermeasures.trendmicro.eu/the-
history- of-the-botnet-part-i/. Updated 24 Sept 2010. Accessed 20 July 2015

Ferguson R (2015) The history of botnet—part II. http://countermeasures.trendmicro.eu/the-
history- of-the-botnet-part-ii/. Updated 24 Sept 2010. Accessed 20 July 2015

Fortinet White Paper (2013) Anatomy of a botnet. Fortinet, Sunnyvale. www.fortinet.com
SANS Institute InfoSec Reading Room (2015) Defense in depth. https://www.sans.org/reading-

room/whitepapers/basics/defense-in-depth-525. Accessed 30 July 2015
Irani D, Balduzzi M, Balzarotti D et al (2011) Reverse social engineering attacks in online

social networks. DIMVA 2011, 8th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, Amsterdam, The Netherlands, 7–8 July 2011. Also published in
“Lecture Notes in Computer Science”, Vol 6739/2011, doi:10.1007/978-3-642-22424-9_4

Khattak S, Ramay NR et al (2014) A taxonomy of botnet behavior, detection, and defense. IEEE
Commun Surv Tutorials 16(2):898–924

Ollman G (2009) Botnet communication topologies, understanding the intricacies of botnet
command- and-control. Damballa Inc., Atlanta

Paquet C (2015) Network security concepts and policies. http://www.ciscopress.com/articles/arti-
cle.asp?p=1998559. Accessed 1 Aug 2015

Plohmann D, Gerhards-Paddila E, Leder F (2015) Botnets: detection, measurement, disinfec-
tion & defense. https://www.enisa.europa.eu/publications/botnets-measurement-detection-
disinfection-and-defence. Accessed 30 July 2015

Scarfone K, Mell P (2007) Guide to Intrusion Detection and Prevention Systems (IDPS). National
Institute of Standards and Technology, Gaithersburg

Shin S, Gu G (2010) Conficker and beyond: a large-scale empirical study. In: Proceedings of
annual computer security applications conference (ACSAC)

Sophos Press Release (2007) Sophos Facebook ID probe shows 41% of users happy to reveal all to
potential identity thieves. https://www.sophos.com/en-us/press-office/press- releases/2007/08/
facebook.aspx

Stawowski M (2015) Practical defense-in-depth protection against botnets. http://www.clico.pl/
services/practical-defense-in-depth-protection-against-botnets. Accessed 31 July 2015

Thomas K, Nicol DM (2010) The Koobface botnet and the rise of social malware. Proceedings of
the 5th IEEE International Conference on Malicious and Unwanted Software, Malware, 2010,
pp 63–70

A.C. Atluri and V. Tran

http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-i/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://countermeasures.trendmicro.eu/the-history-of-the-botnet-part-ii/
http://www.fortinet.com/
https://www.sans.org/readingroom/whitepapers/basics/defense-in-depth-525
https://www.sans.org/readingroom/whitepapers/basics/defense-in-depth-525
http://dx.doi.org/10.1007/978-3-642-22424-9_4
http://dx.doi.org/10.1007/978-3-642-22424-9_4
http://www.ciscopress.com/articles/article.asp?p=1998559
http://www.ciscopress.com/articles/article.asp?p=1998559
https://www.enisa.europa.eu/publications/botnets-measurement-detection-disinfection-and-defence
https://www.enisa.europa.eu/publications/botnets-measurement-detection-disinfection-and-defence
https://www.sophos.com/en-us/press-office/press-releases/2007/08/facebook.aspx
https://www.sophos.com/en-us/press-office/press-releases/2007/08/facebook.aspx
http://www.clico.pl/services/practical-defense-in-depth-protection-against-botnets
http://www.clico.pl/services/practical-defense-in-depth-protection-against-botnets

29© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_3

Chapter 3
Collective Framework for Fraud Detection
Using Behavioral Biometrics

Ahmed Awad

3.1 Background

Fraud detection is an important topic that has been well addressed in literature
before. Enhancements include building intelligent fraud prevention and detection
models that are applicable to specific industries such as banking, insurance, govern-
ment and law enforcement agencies, and more. Sophisticated models were built on
top of analytical techniques to achieve such goal.

To the best of our knowledge, most of the biometric fraud detection researches in
current literature focus on identifying the fraudulent activities by a set of predefined
rules. These standards are registered during the enrollment phase, which users sign
up for their biometric information.

Frank et al. proposed a set of 30 behavioral touch features extracted from raw
touchscreen logs. The touch input is collected through user’s normal activity on
their phone, such as basic navigation maneuvers (up down, left right scrolling).
Based on these data, the team introduced a classification framework, which is effi-
cient at detecting user identity during the enrollment phase (which the system
learns about the user’s behaviors and gather the special features from the touch
data) and is capable of accepting or rejecting the user based on his/her interactions
with the device (Frank et al. 2013). This method is, however, not effective to act as
a stand- alone authentication mechanism for long-term authentication, since the
false positive rate is within 0–4 % which is unacceptable in certain scenarios.
Nevertheless, the work proves that touch dynamic authentication is achievable and,
with other complementary data such as context information, would greatly increase
the effectiveness of the framework (Frank et al. 2013).

A. Awad (*)
New York Institute of Technology, Vancouver, BC, Canada
e-mail: ahmed.awad@nyit.edu

mailto:ahmed.awad@nyit.edu

30

Bo et al. (2014) proposed SilentSense, an authentication framework which iden-
tifies users silently and transparently, by collecting user touch behavior biometric
and micro-movement of the device caused by user’s interaction. SilentSense faces a
number of different challenges, such as user behavior modeling (the model should
contain multiple features from both user’s action and device’s reaction), identifica-
tion strategy (it is important to distinguish between guest users and owners from a
limited set of behavior information), and balance among accuracy, delay, and energy
(real-time observation function can quickly exhaust the device battery) (Bo et al.
2014). The researchers carried out a series of test on an Android phone, where
SilentSense runs as a background service capturing the information about current
app and touch events, and the test outcome shows that the application works best
under two-class SVM (support vector machine) classifier with increasing amount of
guest information (Bo et al. 2014).

Deshmukh and Patil (2014) came up with an iris recognition framework for
credit card fraud detection, based on the natural open eyes. Their technique is to,
firstly, create a preprocessed image of the iris and then detect all iris feature points
by direction information, length information, width information of texture, neigh-
boring gray information, and relativity in the effective iris area. After that, encode
all the feature points and identify different patterns based on the iris code. And
finally, use auto-accommodated pattern to sort the iris patterns and deliver the rec-
ognition result. The experimental result showed that the correct recognition rate is
99.687 %, false acceptance rate is 0.313051 %, and false rejection rate is 0.293945 %
(Deshmukh and Patil 2014).

Gaurav et al. (2012) proposed a smart card fraud prevention scheme using a com-
bination between fingerprint and password. The system incorporates password-
based authentication with fingerprint identity, generated by fingerprint capture
procedure. The suggested mechanism has three phases: registration, log-in, and
authentication phases. In registration phase, user will sign up with the system his/
her username, password, and fingerprint identity; the system will process fingerprint
data into a digital certificate format and then transform it into a mathematical repre-
sentation. In the second phase (log-in), user will send a request to the system, with
all his/her registered information. And finally, in authentication phase, the server
will calculate all the provided data and either accept or reject the user.

It is important to note that the above approaches fail to mention the biometric
data variance between session and what necessary actions to handle them. These
biometric differences or previous user activities should be taken into account for
updating user’s profile/history, as attacker could capture the valid past session and
use it to compromise the system.

3.2 Fraud Detection Framework

The main purpose of a fraud detection system is to be able to detect fraudulent
activities as soon as they occur. Report them and respond to such incidents
accordingly.

A. Awad

31

A typical host-based fraud detection system consists of an agent application
(could be a script) that runs on the user’s machine. The agent collects all relevant
information that could help in identifying the user’s computing environment such
as the hard drive ID, the OS version, the machine’s local IP, and so on. It could
also target identifying the user himself through the collection of behavioral bio-
metric data.

After establishing a session with the business service, the agent will send the data
to the server integrated within the server request. The web server will forward the
fraud detection data to a dedicated fraud detection server component which will
process this data and other data collected locally from the server and correlate it to
previously collected data to detect frauds.

As indicated in Fig. 3.1, the data collected from the user’s machine falls into one
of the following categories:

• Geo-location
• Machine identifiers
• Network status identifiers
• Operating system status (includes user authentication context)
• Behavioral biometrics (keystroke dynamics, mouse dynamics, and command

line lexicon)

Data collected from various factors are combined into a device-user signature
token which is updated as the user uses the machine and processed and passed to the
server for the purpose of fraud detection. Previous tokens are stored on the servers
for future uses.

The server establishes the trust based on the provided token. It trusts that this
authenticated user is whom he/she claims to be and that this user is connecting from

User’s Computer

Server

Fraud Detection

Web Server

Backend

Web Browser

Device-User
Signature

OS Status

Machine,
Network Status

Behavioural
Biometric

Geo-location

DB

Fig. 3.1 Client/server fraud detection scenario

3 Collective Framework for Fraud Detection Using Behavioral Biometrics

32

a known machine by comparing the different factors included in the token to the
previously collected ones. One of the weaknesses of this model is that the data col-
lected for fraud are limited only to the period of activity that is related to the user’s
session. Previous machine status and user activities are not sent to the server and are
not included in the fraud detection analysis. Such model is vulnerable to spoofing,
replaying, and man-in-the-middle attacks.

A malicious code or a rogue application installed on the user’s machine can per-
form malicious activities before the user’s session in preparation of an attack on the
user’s account. Such activities should be taken in consideration.

In order to overcome such weaknesses, a persistent passive agent could be
installed to monitor all of the activities on the computer. The agent could pass a
summary of the activities to the server when the user connects to it to establish a
new session. This model faces several implementation challenges. First, it is diffi-
cult to assure that this agent is up all the time; the attacker could bypass some of the
agent’s monitoring functionalities forcing the agent to collect false information.
Second, this model raises privacy concerns due to the fact that the agent is monitor-
ing the activities at periods of time that are not related to the user’s activities on the
server. Information such as a different user with a specific biometric profile who
was using the system during a specific period of time will be made available to the
server. In such case, user’s consent is mandatory.

The Past Activities Aware (PAA) model could be implemented using a proxy server
(Fig. 3.2). In this architecture, the fraud detection component is integrated in a proxy
server that is used to access various web servers through an internal network or over
the Internet. In this case, the user will be made aware that his web activities will go
through this server and a consent form will be displayed. The proxy server is config-
ured to inject a script in all of the web pages that pass through it. The script runs on
the user’s machines and collects all machine-user signature data and passes it back to
the proxy server. The proxy server intercepts these data items while processing other

User’s Computer

Server

Web Server

Backend

Web Browser

Behavioural
Biometric

Geo-location

Proxy Server

Inject Collection
Script

Collect Data

Fraud Detection

DB

Fraud Reporting

Fig. 3.2 Proxy server-based fraud detection scenario

A. Awad

33

web requests and passes them to the fraud detection module. The data will be stripped
from the web request before forwarding it to the web server.

The fraud detection server will communicate fraud reporting events to the web
server in cases of fraud being detected. Such events will be intercepted by a report-
ing system and required responses will be taken.

3.3 Behavioral Identity Verification

As shown in the above section, behavioral biometrics represent an important input
to the detection system. The data can be used to passively verify the user’s identity
and establish the expected trust. Mouse and keystroke dynamics are considered as
two good candidates for such purpose.

Mouse dynamics correspond to the actions generated by the mouse input device
for a specific user while interacting with a graphical user interface. Touch dynamics
is a different version of mouse dynamics when captured over a mobile device
(Ahmed and Traore 2007, 2011).

Keystroke dynamics recognition systems measure the dwell time and flight time
for keyboard actions (Dowland et al. 2002). The raw data collected for keystroke
includes the time a key is depressed and the time the key is released. Based on the
data, the duration of keystroke (i.e., length of time a key is depressed) and the
latency between consecutive keystrokes are calculated and used to construct a set of
monographs and digraphs producing a pattern identifying the user.

Figure 3.3 shows the architecture of the detection system. Two neural networks
are involved in this design. The first one is designed to process the digraph data
represented by the fly time from a specific key location to another key location. At
training phase, the network is trained with the session data. This process takes place
for each user, where the two neural networks are trained with the user’s data. The
second network is designed to process the pressure sensor data which is represented
as monographs of dwell time for a specific key location. The network is also tuned
with the user’s session data at the enrollment phase.

The inputs to both networks are the key locations and the output is fly/dwell time.
Inputs and outputs of the neural networks are normalized based on their minimums
and maximums to enhance the training process.

During the testing phase, both networks are fed with the data collected from the
current sessions. Outputs from both networks are compared to the actual fly/dwell
time collected in the session. The output from the network represents how this
 output should be if the current session is actually performed by the user whose data
were used to train both networks (the legitimate user).

The deviation from the expected behavior is calculated for both networks and
passed to a fusion component that is used to arbitrate between both inputs to make
a final decision about the user’s identity. This decision is represented by the confi-
dence ratio (CR) whose value indicates how confident the system is that the session

3 Collective Framework for Fraud Detection Using Behavioral Biometrics

34

data belong to the legitimate system user. The higher this value the more confident
the system is about such finding.

As shown in Fig. 3.3, a threshold value (thr) is used to tune the fusion compo-
nent. The value is varied to achieve the best tuning results for each user in the sys-
tem. The weights of the trained networks and the optimal threshold value are stored
for each user as its own biometric signature calculated by this detection unit.

3.4 Experimental Evaluation

3.4.1 Evaluation Metrics and Procedures

In order to evaluate the accuracy of the PAA Fraud Analysis Model, we calculate the
following:

• False acceptance rate (FAR), which measures the likelihood that an imposter
may be erroneously accepted by the system

• False rejection rate (FRR), which measures the likelihood that a genuine user
may be rejected by the system

Data collected in Ahmed and Traore (2014) is used in this experiment. We empir-
ically configured the test data to simulate attacks on users’ machines using other
users’ data. The data is engineered so that 2 % of the data are attacks. The confi-
dence ratio (CR) is calculated for each session, and session length is also recorded.
Sessions are classified into the following categories:

 1. Legitimate user’s session (high CR)
 2. A real attack

-Fly time Digraph
Neural Network

Pressure Monograph
Neural Network -

Fusion
Component

thr

from

to

Dwell
(Pressure)

time

Fly time

CR

Fig. 3.3 Calculation of a trusted user signature

A. Awad

35

 3. A false positive (a legitimate session incorrectly classified as an attack, low CR)
(Fig. 3.4)

The test is repeated for both of the normal Past Activities Unaware (PAU) model
and the new Past Activities Aware (PAA) model.

3.4.2 Results

Figure 3.5 shows the ROC curves obtained for both of the PAU and PAA models.
For the PAU model, the ERR point occurs at 2.46 % for FAR and 4.64 % for
FRR. The PAA model introduces a significant performance increase with the EER
is at 0.1 % and 0.1 % for FAR and FRR, respectively.

3.5 Conclusion

Behavioral biometrics such as mouse and keystroke dynamics are established tech-
nologies that have several benefits over physiological biometrics. They can be used
unobtrusively in both static and dynamic authentication modes without requiring
special hardware sensors. Utilizing such biometrics in fraud detection helps in clos-
ing the gap associated with proving the relation between the nature of the user’s
activities and his/her real identity. In this chapter, we proposed a new framework for
fraud detection that takes the biometric factors in consideration. The framework
makes fraud detection decisions based on data collected from past periods of activi-
ties. Such technique enhances the accuracy when compared to typical past unaware
detection techniques.

Legitimate
Sessions

Detected
Attack
SessionLow CR classified as

a False Positive

High CR
High CR

Low CR

Time

CR

Fig. 3.4 Three categories of sessions included in the test

3 Collective Framework for Fraud Detection Using Behavioral Biometrics

36

References

Ahmed AAE, Traore I (2007) A new biometric technology based on mouse dynamics. IEEE Trans
Dependable Secure Comput 4(3):165–179

Ahmed A, Traore I (2011) Dynamic sample size detection in continuous authentication using
sequential sampling. In: Proceedings of annual computer security applications conference
(ACSAC), 5–9 December 2011, Orlando, FL, USA

Ahmed AAE, Traore I (2014) Free text recognition of keystrokes. IEEE Trans Cybern
44(4):458–472

0.45

0.4

0.4

0.35

0.35

0.3

0.3

0.25

0.025

0.02

0.015

0.01

0.005

0.25

0.2

0.2

0.15

0.15

0.1

0.1

0.05

0
0 0.05

0.40.350.30.250.2
FAR (%)

FAR (%)

F
A

R
 (

%
)

F
A

R
 (

%
)

0.150.10
0

0.05

Fig. 3.5 Receiver operating characteristic (ROC) curve for (a) normal fraud detection model (Past
Activities Unaware (PAU)) and (b) enhanced fraud detection model (Past Activities Aware (PAA))

A. Awad

37

Bo C, Zhang L, Jung T, Han J, Li X, Wang Y (2014) Continuous user identification via touch and
movement behavioral biometrics. In: IEEE international performance computing and commu-
nications conference (IPCCC), December 2014, pp 1–8

Deshmukh SP, Patil SH (2014) Credit card fraud detection using iris biometrics technique. Int J Sci
Eng Res 5(7):131–137

Dowland P, Furnell S, Papadaki M (2002) Keystroke analysis as a method of advanced user
authentication and response. In: Proceedings of the IFIP TC11 17th international conference on
information security: visions and perspectives, 7–9 May 2002, pp 215–226

Frank M, Biedert R, Ma E, Martinovic I, Song D (2013) Touch analytics: on the applicability of
touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans Inf
Forensics Secur 8(1):136–148

Gaurav J, Tyagi S, Ranjan J (2012) Smart card fraud prevention scheme using fingerprinting
authentication. Int J Comput Sci Inf Technol 3:3059–3062

3 Collective Framework for Fraud Detection Using Behavioral Biometrics

39© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_4

Chapter 4
The Hardware Trojan System: An Online
Suite of Tools for Hardware Trojan Analysis

Nicholas Houghton, Samer Moein, Fayez Gebali, and T. Aaron Gulliver

4.1 Introduction

The field of hardware security is relatively new and has begun to develop a level of
sophistication that requires more structure. The variety of techniques employed
across the spectrum of integrated circuit (IC) designs results in a diversity of struc-
tures, behavior, and insertion points for hardware trojans. Thus, most detection
methods have been designed to detect specific trojans. To date, no method capable
of detecting even some of the known trojans has been developed.

Several hardware trojan taxonomies have been proposed (Wolff et al. 2008; Rad
et al. 2008; Karri et al. 2010; Wang et al. 2008). In Wolff et al. (2008), trojans were
organized based solely on their activation mechanisms. A taxonomy based on the
location, activation, and action of a trojan was presented in Rad et al. (2008) and
Karri et al. (2010). However, these approaches do not consider the manufacturing
process. Another taxonomy was proposed in Wang et al. (2008) which employs five
categories: insertion, abstraction, activation, effect, and location. While this is more
extensive than previous approaches, it fails to account for the physical characteris-
tics of a trojan. Thus, a comprehensive taxonomy was proposed in Moein et al.
(2015a) which considers all attributes a hardware trojan may possess.

The trojan attributes provide information such as how it entered the host circuit,
its effect, and where in the design it is located (Moein et al. 2015a). They can also
be used to determine which detection methods are effective against a trojan (Moein
et al. 2015b). In this chapter, two effective trojan analysis techniques are described.
However, both require laborious computations which are prone to error when
performed by hand. To aid in the universal acceptance of these techniques, an online
suite of tools was developed. The Hardware Trojan System (HTS) automates the

N. Houghton (*) • S. Moein • F. Gebali • T.A. Gulliver
University of Victoria, 2446 Sinclair Road, Victoria, BC, Canada
e-mail: nhoughto@uvic.ca

mailto:nhoughto@uvic.ca

40

necessary computations, provides centralized documentation and reference materials,
and maintains a database to store user data. In the future, this database can be used
as a resource for developers and attackers to search existing Trojans and detection
methods.

The contributions of this chapter are as follows:

 1. A technique for describing hardware trojans based on their attributes is
presented.

 2. A means of evaluating the effectiveness of both trojans and detection methods is
devised.

 3. An online system which automates the analysis techniques is described.
 4. A database to store known hardware trojans and detection methods is

developed.

The remainder of this chapter is organized as follows: Sect. 4.2 describes the analysis
techniques. Section 4.3 presents the applications developed to automate these tech-
niques, and the online system is described. Section 4.4 demonstrates the use and
effectiveness of the system through a case study, and finally Sect. 4.5 provides some
concluding remarks.

4.2 Hardware Trojan Analysis Techniques

The Hardware Trojan System (HTS) analyzes trojans based on the comprehensive
hardware trojan taxonomy proposed in Moein et al. (2015a). This taxonomy is com-
prised of 33 attributes organized into eight categories as shown in Fig. 4.1. These
categories can be arranged into the following four levels as indicated in Fig. 4.2:

 1. The insertion (chip life cycle) level/category comprises the attributes pertaining
to the IC production stages.

 2. The abstraction level/category corresponds to where in the IC abstraction the
trojan is introduced.

 3. The properties level comprises the behavior and physical characteristics of the
trojan.

 4. The location level/category corresponds to the location of the trojan in the IC.

The properties level consists of the following categories:

• The effect describes the disruption or effect a trojan has on the system.
• The logic type is the circuit logic that triggers the trojan, either combinational or

sequential.
• The functionality differentiates between trojans which are functional or

parametric.
• The activation differentiates between trojans which are always on or triggered.
• The layout is based on the physical characteristics of the trojan.

N. Houghton et al.

41

4.2.1 Trojan Classification

In order to develop a classification of hardware trojans, the relationships between
the attributes were examined in Moein et al. (2015a) using a 33 × 33 matrix R which
can be expressed as

R =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

R R

R R

R R

R

1 12

2 23

3 34

4

0 0

0 0

0 0

0 0 0

Fig. 4.1 The 33 attributes of the hardware Trojan taxonomy in Moein et al. (2015a)

Fig. 4.2 The hardware Trojan levels (Moein et al. 2015a)

4 The Hardware Trojan System…

42

The entries on the diagonal represent submatrices which describe how the attributes
in each layer are interrelated. For example, submatrix R2 describes the relationships
in the abstraction layer and is given by

The submatrices not on the diagonal describe the relationships between layers.
For example, submatrix R23 describes how the abstraction attributes relate to the
property attributes and is given by

An entry r(i, j) in R is a binary value where a 1 indicates that attribute i can lead
to attribute j and is 0 otherwise. For example, r(7,15) = 1 indicates that a trojan in
the register transfer logic (RTL) (attribute 7) can cause a denial of service attack
(attribute 15).

A hardware trojan must be observed to determine its attributes and these are used
to form R. Then a systematic process of scanning the rows and columns can be used
to gain insight into the characteristics of the trojan. This process is described in
detail in Moein et al. (2015a). The observed attributes can be used to determine the
possible locations of a trojan within the design and in which manufacturing phases
it can be inserted. Conversely, the phase a trojan was inserted can be used to deter-
mine which abstraction levels are vulnerable, the trojan properties, and what
 locations can be compromised. To easily understand the characteristics of a trojan,
a directed graph is generated from R. Attributes are represented by nodes and their
relationships by edges.

Consider a trojan that has the following attributes:

• Causes denial of service (DoD) (attribute 15)
• Composed of combinational logic (attribute 17)

N. Houghton et al.

43

• Functional (attribute 18)
• Externally triggered (attribute 22)

A visual examination of R leads to the graph drawn in Fig. 4.3. If it is determined
that it is not possible to insert the trojan in the design phase (attribute 2), then attri-
bute 2 can be removed from the graph. Without a direct connection to attribute 1,
attributes 3, 4, and 5 must also be removed. Further, without attribute 2 the trojan
can only be inserted in the specification phase (attribute 1).

4.2.2 Trojan Evaluation

Due to the complexity of IC designs, hardware trojans are typically unique. As a
consequence, detection methods developed thus far have been developed to detect
specific trojans. The diversity in both trojans and detection methods makes it diffi-
cult to evaluate, compare, and organize them. A means of evaluating hardware tro-
jans and detection methods based on the eight attribute categories was proposed in
Moein et al. (2015b). A trojan or detection method will possess some combination
of attributes from each of the eight categories, and each combination is assigned two
numerical values. The value I is used to identify the combination, while the value C
is used to denote the severity (for a trojan) or coverage (for a detection method) of
the combination. Tables of I and C values for the eight categories were presented in
Moein (2015). For example, the logic type category describes the circuit logic
which activates the trojan. Table 4.1 shows the possible attribute combinations for
this category and the corresponding values of IL and CL.

The I and C values from the category tables are arranged into identification and
severity/coverage vectors, respectively. For a trojan, the vectors are denoted as IT
and CT, and for a detection method, they are denoted as ID and CD. Thus, an identi-
fication vector is

 I I I I I I I I I= R A E L F C P O

Fig. 4.3 The directed
graph corresponding to a
trojan

4 The Hardware Trojan System…

44

where IR, IA, IE, IL, IF, IC, IP, IO are the {insertion, abstraction, effect, logic type, func-
tionality, activation, physical layout, location} category identification values,
respectively, and a severity/coverage vector is

 C C C C C C C C C= R A E L F C P O

where CRCACECLCFCCCPCO are the {insertion, abstraction, effect, logic type, function-
ality, activation, physical layout, location} category strength values, respectively.

Table 4.2 provides a comparison of two hardware trojans. Trojan A has a lower
severity than Trojan B in the insertion category, denoted by CR. This indicates that
Trojan B can be inserted in more stages of the manufacturing process than Trojan
A. Table 4.3 gives a comparison between two detection methods. The method in
Potkonjak et al. (2009) has a higher coverage in the effect category (CE) than the
method in Narasimhan et al. (2013), indicating that it can detect more trojans based
on their effects.

4.3 The Hardware Trojan System

The Hardware Trojan System (HTS) is a dynamic website built to implement hardware
security applications. In particular, applications have been developed to automate
the techniques described in Sect. 4.2.

Table 4.1 Logic type
category values

Attributes IL CL

Sequential (16) 2 2
Combinational (17) 1 1
Both (16 and 17) 3 3

Table 4.2 Identification and severity vectors for two hardware trojans

Technique Parameters (IP) Severity (CP)
IR IA IE IL IF IC IP IO CR CA CE CL CF CC CP CO

Trojan A (Moein
et al. 2015a)

2 6 2 1 2 1 7 7 2 6 4 1 2 1 5 2

Trojan B (Moein
et al. 2015a)

3 3 1 2 1 2 8 1 3 3 2 2 1 3 6 1

Table 4.3 Identification and coverage vectors for two hardware trojan detection methods

Technique Parameters (IP) Coverage (CP)
IR IA IE IL IF IC IP IO CR CA CE CL CF CC CP CO

Potkonjak
et al. (2009)

3 3 B 1 2 4 7 V 3 3 7 1 2 3 5 5

Narasimhan
et al. (2013)

3 3 1 2 1 4 7 V 3 3 2 3 1 3 5 5

N. Houghton et al.

45

4.3.1 The Classification Tool

To investigate a trojan, users select attributes via an easy-to-use user interface (UI).
Once the attributes are chosen, the tool performs the necessary analysis using matrix
R and displays the resulting directed graph. Suppose an attacker decides to insert
the trojan described in Sect. 4.2.1. The tool provides the directed graph shown in
Fig. 4.4 from the selected attributes, which eliminate the need for manual analysis
of the matrix. Note that Fig. 4.4 is the same as Fig. 4.3 which was constructed by
hand. This verifies the results obtained using the classification tool.

If the design phase (attribute 2) takes place in a secure location, an attacker will
conclude that it is not possible to insert the trojan in this phase. To determine the
possible trojans that can be inserted without access to the design phase, attribute 2
should be removed from Fig. 4.4. The classification tool provides an attribute
removal feature. When an attribute is removed, the directed graph is recreated based
on the new matrix R. The result of removing attribute 2 is shown in Fig. 4.5. The
new graph clearly shows that compromising the design is still possible, but it must
be done from the specification phase (attribute 1). The possible locations remain the
same, but the potential effects of the trojan have changed. Without access to the
design phase (attribute 2), the trojan cannot be composed of combinational logic
(attribute 17) or be externally triggered (attribute 22). Even though the attributes
change in functionality (attribute 12) and always on (attribute 20) were not selected,
the tool determined that these attributes are possible.

The classification tool automatically generates a severity/coverage vector for use
with the evaluation tool described in Sect. 4.3.2. The identification and severity vectors
describing the trojan in Fig. 4.4 are shown in Fig. 4.6. The trojan classification data is
saved in the database along with the identification and severity/coverage vectors.

Fig. 4.4 The directed graph obtained by analyzing a hardware trojan with the classification tool

4 The Hardware Trojan System…

46

4.3.2 The Evaluation Tool

The HTS provides a series of drop-down lists to create a coverage vector for a new
detection method. This vector is stored in the database along with a description of
the method. The evaluation tool provides a simple means of searching the database
for previously saved detection method coverage vectors and trojan severity vectors.
Once a detection method and a trojan have been selected, a user can use the compare
button to perform a comparison of the coverage and severity vectors. For example,
the results of a comparison are shown in the bottom row of Fig. 4.7. A 1 is displayed
when the detection method has a value greater than or equal to the corresponding
trojan value and a 0 otherwise. The zeros in Fig. 4.7 indicate that the detection
method may fail to detect the trojan based on the insertion point (IR) and the logic
type (IF).

While the evaluation tool can be employed for individual comparisons, its greatest
potential is with a centralized database. Currently the tool only provides compari-
sons of trojans and detection methods entered by the user. Universal adoption of the
HTS will provide a centralized database of all known detection methods and trojans.

Fig. 4.5 The directed graph after attribute 2 is removed

Fig. 4.6 The identification and severity vectors generated by the classification tool for the trojan
in Fig. 4.4

N. Houghton et al.

47

This database will allow the evaluation tool to provide extensive comparison results.
Attackers can use this information to design trojans, and defenders can use it to
develop security solutions.

4.3.3 The Web Environment

The HTS was designed as a web utility for portability and easy distribution. The
application server performs all of the computations and generates page markup to
minimize the burden on client side browsers. It communicates directly with a remote
database used to store user account information and application data (attributes,
categories, and matrices). Both the application server and the database are hosted on
the Microsoft Azure Cloud platform (Microsoft 2010). This improves reliability,
portability, and flexibility, provides on-demand resources that are automatically
managed for scalability requirements, and allows for maintenance to take place
anywhere. Figure 4.8 gives a block diagram of the HTS. The application server and
database are both hosted on the Azure Cloud (Microsoft 2010). The entity frame-
work provides communication via efficient and secure SQL statements, while Azure
provides dynamic resource allocation. When the system is not being used, the
architecture is stored in memory to reduce costs. When a client browser attempts to
connect to the system, the application server and database are reactivated. Requests
and responses are passed between the client side browsers and application server via
JavaScript Object Notation (JSON) strings. This allows for complex object-oriented
logic to be processed across the network in a simple and efficient manner.

The technologies employed are as follows:

• Azure: The Microsoft Cloud System (Microsoft 2010).
• ASP.NET Web Form: A user interface focused, event-driven model of the .

NET framework. It allows powerful data binding, separation of server-client

Fig. 4.7 A comparison of coverage and severity vectors

4 The Hardware Trojan System…

48

side activities, a native security structure, and enhanced client performance
(Microsoft 2002).

• Entity Framework: An object-relational database mapper designed for the .NET
framework. It provides a library of high-speed SQL statements wrapped in C#
commands to simplify development and ensure performance (Microsoft 2008).

• D3.js: A JavaScript library for visualizing data with HTML, SVG, and CSS
(Microsoft 2011).

Figure 4.9 provides an overview of the structure of the HTS website. The home,
contact, about, and application information pages are accessible to all traffic. The
application information page contains three sub-pages providing information on
each of the primary applications. Users are required to create an account and be
logged in to access the remainder of the website. Email confirmation is used to
verify user accounts.

4.4 Case Study

Consider the simple hardware trojan described in Liu et al. (2011). This involves an
IC design which contains an arithmetic unit that performs a mathematical operation.
The output of this operation is transmitted on the result line in Fig. 4.10.

Suppose an attacker wishes to modify this result when two functional units have
been activated in a particular order. Inputs a and b receive signals from the two tar-
geted units. If a ≠ b, the counter is incremented, and if a = b, the counter is decre-
mented. When the count reaches 127, the 8-bit counter outputs a value of 1 causing
the inverse of the arithmetic result to be transmitted. The trojan in Fig. 4.10 possesses
the attributes listed in Table 4.4.

Fig. 4.8 Block diagram of the Hardware Trojan System (HTS)

N. Houghton et al.

49

4.4.1 Classification Tool

Suppose a test engineer discovers unusual behavior in a chip under test (CUT).
After analysis it is discovered that the additional logic shown in Fig. 4.10 has been
inserted into the design. To better understand the characteristics of this trojan, an
examination is performed which determines that it possesses the attributes listed in
Table 4.4. These attributes are selected using the classification tool, and the subsequent
analysis returns the graph shown in Fig. 4.11.

Fig. 4.9 An overview of the website architecture

Fig. 4.10 A sequential counter hardware trojan (Liu et al. 2011)

4 The Hardware Trojan System…

50

Figure 4.11 indicates that the trojan could have been inserted in any stage of the
IC life cycle. If the test engineer believes that the facility used to fabricate the chip
can be trusted, then it is very unlikely that the trojan was inserted during fabrication.
With this assumption, fabrication (attribute 3) can be removed from the graph.
Using the HTS classification tool attribute removal feature, attribute 3 can be deleted
which results in the graph shown in Fig. 4.12.

This indicates that if the fabrication stage (attribute 3) is trusted, then the design,
testing, and assembly stages (attributes 2, 4, and 5) can also be trusted. Thus, if the
attacker can only access the specification stage (attribute 1) as suggested by
Fig. 4.12, then only the following properties could have been observed: change in
functionality (attribute 12), denial of service (attribute 15), functional (attribute 18),
and always on (attribute 20). It then becomes apparent that the assumption that the
fabrication phase could be trusted must have been wrong. In order for the trojan to
possess the observed attributes, the attacker must have had access to the fabrication
stage (attribute 3).

Table 4.4 The observed
trojan attributes

Attribute Category

Change in functionality (12) Effect
Sequential logic (16) Logic type
Functional (18) Functionality
Internally triggered (21) Activation
Small (24) Physical layout
Augmented (26) Physical layout
Clustered (27) Physical layout

Fig. 4.11 The directed graph for the sequential counter trojan in Fig. 4.10

N. Houghton et al.

51

4.4.2 Evaluation Tool

Consider an attacker who wishes to attack a system with the trojan shown in Fig. 4.10.
The attacker evaluates the trojan and extracts the attributes listed in Table 4.4.

These attributes are then input to the HTS classification tool which returns the
trojan graph shown in Fig. 4.11. The identification and severity vectors are also gen-
erated as outlined above and given in Fig. 4.13. The classification tool provides a
save function which stores the graph, identification, and severity vector of the trojan.
Suppose the attacker is a disgruntled employee at the company designing the IC.
Being familiar with the manufacturing process, the attacker knows that the test engi-
neers use a trojan detection method based on the path delay (Kumar and Srinivasan
2014). The tool creates the coverage vector given in Table 4.5.

To decide whether or not the attack is viable, the attacker uses the HTS evaluation
tool to perform a comparison between the desired trojan and the detection method
employed. The evaluation tool creates a new method feature and produces the iden-
tification and coverage vectors shown in Fig. 4.14. The trojan severity is selected
from the database and the comparison performed as shown in Fig. 4.15.

Fig. 4.12 The sequential counter trojan graph after removal of attribute 3

Fig. 4.13 The identification and severity vectors for the sequential counter trojan

4 The Hardware Trojan System…

52

As described in Sect. 4.3.2, the HTS evaluation tool displays a value of 1 in
categories where the method is capable of detecting the trojan and a 0 otherwise.
Figure 4.15 indicates that the detection method may fail to detect the trojan with
regard to its insertion point, abstraction level, logic type, and activation.

4.5 Conclusion

A recently developed comprehensive hardware trojan taxonomy can be used to analyze
both hardware trojans and detection methods. The complexity of the corresponding
techniques motivated the development of online software tools to automate them.
The resulting Hardware Trojan System (HTS) is a powerful and reliable means of
evaluating and comparing trojans and detection methods. The design of the system
was discussed, and the use and effectiveness of the tools were demonstrated with a
case study.

Table 4.5 Identification and coverage vectors for the detection method in Kumar and Srinivasan
(2014)

Techniques Parameters (IP) Coverage (CP)
IR IA IE IL IF IC IP IO CR CA CE CL CF CC CP CO

Kumar and
Srinivasan (2014)

4 4 5 1 3 1 8 V 4 4 6 1 3 1 6 5

Fig. 4.14 The identification and coverage vectors for the chosen detection method

Fig. 4.15 A comparison of the sequential counter trojan and the detection method

N. Houghton et al.

53

The development of data mining algorithms and an appropriate user interface for
statistical analysis of the database is left for future work. The implementation of
these features will provide a quick and efficient means for designers to evaluate the
state of hardware security. Defenders concerned about a particular vulnerability will
be able to quickly browse available detection methods for an appropriate solution.
An attacker who has found a weakness in a system can browse for existing trojans
that can be used.

References

Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: identifying and
classifying hardware trojans. IEEE Comput 43(10):39–46

Kumar P, Srinivasan R (2014) Detection of hardware Trojan in SEA using path delay. In: Proceedings
of IEEE students’ conference on electrical, electronics and computer science, Bhopal, India,
March 2014, pp 1–6

Liu H, Luo H, Wang L (2011) Design of hardware trojan horse based on counter. In: Proceedings
of international conference on quality, reliability, risk, maintenance, and safety engineering,
Xi’an, China, June 2011, pp 1007–1009

Microsoft (2002) ASP.NET 4.5 [Computer Software]. http://www.asp.net/. Accessed 7 May 2015
Microsoft (2008) Entity Framework v6.0 [Computer Software]. https://msdn.microsoft.com/en-ca/

data/ef.aspx. Accessed 7 May 2015
Microsoft (2010) Azure Cloud System [Computer Software]. azure.microsoft.com. Accessed 7

May 2015
Microsoft (2011) D3.js v3.5.6 [Computer Software]. https://d3js.org/. Accessed 7 May 2015
Moein S (2015) Systematic analysis and methodologies for hardware security. PhD Dissertation,

University of Victoria, Victoria, BC, Canada
Moein S, Khan S, Gulliver TA, Gebali F, El-Kharashi MW (2015) An attribute based classification

of hardware trojans. In: Proceedings of International Conference on Computer Engineering and
Systems, Cairo, Egypt, December 2015, pp 351–356

Moein S, Subramnian J, Gulliver TA, Gebali F, El-Kharashi MW (2015) Classification of hardware
trojan detection techniques. In: Proceedings of International Conference on Computer
Engineering and Systems, Cairo, Egypt, December 2015, pp 357–362

Narasimhan S et al (2013) Hardware trojan detection by multiple-parameter side-channel analysis.
IEEE Trans Comput 62(11):2183–2195

Potkonjak M, Nahapetian A, Nelson M, Massey T (2009) Hardware trojan horse detection using
gate-level characterization. In: Proceedings of ACM/IEEE design automation conference, San
Francisco, CA, July 2009, pp 688–693

Rad RM, Wang X, Tehranipoor M, Plusquellic J (2008) Power supply signal calibration techniques
for improving detection resolution to hardware trojans. In: Proceedings of IEEE/ACM interna-
tional conference on computer-aided design, San Jose, CA, pp 632–639

Wang X, Tehranipoor M, Plusquellic J (2008) Detecting malicious inclusions in secure hardware:
challenges and solutions. In: Proceedings of IEEE international workshop on hardware-
oriented security and trust, Anaheim, CA, June 2008, pp 15–19

Wolff F, Papachristou C, Bhunia S, Chakraborty RS (2008) Towards trojan-free trusted ICs: problem
analysis and detection scheme. In: Proceedings of design, automation and test in Europe,
Munich, Germany, March 2008, pp 1362–1365

4 The Hardware Trojan System…

http://www.asp.net/
https://msdn.microsoft.com/en-ca/data/ef.aspx
https://msdn.microsoft.com/en-ca/data/ef.aspx
https://d3js.org/

55© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_5

Chapter 5
Combining Mouse and Eye Movement
Biometrics for User Authentication

Hongwei Lu, Jamison Rose, Yudong Liu, Ahmed Awad, and Leon Hou

5.1 Introduction

Biometric authentication verifies a user based on its inherent, unique characteristics—
who you are. In addition to physiological biometrics, such as the fingerprint, face,
and iris, behavioral biometrics has proven useful in authenticating a user. As an
emerging behavioral biometric, mouse dynamics, with their unique patterns of
mouse movements, aims to address the authentication problem by verifying users
on the basis of their mouse operating style. There are studies such as a mouse
dynamics analysis framework that uses mouse gesture dynamics for static authenti-
cation (Sayed et al. 2013), a new form of behavioral biometrics based on mouse
dynamics using artificial neural networks (Ahmed and Traore 2007), and a mouse
movement behavioral biometric that involves image feature extraction using genetic
and evolutionary computations (GECs) (Shelton et al. 2013). Besides these, there
are studies about using eye movement tracking as behavioral biometrics, for
instance, a score-level fusion method for eye movement biometrics (George and
Routray 2015), a decision tree-based personal authentication using eye movement
tracking (Dhingra et al. 2013), and an information fusion-based biometric identifi-
cation via eye movement scan paths in reading (Holland and Komogortsev 2011).
All these studies show a promising use of mouse movement tracking (MMT) and
eye movement tracking (EMT) in behavioral biometrics.

Despite of the promising future, there is still a long way to go for using MMT and
EMT for behavioral biometrics in practice. Based on a research by Chen et al. (2001),

H. Lu • J. Rose • Y. Liu (*) • L. Hou
Computer Science Department, Western Washington University,
516 High Street, MS9165, Bellingham, WA 98225, USA
e-mail: Yudong.Liu@wwu.edu

A. Awad
New York Institute of Technology, Vancouver, BC, Canada

mailto:Yudong.Liu@wwu.edu

56

there is an 84–88 % correlation between eye and mouse movement. Furthermore, a
more recent research shows this correlation depends on the length of experiment time,
personal browsing habits, and user’s cursor behavior, such as inactive, examining,
reading, or moving to perform a click (Huang et al. 2012). Based on the understanding
for these studies, we make an assumption that using both MMT and EMT for behav-
ioral biometrics will have some advantages compared to only using MMT or EMT
individually. However, to our knowledge no such research has been published.

In this research, we present a behavioral biometrics model for personal authenti-
cation using combined features of MMT and EMT. The interface we used is
designed to perform moving and click actions in eight directions for participants.
Therefore, MMT and EMT will be able to correlate to each other well. The draw-
back of this system is the requirement of the support of special hardware, an eye-
tracking device. The general idea of the system is to exploit the features from both
the mouse movement data and the eye movement data and see how well a user veri-
fication system can be trained with those features. With the supervised learning
setting, we first collect both types of data from a group of participants and process
the raw data to remove noise and incomplete data points. Features are then extracted
from the cleaned data, and a set of learning methods are trained with those features
including a multi-class classification system, a binary classification system, and a
neural network-based regression model. Experiments show that the neural network-
based model works the best on the large classification task. In the following, we will
report the related work and our system in more details.

5.2 Related Work

This research is on the basis of previous researches. Some behavioral features used
in the work are inspired by some related work.

5.2.1 Previous Research on Mouse Movements

As a pioneer in this field, Ahmed and Traore (2007) presented an experiment using
mouse movement as behavioral biometrics to identify a user. It achieved a false accep-
tance rate (FAR) value of 2.4649 % and a false rejection rate (FRR) value of 2.4614 %.
Some new features such as movement speed and movement direction are applied to
model behavior. This research brings idea on modeling behavior and choosing use-
ful features for experiment related to mouse movement. In Jorgensen and Yu (2011),
the authors reviewed existing approaches for mouse movement behavioral biomet-
rics and researched the impact of environmental variables on these approaches. The
researchers believe result of existing approaches is unlikely to be accurate under
controlled environmental variables and certain common remote access scenarios.
Therefore finding approaches to lessen impact of environmental variables such as
combining mouse dynamic with other types of behavioral biometrics will be a likely

H. Lu et al.

57

direction of a behavioral biometric research. In Zheng et al. (2011), the researchers are
trying to build a system that is robust and has quick response by using point-to-point
angle-based metrics of mouse movement to build a user identification system. They
achieved FAR and FRR values of 1.3 %. It shows that angle is stable and helpful met-
rics in behavior biometrics. In a more recent work, Shelton et al. (2013) introduced a
new approach that is called genetic and evolutionary feature extraction (GEFE) for
feature extraction from image of mouse movement, which provides a good idea in
relating feature extraction to image processing.

5.2.2 Previous Research on Eye Movements

Research by Holland and Komogortsev (2011) described how to utilize a fusion
algorithm on standard features of eye movement. The standard features include fixa-
tion count, average fixation duration, and average vertical saccade amplitude. This
fusion algorithm assigns each feature a weight, and then a similarity measure is cal-
culated for user identification. Other features in eye tracking are also helpful for
behavioral biometrics. For instance, Rigas et al. (2012) used saccadic velocity and
acceleration as eye movement features and applied a nonparametric statistical test to
compare the distributions of these features. After that, a k-nearest neighbors classifi-
cation algorithm is applied for identification. It shows how to utilize the velocity and
acceleration of eye movement as behavioral biometrics. In Holland and Komogortsev
(2013), researchers investigate the effect of eye-tracking device setting on eye move-
ment biometrics. The result from their experiment suggests that an eye-tracking
system with spatial accuracy less than 0.5° and at least 250 Hz temporal resolution is
recommended for biometric purposes. That is, in order to conduct a behavioral
biometrics experiment using eye-tracking technique, an appropriate hardware and
software environment is helpful. In a recent research (George and Routray 2015)
about eye movement behavioral biometric, features are extracted from fixation and
saccade separately, and then calculated scores for features from each of them using
two radial basis function (RBF) neural networks. Then a fusion method is applied to
compute a final score based on the two scores. This research describes how to use
neural network and fusion method in building a behavioral biometrics system. In our
experiment, we also used a neural network-based fusion model.

5.3 Experiment Setting and Design

5.3.1 Experiment Setting

The computer we used is a desktop PC with Windows 8 operating system. There are
two monitors where one is extended on the right of the other one. The resolution of
both monitors is 1680 pixels by 1050 pixels. The eye-tracking device is SensoMotoric
Instruments (SMI) iView RED-m with a sample rate of 60 Hz. The mouse is wired

5 Combining Mouse and Eye Movement Biometrics for User Authentication

58

USB laser one with a dpi of 1200. The eye tracker is mounted at the bottom of a
monitor screen horizontally, and the experiment tool will run on this monitor.
Figure 5.1 shows the setup.

5.3.2 Participants

Experiment data is collected from 40 participants. Sixteen of them are female and
24 of them are male, and their age ranges from 18 to 58, with an average of 25. Their
average number of years of using computer is 16. There are seven of them wearing
glasses or contact lenses when performing the experiment.

5.3.3 Experiment Design

Figure 5.1 shows the user interface that is designed for user data collection. It is full
screen and has nine buttons on it of which one is located in the center and the other
eight are evenly distributed around the screen clockwise starting on the center top.
The eight surrounding buttons indicate eight directions. This design is similar with
the one used in Ahmed and Traore (2007). The center button is the start button.
When a participant clicks on it, the program will start recording mouse and eye
movement. The eight surrounding buttons are ending buttons. Clicking on them will
notify the program to stop recording. The process that the mouse cursor and eye
move from the center button to an ending button of a direction is an action. It means
the participant moves his/her eyes toward one direction.

Every time an action is performed, a mouse data file and an eye data file will
be generated at the same time. Each line of data in these files will be a time stamp
followed by x and y coordinates relative to the upper left corner of the screen. All

Fig. 5.1 Experiment setup and user interface that’s used to collect the data

H. Lu et al.

59

these lines together in a file will be a path of the mouse or eye movement toward a
direction. Below is an example that shows three lines of a data file where the first
column is a time stamp, and the second and third columns correspond to the x and y
coordinates at that time stamp, respectively:

24125824134 844.00 470.00
24125824345 846.00 456.00
24125840298 848.00 441.00

5.3.4 Experiment Procedure

When the eye-tracking device is connected to the computer and the experiment
program is ready, the participant is asked to sit down in front of the monitor and
eye-tracking device. They may be asked to adjust the sitting position to make sure
the eye-tracking device can detect his/her eyes properly. Then a five-point calibra-
tion step is performed. Calibration is followed by a validation step to validate the
eye positions. A valid position is measured by the spatial accuracy that is less than
0.5 for both x and y coordinates. The next step is to run the interface to collect data
(see Fig. 5.1). Participants are asked to click buttons in order of 1 to 8, e.g., [start
button] → [button 1] → [start button] → [button 2] → [start button], and so on.
Participants are asked to repeat this process ten times. Once a participant finishes
this part, he/she will be asked to perform the second part of the experiment, which
is clicking buttons in random order, e.g., [start button] → [2 button] → [start
button] → [8 button] → [start button] → [2 button], and so on. One hundred actions
are performed in the order from direction 1 to 8. In both parts, the eye movement
data and mouse movement data are collected simultaneously.

5.4 Data Processing and Feature Extraction

5.4.1 Data Alignment

Since the eye movement data and mouse movement data are collected via different
programs, they are generated in different frequency. The eye data is collected in a
higher frequency. To extract the combined features, these two sets of data have to be
aligned. There will be eight pairs of data files that need to be aligned given the data
is collected in eight directions. The alignment algorithm takes a mouse data file and
the corresponding eye data file as input each time. The alignment is based on each
time stamp of the eye movement, because in one time period, the eye movement
data has a higher density. The alignment algorithm uses a threshold, which is a time
range, to find a corresponding mouse movement data that falls in that time range
and then appending the mouse movement data to the end of the eye movement data
as one line in the new aligned data file. This process is done on each pair of the eight
file pairs and generates files that only contain aligned data.

5 Combining Mouse and Eye Movement Biometrics for User Authentication

60

5.4.2 Data Cleaning

Due to reasons such as the inaccuracy of eye-tracking device, or in the case of
blinks, or an accidental wrong operation from a participant when doing experiment,
incorrect, incomplete, or improperly formatted data would be generated. An example
of incorrect data is that some coordinate values are negative. An example of incom-
plete data is that a group of data used to indicate an eye or mouse movement path
only contains few coordinates. The goal of data cleaning is to remove such incor-
rect, incomplete, or improperly formatted data. Our data cleaning process is done in
three stages.

• Stage 1: Cleaning on raw data

After data collection, remove data files that only contain few coordinates or are
empty. If a mouse data file is deleted, the corresponding eye data file will also be
deleted and vice versa.

• Stage 2: Cleaning during data alignment

In the process of data alignment, coordinates that have incorrect values, such as
negative or empty values, or improperly formatted values are removed. After
removing these data, some data file may become empty or incomplete, so check
and remove these incomplete data files.

• Stage 3: Cleaning before feature extraction

For features extraction, some data are redundant and need to be removed. When
the eye and mouse move from the start point to the end point during the experi-
ment, if either the eye or mouse has arrived at the end point but its coordinates
are still being recorded after this arrival, these data are redundant and should be
ignored or removed.
An algorithm is applied to this step. It finds the first point that enters the ending

range by following the path from the start point. The ending range is a rectangle
area that is centered by the ending button, whose coordinates are constants. All the
coordinates recorded after that first entering point will be removed.

After removing redundant data, some aligned data file may become empty or
incomplete, so check and remove these incomplete data files again.

In some cases, even though a data file contains lots of coordinates, the path based
on these coordinates is very short. This indicates that these data points cluster in a
small area, and the movement path is incomplete, so this data file needs to be
removed.

Another algorithm applied to this step is to first check the moving distance of
eye and mouse. If any one of them is less than a threshold, remove the data file
indicating this path. The distance is calculated using the Cartesian distance
formula.

H. Lu et al.

61

5.4.3 Data Visualization

Data visualization is useful for observing what the data looks like, especially in
the process of data cleaning. It visualizes aligned eye and mouse movement data.
The tool used for visualization simply connects all coordinates toward one direction
and displays the paths for eye movement and mouse movement in different color.

Figure 5.2 shows all the movements of eye and mouse from one participant
where (a) and (b) show the visualization result before and after the data cleaning is done.

Fig. 5.2 The visualization of eye and mouse movement from one participant (a) before data cleaning
and (b) after data cleaning

5 Combining Mouse and Eye Movement Biometrics for User Authentication

62

The blue line indicates eye movement and red line indicates mouse movement. Data
visualization provides us an easy way to observe the difference of the eye and mouse
movement paths among different participants. When moving toward one direction,
the curve of mouse or eye movement path from one participant is different with the
curve from other participants. For example, when comparing data from two partici-
pants moving the mouse to same direction, one’s curve has a bell shape toward one
side, another’s curve has a bell shape toward the opposite side. Another difference
is the combination of eye movement path and mouse movement path. For instance,
some participant’s eye and mouse movement paths are very close or have some
overlap, but some of those paths from other participants are obviously apart. In
addition, the delay of eye and mouse paths is different among participants. The start
points of the eye and mouse movement paths are different. So there is a delay
between them. It happens because when the start button is clicked, eyes may move
faster than mouse cursor or vice versa.

5.4.4 Feature Extraction

Features are selected to characterize eye and mouse movement. In our experiment,
eight features are defined. Each data point can be represented in these eight features.
Considering the eye gaze and mouse cursor move from the start point to an end
point as one action toward a direction, and one data point is generated from one
action, these eight features are eye speed, mouse speed, ratio of eye speed and
mouse speed, eye angle, mouse angle, deviation of eye angle and mouse angle,
delay time, and direction.

Eye speed. It is used to measure how fast eyes move when eye gaze moves from start
point to end point. It is an average speed that is calculated by dividing the distance
eye moves by the time this movement takes. In each action, the distance and the
time begin from the start point and stop when the eye moves into the rectangle area
of end point as described previously. The distance and the time period are calculated
by getting the difference between the end position and start position of the eye gaze.
Getting start position of eye gaze is straightforward. It is where the eye is when the
start button is pressed. Finding end position is more complicated. It is the first eye
gaze point that enters the area of end point, as described before. And eye movement
data recorded after this point will be ignored. The reason why the end position of
eye gaze is calculated this way is that starting and ending each action is controlled
by the mouse. Since mouse cursor usually moves slower than eye gaze, at the time
the eye gaze arrives at an end point the action hasn’t been stopped. When the mouse
cursor arrives at the end point, eye gaze has been waiting in the ending area for some
time. Therefore, this time period shouldn’t be taken into account for calculating eye
movement speed.

Mouse speed. Mouse speed is calculated in the similar way as eye speed. That is to
divide the distance that the mouse moves by the time this movement takes. The start

H. Lu et al.

63

position is obtained by getting the mouse cursor position when a start button is
clicked. The end position is obtained by getting the mouse cursor position when an
end button is clicked. The speed will be calculated by the following equation:

speed

Distance

endTime startTime
=

-
(5.1)

where end time is time stamp of end point and start time is time stamp of start
point.

Ratio of eye speed and mouse speed. It is obtained by dividing the eye speed by the
mouse speed.

Eye angle. The angle is defined as the acute angle between the vertical line and the
line from start position to end position of eye movement. In order to get this angle,
first thing we need to do is to find the start position and end position of eye move-
ment, which have been found for the feature of eye speed. After that, arctangent
function is used to get the angle. Arctangent function needs an input which is the
division of the horizontal distance and the vertical distance between end position
and start position of eye movement. The equation is shown below:

q
p

=
-()
-()

æ

è
çç

ö

ø
÷÷*

-tan 1 1 0

1 0

180y y

x x

(5.2)

where θ is the angle, tan−1 is the arctangent function, (x0, y0) is the start point, (x1, y1)
is the end point, and π is approximately as 3.14159.

Mouse angle. Mouse angle is calculated in the similar way as eye angle as shown
in Eq. 5.2, except here the start position and the end position of mouse movement
are used.

Deviation of eye angle and mouse angle. After getting eye angle and mouse angle,
this feature is simply calculated by getting the difference of eye angle and mouse
angle, which is given by:

 Deviation = -q q1 2 (5.3)

where θ1 is the eye angle and θ2 is the mouse angle.

Delay time. The delay time describes after the start button is clicked, how much later
the mouse starts to move compared to the eye. It’s defined as the difference of eye
movement start time and mouse movement start time in milliseconds.

Direction. Direction is a property of an eye or mouse action. It is indicated by a
number from 1 to 8. Direction 1 is up, direction 3 is right, direction 5 is down, direc-
tion 7 is left, direction 2 is between direction 1 and direction 3, direction 4 is between
direction 3 and direction 5, direction 6 is between direction 5 and direction 7, and
direction 8 is between direction 7 and direction 1.

5 Combining Mouse and Eye Movement Biometrics for User Authentication

64

5.5 Proposed Approaches

The features obtained from feature extraction are divided into two sets: one is used
for training the model, and the other is used for evaluating the model. Three models
including simple multi-class classification model, binary classification model, and
regression model using fusion method are applied to implement the personal authen-
tication system. Learning algorithms used in these models are from Accord.NET
Framework (http://accord-framework.net/). The latter two models are based on neu-
ral networks. In these two models, each user has an individual neural network that
would answer whether data belongs to them or not. Each neural network uses a
bipolar sigmoid function for its activation function, the Nguyen-Widrow algorithm
Nguyen, D., & Widrow, B. (1990) for network initialization and the Levenberg-
Marquardt algorithm for training. The training data is normalized by centering it on
0 and scaling it to fit in between −1 and 1 for each of the data values in the input
vectors. The testing data is then normalized by using the same way of centering and
scaling.

5.5.1 Simple Multi-class Classification Model

In this model, the training data from different participants are labeled with different
numbers to model the task as a multi-class classification task. Decision tree, Naive
Bayes, and resilient backpropagation are applied for training this model. Each learning
algorithm takes as input the feature vectors of eight features as described in Sect. 5.4.4.
The output is a number that identifies a user. Besides, the model is tuned by adjusting
parameters for those learning algorithms using a small development set.

5.5.2 Binary Classification Model

This model is the first generation of assigning neural networks to each user. In this
model, the training algorithm is Levenberg-Marquardt neural network. Each user/
class is assigned a neural network and the network is trained for binary classifica-
tion. Each Levenberg-Marquardt neural network uses bipolar sigmoid function as
the activation function, which means the output values are between −1 and 1. The
model is trained by feeding it with unlabeled feature data and target data and adjust-
ing parameters such as number of neurons, number of hidden layers, and threshold
for bipolar sigmoid function to improve the performance.

This binary classification model uses the same feature vectors as the simple
multi-class classification model. It is trained using an input layer of eight nodes
which are features from feature vectors, a single hidden layer using a variable number
of nodes and a single output layer that outputs a value close to 1 when the user should

H. Lu et al.

http://accord-framework.net/

65

be valid and a value close to −1 when the user should be invalid. To distinguish
between users, a threshold between −1 and 1 is chosen to determine what should
and should not be accepted. Each user’s network is trained using the entire training
data set allowing for positive and negative examples to be provided.

5.5.3 Regression Model Using Fusion

This model is an improvement of the previous binary classification model. It is the
second generation of assigning neural network to each user. It uses Levenberg-
Marquardt neural network as learning algorithm and trains the neural network with
three features: eye speed, mouse speed, and direction. It focuses on only positive train-
ing examples. To do this, each user was assigned two neural networks as shown in
Fig. 5.3a. The first one takes the user’s mouse speed and direction of movement and
outputs the user’s eye speed. The second one takes their eye speed and direction of
movement and outputs the speed of the user’s mouse. There are two types of input for
each network: 9-dimensional and 12-dimensional vectors. For the nine- dimensional
vector, it has the first value being the speed, the nth value was a one where n is the
direction the action is in, and all other values are zero. The 12- dimensional has three
more input features, mouse angle, eye angle, and delay time, than nine-dimensional
vector. These networks are tested by running an input through the network and then
checking the amount of error the network has. If this error is below a threshold then
it will accept a user. The threshold is first chosen globally for all networks, but this
approach did not provide acceptable results, so we create a threshold for each user
which provides much better results. The results of the two networks are combined in
two ways. We test whether having both networks agree or only requiring one net-
work for acceptance is better. These two ways are two of fusion methods. The other
two methods focus on only testing one network for a user.

Another feature implemented in this model is batching the input vectors into ses-
sions. A session is initially composed of a sample action from each of the eight
directions and has a size of eight, but sessions containing two samples and four
samples from each direction are also tested. To evaluate the sessions, the errors of
each sample in the session are averaged and then the average is checked against the
threshold. In our experiment, we collect data of ten sessions from each participant,
and each session has eight actions (one from each direction), so the total session size
should be 80 for each class. However, some actions are incorrect or incomplete (as
mentioned in Sect. 5.4.2), so this causes some sessions become incomplete due to
missing one or more actions. For instance, for session size 32, there are only 15
classes with four samples from each direction.

Our data set contains data collected from 40 participants. This means there are 40
classes totally. In simple multi-class classification model and binary classification
model, we train and test it with all the 40 classes. In regression model using fusion,
for session size 8 and 16, all 40 classes are tested, but for session size 32, since the
complete sessions are insufficient, it is only able to test 15 classes.

5 Combining Mouse and Eye Movement Biometrics for User Authentication

66

5.6 Result and Discussion

The performance from the simple multi-class classification model is getting poor as
there are more classes. The best performance is from a three-class classification model
(see Table 5.1). Table 5.1 shows a test with three different learning algorithms using

Fig. 5.3 Regression model with fusion. (a) Training: two neural nets per user. (b) Testing: fusion
model

H. Lu et al.

67

80 % data for training and 20 % data for testing from a data set containing about
3200 data points. When there are more classes, such as 40, the precision and recall
drop down to less than 1 %. Because of this, we start to explore other approaches
such as binary classification.

However, the binary classification model does not perform well either. For
40-class classification, we train it with 40 % of data and test it with 60 % of data
from data set. This model achieves very high false acceptance rate (FAR) and false
rejection rate (FRR) values. We believe that this is because the amount of negative
examples is so much higher than positive examples that they overpower the positive
ones.

The regression model using fusion is an improved model on the basis of binary
classification model and achieves a much better performance. The result of evalua-
tion for this model is displayed in Table 5.2. In this model, the fusion strategy refers
to four types of input and output combination.

• Eye → mouse: only tests output from the network that maps eye to mouse speed.
• Mouse → eye: only tests output from the network that maps mouse to eye speed.
• Both &&: uses both networks and only accepts an input if both networks are

accepted.
• Both ||: uses both networks and accepts an input if either network is accepted.

Table 5.2 shows the result of a test for 15 classes using 40 % of data for training and
60 % of data for testing from the data set, and the leftmost column labeled “layers
structure” shows the structure of the neural network. For example, 9-10-1 is a network
that takes in nine values and has a hidden layer of ten nodes and outputs a single value.
The networks that have nine inputs use direction and speed solely. The networks with
12 inputs use the angle and delay time as well. There are four tests for each configura-
tion. The criteria of choosing thresholds for these tests is choosing ones that minimize

Table 5.1 Result of three-class classification

Learning method Class Accuracy F-Score Precision Recall

Rprop 0 0.88 0.67 0.71 0.63
1 0.92 0.71 0.67 0.75
2 1 1 1 1
AVG 0.94 0.83 0.84 0.83

Naïve Bayes 0 1 1 1 1
1 1 0.94 0.89 1
2 0.96 0.93 1 0.88
AVG 0.99 0.96 0.96 0.96

Decision tree 0 1 1 1 1
1 1 0.94 0.89 1
2 0.96 0.93 1 0.88
AVG 0.99 0.96 0.96 0.96

Rprop resilient backpropagation

5 Combining Mouse and Eye Movement Biometrics for User Authentication

68

Ta
bl

e
5.

2
Pe

rf
or

m
an

ce
 o

f
re

gr
es

si
on

 m
od

el
 w

ith
 s

es
si

on
 s

iz
e

32

L
ay

er
s

st
ru

ct
ur

e
Fu

si
on

T
hr

es
ho

ld
 to

 m
in

im
iz

e
E

E
R

T
hr

es
ho

ld
 to

 m
ax

im
iz

e
F-

Sc
or

e
F-

Sc
or

e
Pr

ec
is

io
n

R
ec

al
l

FA
R

FR
R

F-
Sc

or
e

Pr
ec

is
io

n
R

ec
al

l
FA

R
FR

R

9-
10

-1
E

 ⇒
 M

0.
57

9
0.

51
9

0.
8

0.
22

0.
2

0.
62

9
0.

59
4

0.
9

0.
15

7
0.

1
M

 ⇒
 E

0.
48

3
0.

39
0.

83
3

0.
23

9
0.

16
7

0.
55

1
0.

51
2

0.
9

0.
18

0.
1

B
ot

h
&

&
0.

68
9

0.
62

8
0.

86
7

0.
15

6
0.

13
3

0.
74

5
0.

70
7

0.
93

3
0.

08
6

0.
06

7
B

ot
h

||
0.

60
4

0.
53

9
0.

83
3

0.
20

2
0.

16
7

0.
68

5
0.

66
3

0.
93

3
0.

12
0.

06
7

9-
20

-2
0-

1
E

 ⇒
 M

0.
40

8
0.

32
2

0.
73

3
0.

32
5

0.
26

7
0.

47
8

0.
40

1
0.

96
7

0.
30

5
0.

03
3

M
 ⇒

 E
0.

48
8

0.
39

3
0.

86
7

0.
23

7
0.

13
3

0.
51

5
0.

44
5

0.
93

3
0.

21
0.

06
7

B
ot

h
&

&
0.

6
0.

52
8

0.
8

0.
23

0.
2

0.
66

7
0.

60
7

0.
96

7
0.

13
9

0.
03

3
B

ot
h

||
0.

55
8

0.
47

5
0.

8
0.

24
5

0.
2

0.
60

2
0.

53
3

0.
96

7
0.

17
8

0.
03

3
12

-5
0-

1
E

 ⇒
 M

0.
59

4
0.

50
9

0.
9

0.
17

6
0.

1
0.

61
3

0.
52

2
0.

96
7

0.
17

2
0.

03
3

M
 ⇒

 E
0.

37
2

0.
28

9
0.

76
7

0.
36

9
0.

23
3

0.
42

4
0.

39
2

0.
93

3
0.

35
8

0.
06

7
B

ot
h

&
&

0.
63

7
0.

57
1

0.
83

3
0.

20
5

0.
16

7
0.

68
7

0.
60

6
0.

96
7

0.
13

0.
03

3
B

ot
h

||
0.

56
6

0.
51

5
0.

73
3

0.
27

7
0.

26
7

0.
66

0.
61

2
0.

93
3

0.
14

5
0.

06
7

12
-5

0-
50

-1
E

 ⇒
 M

0.
51

1
0.

41
6

0.
83

3
0.

21
0.

16
7

0.
53

8
0.

46
7

0.
96

7
0.

23
0.

03
3

M
 ⇒

 E
0.

44
2

0.
36

4
0.

76
7

0.
27

9
0.

23
3

0.
48

9
0.

39
1

0.
29

0
B

ot
h

&
&

0.
61

3
0.

55
0.

8
0.

20
3

0.
2

0.
68

7
0.

60
6

1
0.

15
0

B
ot

h
||

0.
54

1
0.

45
9

0.
8

0.
23

0.
2

0.
60

5
0.

53
6

0.
96

7
0.

17
2

0.
03

3
12

-1
5-

15
-

15
-1

E
 ⇒

 M
0.

49
6

0.
39

8
0.

86
7

0.
20

3
0.

13
3

0.
53

1
0.

43
0.

96
7

0.
19

2
0.

03
3

M
 ⇒

 E
0.

44
5

0.
38

1
0.

76
7

0.
28

9
0.

23
3

0.
49

4
0.

41
2

0.
96

7
0.

27
3

0.
03

3
B

ot
h

&
&

0.
64

3
0.

56
3

0.
83

3
0.

18
0.

16
7

0.
69

7
0.

63
4

0.
93

3
0.

08
2

0.
06

7
B

ot
h

||
0.

55
9

0.
48

8
0.

8
0.

24
1

0.
2

0.
63

2
0.

53
9

0.
96

7
0.

13
5

0.
03

3

L
ay

er
 s

tr
uc

tu
re

: s
tr

uc
tu

re
 o

f
la

ye
rs

 in
 n

eu
ra

l n
et

w
or

k
E

 ⇒
 M

 (
ey

e
sp

ee
d
⇒

 m
ou

se
 s

pe
ed

)
M

 ⇒
 E

: m
ou

se
 s

pe
ed

 ⇒
 ey

e
sp

ee
d

B
ot

h
&

&
: E

 ⇒
 M

 &
&

 M
 ⇒

 E
B

ot
h

||:
 E

 ⇒
 M

 ||
 M

 ⇒
 E

H. Lu et al.

69

equal error rate (EER) or maximize F-Score. The result indicates that the performance
is best when we use neural network with four layers, 12 inputs, 24 neurons in second
and third layers, and single output. The FAR achieves 8.2 % and the FRR achieves
6.7 %. There are ten different layer structures for neural network that are tested in total,
and the result shows that the layer structure of neural network does not have too much
impact on performance. Comparing to only use of eye → mouse or mouse → eye, using
both && and both || greatly reduce the value of FAR and have higher F-Score. In addi-
tion, session size has major impact on the performance.

Table 5.3 shows a best performance for each of the specified session size.
Sessions with three different sizes are tested. As the results show, training the model
with a session size 32 doubled the F-Score when training it with session size 8. The
greatest session size in our tests is 32, and it produces best performance. Therefore,
it makes sense to test a session size greater than 32. Due to the insufficiency of
complete sessions, it is not able to perform a test with session size greater than 32.
We expect to collect more data with complete sessions and test greater session size
in future work.

Figure 5.4 shows the ROC curves for one of the 15 users. There are two curves.
The mouse threshold curve shows the ROC when the eye threshold is held constant
at its best value. Similarly the eye threshold ROC shows the curve when the mouse
threshold is held constant at its best value. The curve appears jagged because the
number of sessions tested at 32 samples per session was low causing the ROC curve
to change in steps rather than smoothly.

5.7 Conclusion and Future Research Direction

The idea of applying combined MMT and EMT in behavioral biometrics is a new
exploration in this area. Our experiment shows promising results of using the regres-
sion model using fusion on the combined data of MMT and EMT. We conclude that
the eye-tracking biometrics, by combining with the mouse biometrics, are a viable
method of authenticating a small population of user (n ≤ 15).

In the future, we plan to continue the study in three directions. Firstly, we would
like to conduct a research where the goal is to compare the performance of
combined MMT and EMT in behavioral biometrics with only using MMT or EMT.
The current fusion model uses the features from both MMT and EMT, which makes
it difficult to adapt it to the MMT-only or the EMT-only setting directly.

Table 5.3 Comparison of best performance of regression model in different session size

Session size Layers structure F-Score Precision Recall FAR FRR

8 12-100-1 0.388 0.464 0.494 0.057 0.506
16 12-50-1 0.637 0.713 0.698 0.042 0.302
32 9-10-1 0.745 0.707 0.933 0.086 0.067

Layer structure: structure of layers in neural network
It shows a best performance for each of the specified session size

5 Combining Mouse and Eye Movement Biometrics for User Authentication

70

Secondly, we plan to collect more data of higher quality through a better designed
data collecting user interface where a quality checking layer is added. This way we
believe a higher quality set of data can be collected, and therefore the data cleaning
component will have less impact on the amount of data we end up having. In addition,
some new features need to be developed. For example, a feature that captures the
curve of the path of eye and mouse movement would be a choice.

ROC Eye Threshold

ROC Mouse Threshold

1

0.9

0.8

0.7

0.6

0.5

F
R
R

0.4

0.3

0.2

0.1

0.0
0 0.1 0.2 0.3 0.4 0.5

FAR

0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

F
R
R

0.4

0.3

0.2

0.1

0.0
0 0.1 0.2 0.3 0.4 0.5

FAR

0.6 0.7 0.8 0.9 1

Fig. 5.4 ROC curve of eye and mouse thresholds for one of the 15 users

H. Lu et al.

71

Finally, we would like to refine the current model in order to achieve a better
performance. Splitting the threshold to be unique for each user makes much better
results in the regression model using fusion, so it makes sense to build a new model
that assigns a threshold for each direction a user has. In this new model, a neural
network is trained for each of the eight directions a user does an action in. Once
these neural networks are trained, a new fusion network will be created that takes as
input the values that represented errors. The errors will be created by running all of
the training data through the trained directional networks. The input for the fusion
network is then an error in each direction the user does an action in for both map-
ping eye speed to mouse speed and mouse speed to eye speed. The output of the
fusion network will be then a number between −1 and 1 representing the confidence
that a user should be accepted. For testing, more data will be collected in order to
test with a greater session size, and the evaluation will be based on the average
confidence value rather than the average error.

References

Ahmed AAE, Traore I (2007) A new biometric technology based on mouse dynamics. IEEE Trans
Dependable Secur Comput 4(3):165–179

Chen MC, Anderson JR, Sohn MH (2001) What can a mouse cursor tell us more? Correlation of
eye/mouse movements on web browsing. In: CHI ‘01 extended abstracts on human factors in
computing systems—CHI ‘01

Dhingra A, Kumar A, Hanmandlu M, Panigrahi BK (2013) Biometric based personal authentication
using eye movement tracking. In: Swarm, evolutionary, and memetic computing lecture notes in
computer science, pp 248–256

George A, Routray A (2015) A score level fusion method for eye movement biometrics. Pattern
Recogn Lett 82(2):207–215

Holland C, Komogortsev OV (2011) Biometric identification via eye movement scanpaths in reading.
In: International joint conference on biometrics (IJCB)

Holland C, Komogortsev O (2013) Complex eye movement pattern biometrics: the effects of
environment and stimulus. IEEE Trans Inf Forensic Secur 8(12):2115–2126

Huang J, White R, Buscher G (2012) User see, user point: gaze and cursor alignment in web
search. In: Proceedings of the 2012 ACM annual conference on human factors in computing
systems—CHI ’12

Jorgensen Z, Yu T (2011) On mouse dynamics as a behavioral biometric for authentication. In:
Proceedings of the 6th ACM symposium on information, computer and communications
security—ASIACCS ‘11

Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing
initial values of the adaptive weights. In 1990 IJCNN international joint conference on neural
networks. IEEE, pp. 21–26.

Rigas I, Economou G, Fotopoulos S (2012) Human eye movements as a trait for biometrical
identification. In: 2012 IEEE fifth international conference on biometrics: theory, applications
and systems (BTAS)

Sayed B, Traore I, Woungang I, Obaidat M (2013) Biometric authentication using mouse gesture
dynamics. IEEE Syst J 7(2):262–274

Shelton J, Adams J, Leflore D, Dozier G (2013) Mouse tracking, behavioral biometrics, and
GEFE. In: 2013 Proceedings of IEEE Southeastcon

Zheng N, Paloski A, Wang H (2011) An efficient user verification system via mouse movements. In:
Proceedings of the 18th ACM conference on computer and communications security—CCS ‘11

5 Combining Mouse and Eye Movement Biometrics for User Authentication

73© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_6

Chapter 6
Ensuring Online Exam Integrity Through
Continuous Biometric Authentication

Issa Traoré, Youssef Nakkabi, Sherif Saad, Bassam Sayed,
Julibio D. Ardigo, and Paulo Magella de Faria Quinan

6.1 Introduction

The last decade has witnessed a growing interest in the area of continuous authentication,
with several publications being produced by the research community and diverse
products being released by the industry. Continuous authentication consists of veri-
fying repeatedly the identity of a user throughout computing or online session, with
the purpose of preventing identity fraud (Traore and Ahmed 2012).

Identity fraud can broadly be categorized in three classes: identity theft, identity
sharing, and identity denial. Identity theft occurs when the identity of an unsuspected
user is hijacked by a fraudster and used to conduct malicious activity pretending to
be the legitimate user. Vehicles for conducting such attacks include phishing, social
engineering, and password cracking.

Denial of identity occurs when an authorized individual conducts illegal actions
and repudiates such actions when caught. Typically, this would consist of a mali-
cious insider who repudiates malicious actions associated with their identity.

Identity sharing, also referred to as identity gift, occurs when an authorized indi-
vidual willingly share their credentials with other users, in violation of established
policies and regulations. Illegal password sharing can happen, for instance, in the
financial industry to circumvent two-man rules, or for paid subscription services such
as Netflix.

I. Traoré (*)
Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada
e-mail: itraore@ece.uvic.ca

Y. Nakkabi • S. Saad • B. Sayed • P.M. de Faria Quinan
Plurilock Security Solutions, Inc., Victoria, BC, Canada

J.D. Ardigo
Santa Catarina State University, Florianopolis, SC, Brazil

mailto:itraore@ece.uvic.ca

74

A prominent area where illegal credential sharing occurs is online education. With
current learning management systems (LMS), students can easily cheat in tests by
giving their passwords to others who can take the tests on their behalf. While some
Exam Management Systems (EMS) support strong authentication technologies using
biometrics, such authentication occurs only statically at login time, this still opens up
the door to the possibility for impersonation to occur after the initial login phase.

We propose to address this threat using continuous authentication using a multi-
modal biometric framework. The proposed multimodal framework combines three
complementary biometric technologies: face, mouse dynamics, and keystroke
dynamics. All three modalities are collected and processed transparently during the
exam without requiring any predefined actions from the test taker.

The proposed framework has been implemented as one the core modules of a
new comprehensive exam monitoring platform called ExamShield that has been
released recently by Plurilock Security Solutions Inc.

The rest of the chapter is structured as follows. In Sect. 6.2, we discuss and
summarize related work. In Sect. 6.3, we present the general architecture of the
multimodal biometric framework and its integration in the ExamShield platform. In
Sect. 6.4, we discuss the challenges involved in developing our continuous face
biometric authentication scheme and give an overview of the approach taken to
overcome these challenges. In Sect. 6.5, we make some concluding remarks.

6.2 Related Works

The protection of the integrity of online exams through continuous using biometric
technologies is an emerging area of research with relatively few papers (Ahmed and
Traore 2011). Furthermore most of the publications, actually, use static biometric
authentication.

An example of such line of work has been authored by Ramu and Arivoli by
proposing a two-layered approach to address the problem of online exam takers’
authentication (Ramu and Arivoli 2013). The two-layered approach combines key-
stroke biometric authentication and knowledge-based authentication. Although a
biometric technology is used, exam participants are authenticated only statically at
login time. As mentioned before, this is not enough to prevent cheating from occur-
ring during the course of the exam.

A departure from the above line of work is the approach proposed by Flior and
Kowalski who introduced a proof-of-concept implementation of an online exam
security system based on continuous keystroke biometric authentication (Flior and
Kowalski 2010). In the proposed system, enrolment requires 500 characters col-
lected in a restricted setting (e.g., no backspace or delete is allowed). Furthermore
enrolment is performed using fixed text (i.e., predefined text). Similarly, during the
exam, verification occurs when 50 keystrokes with no deletion or significant pauses
are generated. While the relatively small amount of samples required for enrolment
and verification can be considered as a benefit of the system, the restricted nature of
these processes will be a significant limitation in real-world deployment. It is not

I. Traoré et al.

75

very realistic to expect an exam to be performed without typos occurring on a regular
basis. Furthermore no evaluation of the proposed work has been provided.

Monaco et al. investigated the use of keystroke dynamics and stylometry for con-
tinuous authentication of students during online exams (Monaco et al. 2013).
Stylometric analysis consists of determining the authorship of a piece of text or docu-
ment based on the writing style. Like keystroke dynamics, stylometry can be captured
transparently using standard keyboard devices. In the proposed work, different studies
were conducted using keystroke dynamic and stylometry separately and then by com-
bining both modalities. The combination of both modalities happens at the feature
extraction level by concatenating the separate feature vectors into a combined key-
stroke-stylometry feature vector, which is then submitted to a common classification
system. An advantage of this approach over the abovementioned approaches (from the
literature) is the use of free text detection, which is crucial to effectively carry continu-
ous authentication. An important limitation, however, is the reliance on a closed-world
assumption for authentication. The system relies on a closed population of students
serving as basis to train all authorized users. Such assumption is flawed as students
cheating in online exams do not necessarily do so with the involvement of other fellow
students known to the system. Online cheating may involve sharing credentials with
outside individuals totally unknown to the local authentication system.

Fayyoumi and Zarrad developed a prototype for an authentication engine for
online exam using continuous face biometric recognition (Fayyoumi and Zarrad
2014). The proposed approach was evaluated by obtaining experts’ feedback.
Specifically feedbacks were obtained from eight e-learning instructors and 32 stu-
dents, through a survey using a five-point Likert scale. The proposed examination
system includes a question bank which assists instructors in generating randomly
different tests for the test takers. Enrolment is performed by capturing and storing
images of the user. During the exam, the system tracks the face movement and com-
pares them to the original samples captured during enrolment. A warning is gener-
ated in case of suspicion of cheating. A key limitation with the proposed approach
is how cheating is characterized. The system relies on facial movement to decide
wherever there is cheating or not, which potentially can be a source of large number
of false alarms. Furthermore, no evaluation of the performance of the biometric
system was conducted. The evaluation was limited as mentioned to the perception
of the survey participants mostly on qualitative aspects of the system.

Our proposed framework combines keystroke, mouse, and face biometrics for
continuous authentication and does not rely on a closed-world assumption for iden-
tity verification. This is made possible by relying only on positive training during
enrolment for each of the modalities.

6.3 Online Exam Security: The ExamShield Platform

In this section, we present the ExamShield platform and introduce the general architecture
of the underlying multimodal biometric framework.

6 Ensuring Online Exam Integrity Through Continuous Biometric Authentication

76

6.3.1 The ExamShield Platform

ExamShield is a virtual exam center that integrates seamlessly multiple hetero-
geneous services (multi-biometric authentication, video streaming and record-
ing, exam creation, storage, delivery, and marking). The exam center has been
developed as a web portal that can be deployed on the cloud or on premise at the
academic institution.

The high-level architecture of ExamShield, depicted in Fig. 6.1, includes the fol-
lowing major services:

 1. Exam Management Service provides essential exam management features such
as question randomization for different test takers, management of navigation
between exam sections, and exam policy enforcement (e.g., exam duration, number
of attempt, break time, etc.).

 2. Exam Environment Monitoring Service conducts video/audio monitoring of the
test taker and surrounding environment using ordinary camera and microphone.

 3. Continuous Authentication Service continuously validates the identity of the
test taker throughout the exam using a multimodal biometric platform. The plat-
form provides for the first time in an integrated way the following three comple-
mentary biometric modalities: mouse dynamics, keystroke dynamics, and facial
scans.

Additionally, there is an administrative module which supports technical system
administration tasks (e.g., account setup) as well as institutional exam management
tasks (e.g., exam scheduling, creating and managing class list and instructors, etc.).

Initially, students are registered to the system by their institutions. Students
access their accounts and enroll biometrically once, prior to taking any exam.

Instructors use the system to create and schedule exams. During the exams,
instructors access the proctoring panel, where video feeds of the exam participants
are displayed. Students are continuously authenticated in the background, and
alarms are generated and notified to the instructor through the proctoring panel in
real time. Follow-up actions can be taken accordingly by the instructor.

Online Test Centre Web Portal

Continuous
Authentication

Service

Exam
Environment
Monitoring

Exam
Management

Service

Fig. 6.1 ExamShield
high-level architecture

I. Traoré et al.

77

6.3.2 Multimodal Biometric Framework

ExamShield relies on a multimodal biometric framework, through which test takers
are continuously authenticated the throughout the exam session from the beginning
to the end. The framework involves a combination of several biometric technologies
which can be collected and processed transparently in the background without
active participation or cooperation of the user.

The multimodal framework integrates three different biometric technologies: mouse
dynamic biometric, keystroke dynamic biometric, and face biometric. Mouse and key-
stroke biometrics are already to be appropriate for continuous as because samples can be
collected passively using standard computing devices (e.g., mouse and keyboard)
throughout a session without any knowledge of the user. The proposed scheme uses and
implements free text analysis and free mouse action analysis models whose theoretical
and experimental underpinnings are described in details in Ahmed and Traore (2007,
2014). Interested readers are referred to these publications for details.

Face biometric scans can be collected using standard video cameras, which are
currently being shipped with a growing number of computing systems. Facial scans
are necessary complement for mouse and keystroke dynamics in order to cover the
different monitoring scenarios underlying online exam process. More specifically,
while mouse and keyboard may play an active role in written exams, they may be of
limited use in exam situations where limited keyboard or mouse interactions are
involved, in which cases, facial data could be used to authenticate the user.

However, face biometric has been studied extensively for static biometric authen-
tication; its uses in continuous authentication raise some new challenges since the
authentication system has limited control over what the user is doing, which means
that there is limited control over the types of samples the application will receive.
Hence, it is difficult to capture and analyze effectively biometric samples unobtru-
sively in a noncooperative environment. Therefore with face biometrics, the recog-
nition must be performed accurately even if images are shifted, or involve different
lighting or background, or if the person tilts their head slightly left or right or up or
down or angled. This kind of variance between the conditions at enrollment and
those at verification times impacts accuracy. Hence, new algorithms must be devel-
oped to address the above challenges and ensure effective biometric recognition
during online exams. We revisit these issues later in the next section and give an
overview of our proposed approach.

6.4 Continuous Face Biometric Authentication

6.4.1 Approach Overview

We designed and developed our continuous face biometric authentication algorithm
using local binary pattern and chi-square distance. The model uses only positive train-
ing to learn the user’s facial features and store the extracted patterns in XML files.

6 Ensuring Online Exam Integrity Through Continuous Biometric Authentication

78

We designed a set of heuristics to improve the accuracy of the system and minimize
the false rejection rate.

A major technical challenge in implementing our continuous real-time face
recognition over the web was related to the capture and sending of the webcam
frames from the user browser to the face recognition server. Existing approaches
consist of using communication schemes such as WebSocket to send the captured
frames to the face recognition server. However, these do not work for continuous
face recognition in a production environment. This is because capturing and sending
frames over WebSocket in a continuous setting consume browser resources (e.g.,
CPU, memory) and result in terminating the WebSocket connection (as in Chrome),
or slow down the connection and lose the advantages of real-time authentication (as
in Firefox), or even crash the browser and require the user to restart his browser.

The above problem was reported by different developers who were trying to
record video stream or send large images or files using WebSocket. Most of the
suggested solutions focus on decreasing the video frame rate and connection time.
However, this is not possible in our application because the recorded frames are
used both for face recognition and user authentication. In addition, an online exam
can take up to 4 h and in some cases more than that. To solve this problem and get
beyond the current limitations, we took the following steps:

• Use WebP image encoding and avoid using PNG and JPEG image encoding
(some browsers do not support WebP).

• Adjust the frame rate and image resolution based on the browser support for a
particular image encoding.

• Send binary image not base64.
• Implement a fault-tolerant technique to detect WebSocket connection drop by

the browser.

While the matching performances of the above scheme are excellent, its success
depends on facial feature being tracked effectively. The OpenCV library is the refer-
ence framework for computer vision and face implementations. However, tracking
a face in video stream is not an out-of-the-box feature in the OpenCV library. This
is because there is no single face-tracking algorithm that can serve different
 applications. For example, a face-tracking algorithm in video game console is not
appropriate for other applications. To address the specific challenges of continuous
face biometric authentication, we implemented initially two new techniques to sup-
port face tracking. The first technique consists of a motion detection algorithm that
calculates the difference between two consecutive video frames and, based on a
predefined threshold, decides if a motion exists in the video stream or not. The second
technique relies on using existing OpenCV face detection algorithms, and then after
the initial detection, it performs a template matching to detect the face template in
the new video frames.

These two techniques yielded acceptable performance in laboratory and offline
testing environments. However, they did not yield the same performance in online
testing with live subjects performing real-world tasks. This is mainly because of
the restrictions we have on the video stream. These include the video resolution,

I. Traoré et al.

79

which can be extremely low due to the diversity of exam participants (e.g., low-end
Internet connectivity in some countries, heterogeneous platforms); the frame rate per
second; and the fact that the system is running in uncontrolled environment, which is
a typical characteristic of continuous authentication.

Likewise the existing tracking algorithms publicized through OpenCV do not
scale/perform well in real-world environment confronted with the need for the flex-
ibility inherent to continuous authentication. Through thorough search, we could
not find in the literature any tracking algorithm that addresses our exam environ-
ment constraints (e.g., 5 fps and 320 × 240 resolution, webcam, and uncontrolled
lighting). To address these limitations, we had to make changes to the way the rec-
ognition algorithm works and to work with available face frame and do not require
a specific number of frame to take the decision. With our new algorithm, even a
single frame with one face can be used for recognition, while previously at least 300
frames were required.

6.4.2 Evaluation and Observation

To evaluate the performance of our continuous face recognition system, we divided
the evaluation process into three main phases. The first and the second phases
focused on evaluating the recognition accuracy, while the third phase focused on
evaluating the system in the production environment. In the first phase, we evaluated
the detection accuracy of our face recognition algorithm with respect to positive
training and novelty detection. To evaluate the detection accuracy when using only
positive training, we used existing benchmark facial recognition datasets that are
commonly used for evaluating static face recognition algorithms. We used the
following three datasets: the AT&T Face Database, the Yale Face Database, and the
extended Yale Face Database B. Our face recognition system yielded an accuracy
between 91.32 and 94.71 %. These results are very encouraging considering that the
algorithm uses only positive training. Most existing face biometric depends on both
negative and positive training.

In the second phase of our evaluation, we recorded video streams from 11 sub-
jects. Each subject has to visit our face recognition web application. The video
streams were captured using WebRTC and transmitted to our server using web sock-
ets. The server is implemented in python; we used Twisted and Autobahn as our
network framework. All the video and image processing are handled by the OpenCV
library. About five or six video streams for each subject were recorded. Each video
stream is 10–15 min length. These video streams were recorded using a webcam.
We used the first 3 min of video data for training. So only 3 min of the 50 min of
each subject was used for building the subject face signature. Finally, we merged all
the recorded video streams into one big video file and used this file to evaluate our
continuous face recognition algorithm. The accuracy of the system in this experi-
ment was 100 %. The system was able to always distinguish the legitimate subject
from the imposter subject. While in static authentication our best result was 94.71 %,

6 Ensuring Online Exam Integrity Through Continuous Biometric Authentication

80

in continuous authentication our result was 100 %. Such difference in accuracy is mainly
due to the fact that our algorithm was designed for continuous authentication. So it
was able to take advantages of the huge amount of data (300 face samples per minute)
it has for training and verification in comparison to the limited number of face
samples (e.g., 20 face samples) used in static authentication.

The last phase of our evaluation focused on evaluating the system in the production
environment. The face recognition server was deployed on the cloud. One instance
was deployed on amazon cloud on the west coast, and another instance was deployed
on a private cloud hosted by Plurilock Security Solution Inc., in Victoria, BC,
Canada. In collaboration with different institutions, students from Canada and
Brazil connected to the ExamShield server to perform live exams over several ses-
sions. The students were invited instructed to create their facial signatures prior to
taking online exams. The face recognition system was able to record the exam ses-
sions for all the students, perform face recognition and verification in real time, and
generate alarms in real time to notify exam proctors. Alarms were generated when
a student was taking an exam on behalf of another student, when the student leaves
his chair during the exam, or when several students were working on the same exam
together. During the production evaluation, most of the reported problems were
related to technical problems such as memory leak, connection drop, etc. All these
pure technical issues were handled and fixed. The most interesting issues that were
reported during the production testing and affected the face recognition functional-
ities were related to the environmental/external conditions that appear in the exam
session. For instance, a major change in the lighting conditions, such as turning the
light off during the exam or changing the location of the desk lamp, can badly affect
the recognition accuracy. These observations show the need for a real-time adaptation
technique to mitigate the effects of the extreme external factors in the exam environ-
ment. This will be one of the main focuses of our future work.

6.5 Conclusion

Continuous authentication is an emerging technology which is proving to be
appropriate in handling a variety of security threats. Concrete applications range
from forensic analysis, detection of insider threat and session hijacking, and vari-
ous forms of illegal identity sharing. Cheating in online exams falls in the latter
category.

This chapter introduces a multimodal biometric framework combining for
continuous authentication of online test takers. The framework represents a core
module of the ExamShield platform, which is a new online exam monitoring system.
In addition to continuous authentication, the ExamShield platform provides live
video streaming and recording of exam environments and essential exam manage-
ment services. The different biometric modalities have been evaluated separately
using offline datasets. The biometric framework is currently being used in produc-
tion in the ExamShield platform yielding very encouraging results.

I. Traoré et al.

81

It is important to highlight that while the biometric framework involves multiple
biometric technologies which are complementary, each of the modality is processed
separately, and the outputs are presented through separate authentication events
displayed using a common dashboard. Likewise, the framework may not techni-
cally be considered as full multimodal scheme, as there is no fusion of the outcome
of the separate modalities.

In our future work, we plan to address such gap by developing a fusion scheme
that will combine the three biometric modalities involved in the framework
(i.e., mouse, keystroke, and face) and generate a combined and unique score for
overall decision-making.

The effectiveness of a multimodal scheme depends on the appropriateness of the
underlying fusion technique used to combine the outcome of the separate modali-
ties. Traditional fusion techniques rely on the availability at the time of the fusion of
the separate information being fused. More specifically, the outputs of the separate
biometric modalities must be synchronized.

However, synchronizing such a process is not appropriate for continuous authentica-
tion as this will delay some of the modalities, which leads to longer verification time.

Our goal is to develop an asynchronous fusion model based on the sequential sam-
pling theory that will allow making a trade-off between accuracy and authentication
delay, which is needed in continuous authentication (Ahmed and Traore 2011).

References

Ahmed AAE, Traore I (2007) A new biometrics technology based on mouse dynamics. IEEE Trans
Dependable Secur Comput 4(3):165–179

Ahmed A, Traore I (2011) Dynamic sample size detection in continuous authentication using
sequential sampling. In: Proceedings of annual computer security applications conference
(ACSAC), 5–9 December 2011, Orlando, FL, USA

Ahmed AAE, Traore I (2014) Free text recognition of keystrokes. IEEE Trans Cybern
44(4):458–472

Fayyoumi A, Zarrad A (2014) Novel solution based on face recognition to address identity theft
and cheating in online examination systems. Adv Internet Things 4(3):5–12. http://www.scirp.
org/journal/ait, http://dx.doi.org/10.4236/ait.2014.42002

Flior E, Kowalski K (2010) Continuous biometric user authentication in online examinations. In:
2010 Seventh international conference on information technology, pp 488–92

Monaco JV, Stewart JC, Cha SH, Tappert CC (2013) Behavioral biometric verification of student
identity in online course assessment and authentication of authors in literary works. In: IEEE
6th international conference on biometrics, BTAS

Ramu T, Arivoli T (2013) A framework of secure biometric based online exam authentication: an
alternative to traditional exam. Int J Sci Eng Res 4(11):52–60

Traore I, Ahmed AAE (eds) (2012) Continuous authentication based on biometrics: data, models,
and metrics. IGI Global. ISBN: 978-1-61350-129

6 Ensuring Online Exam Integrity Through Continuous Biometric Authentication

http://www.scirp.org/journal/ait
http://www.scirp.org/journal/ait
http://dx.doi.org/10.4236/ait.2014.42002

83© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_7

Chapter 7
An Enhanced CUSUM Algorithm
for Anomaly Detection

Wei Lu and Ling Xue

7.1 Introduction

Intrusion detection has been studied for decades, and traditionally, intrusion detection
techniques include two categories: misuse (signature-based) detection and anomaly
detection. Misuse detection is based on the assumption that most attacks leave a set of
signatures in the stream of network traffic, and thus attacks are detectable if these
signatures can be identified by analysing the network traffic behaviours. However, the
biggest limitation of misuse detection is its inability to detect new attacks.

To address the weakness of misuse detection, the concept of anomaly detection
was formalized, and most anomaly detection techniques attempt to establish normal
activity profiles by computing various metrics, and an intrusion is detected when the
actual system behaviour deviates from the normal profiles. The early network
anomaly detection systems are self-learning, that is, they automatically form an
opinion of what the subject’s normal behaviour is. Self-learning techniques com-
bine the early statistical model-based anomaly detection approaches (Hochberg
et al. 1993; Lunt et al. 1988; Smaha 1988), the AI-based approaches (Frank 1994)
and the biological model-based approaches (Forrest et al. 1996). In this chapter, we
proposed an enhanced cumulative sum (CUSUM) algorithm considering its ability
in point change detection. As illustrated in Fig. 7.1, the general architecture of our
detection scheme consists of two major components, namely, feature analysis and

W. Lu (*)
Department of Computer Science, Keene State College,
229 Main Street, Keene, NH 03431, USA
e-mail: wlu@keene.edu

L. Xue
Department of Computer Science, Keene State College,
229 Main Street, Keene, NH 03431, USA

City of Keene, Keene, NH, USA

mailto:wlu@keene.edu

84

enhanced CUSUM-based anomaly detection and decision. During feature analysis,
we define and generate six features to characterize the network traffic behaviours, in
which we expect the more the number of features, the more accurately the entire
network will be characterized. This is very different from the features used by cur-
rent network anomaly detection systems because most of them use limited number
of packet-based features (i.e., number of packets over a time interval) or existing
features from public intrusion detection dataset (i.e., 41 features from KDD 1999
CUP intrusion detection dataset) as the information sources. These proposed fea-
tures are then input to the enhanced CUSUM-based anomaly detection and decision
box, in which the final intrusion decision is given through a fuzzy attack probability
output by the detection system.

Although the anomaly detection algorithm in this work is not new, the idea of using
detection performance for weighting each feature in the anomaly detection in order to
achieve higher detection performance is original. The other contribution of this chap-
ter is we propose six network flow-based features which can characterize the network
behaviours as completely as possible. The rest of the chapter is organized as follows.
Section 7.2 presents the new flow-based features and explains the reasons to select
them. In Sect. 7.3, we present the enhanced CUSUM algorithm and describe our prob-
abilistic decision engine for anomalies and intrusions. Section 7.4 presents the net-
work anomalies analysis for the 1999 DARPA intrusion detection evaluation dataset
by using our detection system. Section 7.5 makes some concluding remarks.

7.2 Feature Analysis

The major goal of feature analysis is to select and extract significant network features
that have potentials to discriminate anomalous behaviours from normal network
activities. In order to define our feature vector space, we select three basic metrics
to measure the entire network behaviours. In the following, we describe each metric
in detail and explain the motivation to choose them.

AverageFlowPacketCount is the first metric we chose, and it is the average
number of packets in a flow over a time interval. The rationale behind is most
attacks happen with an increased packet count. For example, DoS attacks often
generate a large number of packets in a short time in order to consume the available
resources quickly.

packets
flows

Feature
Analysis

Enhanced
CUSUM

Intrusion
Decision

intrusion
or normal

attacking
probability

network flow
based features

Fig. 7.1 General architecture of the detection framework

W. Lu and L. Xue

85

AverageFlowByteCount is the second metric we use, and it is the average number
of bytes in a flow over a time interval. By using this metric, we can identify whether
the network traffic consists of large size of packet or not. The rationale behind is
because some DoS attacks tend to use maximum packet size to consume resources
or to congest data paths, e.g., the ping of death (pod) attack (Figs. 7.2, 7.3 and 7.4).

Based on the above two metrics, we define a set of features to describe entire
traffic behaviours on networks. Let us denote by F the feature space of network
flows, a six-dimensional feature vector f ∈ F can be represented as fi i

{ } = ¼1 2 6, , ,
, where

the meaning of each feature is explained in Table 7.1. As illustrated in Figs. 7.2 to 7.3,
observations with the 1999 DARPA network traffic data using the features showed
that network traffic can be characterized and discriminated through these features.
Figures 7.2, 7.3 and 7.4 illustrate the normal network behaviours characterized by
the first metric over one day. Similarly, Figs. 7.5, 7.6 and 7.7 illustrate the network
behaviours including attacking activities over 1 day. Refer to Figs. 7.5, 7.6, 7.7, 7.8,
7.9, 7.10, 7.11, 7.12, and 7.13 in the Appendix.

Comparing Figs. 7.2, 7.3 and 7.4 and 7.5, 7.6 and 7.7 show that the feature
“average total number of packets per flow over 1 min” has the potential to identify
neptune (SYN flood) and carshiis attacks. Also as illustrated in Figs. 7.8, 7.9 and
7.10 and Figs. 7.11, 7.12 and 7.13, we see that feature “average total number of
bytes per flow over 1 min” has the potential to identify attacks smurf and pod, to
name a few. Overall, the empirical observations with the 1999 DARPA network
traffic show that all the six features have the potential to distinguish anomalous
behaviours from normal network behaviours.

w1d1 - average total number of TCP packets per flow over 1 minute

index of timestamp

av
er

ag
e

to
ta

l n
um

be
r

of
 T

C
P

 p
ac

ke
ts

 p
er

 fl
ow

 o
ve

r
1

m
in

ut
e 700

600

500

400

300

200

100

0
0 200 400 600 800 1000 1200 1400

Fig. 7.2 Number of TCP packets per flow per minute over 1 day with normal traffic only

7 An Enhanced CUSUM Algorithm for Anomaly Detection

86

w1d1 - average total number of UDP packets per flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 U

D
P

 p
ac

ke
ts

 p
er

 fl
ow

 o
ve

r
1

m
in

ut
e 14

12

10

8

6

4

2

0
0 200 400 600 800

index of timestamp
1000 1200 1400

Fig. 7.3 Number of UDP packets per flow per minute over 1 day with normal traffic only

w1d1 - average total number of UDP packets per flow over 1 minute
20

18

16

14

12

10

8

6

4

2

0
0 200 400 600 800

index of timestamp
1000 1200 1400

av
er

ag
e

to
ta

l n
um

be
r

of
 U

D
P

 p
ac

ke
ts

 p
er

 fl
ow

 o
ve

r
1

m
in

ut
e

Fig. 7.4 Number of ICMP packets per flow per minute over 1 day with normal traffic only

W. Lu and L. Xue

87

7.3 Enhanced CUSUM Metrics

The CUSUM algorithm is an approach to detect a change of the mean value of a
stochastic process, and it is based on the fact that if a change occurs, the probability
distribution of the random sequence will also change. Basically, CUSUM works on
a parametric model of the stochastic process to be analysed. However, obtaining a
stochastic model for the Internet traffic is difficult, and also the model usually
depends on specific network conditions. Therefore, we apply a non-parametric ver-
sion of the CUSUM algorithm as an alternative approach in this research work.

Before presenting the non-parametric CUSUM algorithm, we define some nota-
tions here. Suppose we want to analyse a random sequence consisting of the number
of packets over a time interval ∆, and for simplicity, we define the random sequence
{Xn} representing the number of packets over ∆. As illustrated in Fig. 7.14, the
pattern for sequence {Xn} will be observed when there is a flooding DoS attack on
networks. The dashed dot line refers to the mean value of sequence {Xn}, and during
a flooding DoS attack, there is a step change of the mean value of {Xn} from a to
a + h at time point m. The parameter h is defined as the minimum increase of the
mean value of {Xn} during an attack.

A basic assumption for the non-parametric CUSUM algorithm is that the mean
value of the random sequence is negative during normal conditions and becomes
positive when a change occurs. Consequently, a transformation of {Xn} into a new
sequence {Zn} is necessary, which is given by Zn = Xn − β, where β is a constant. As
illustrated in Fig. 7.15, the parameter β is set according to network normal condi-
tions, and it guarantees that the major part of values of the sequence Zn is negative
during normal conditions and becomes positive when a change occurs.

In practice, a recursive non-parametric CUSUM algorithm is used to detect
anomalies online by using a new sequence {Yn}:

Y Y X

Y
x

x x
n n n= + -()

=

ì
í
ï

îï
=

>ì
í
î

-
+

+1

0 0

0

0
b

where
otherwise

,

,

where β is set in a fashion that the values of Xn − β keep slightly negative during nor-
mal operations. As a result, increases in the metric are expected to be detected, once
the values are bigger than β. A long time period of values larger than β will lead
further increasing of the CUSUM function until a possible alarm level is reached.

Table 7.1 List of the six flow-based features

Notation of features Description

f1 Average number of TCP packets per flow over 1 min
f2 Average number of UDP packets per flow over 1 min
f3 Average number of ICMP packets per flow over 1 min
f4 Average number of bytes per TCP flow over 1 min
f5 Average number of bytes per UDP flow over 1 min
f6 Average number of bytes per ICMP flow over 1 min

7 An Enhanced CUSUM Algorithm for Anomaly Detection

88

A large value of Yn is a strong indication of an attack. Based on this, we define an
attacking probability pf

i
 generated by feature fi. It measures the anomalous degree

of current networks by feature fi, where i = 1, 2, … , 6. The higher the value of pf
i
,

the more anomalous the current network. Notation p is the attacking probability and
we have

p p W i m

i

m

f f
i i

= ´ = ¼
=
å

1

1 2, , ,

where we have pf
i
 to measure the anomalous degree of initial sequence Xn:

p

Y
Y

f

n
n

i
= ´

< ´
ì

í
ï

îï
a b

a b,

. ,1 0 otherwise

where α is an adjusting parameter, which is used to amplify the value of β and is set
as such constant 1, 2, etc. and Yn is the CUSUM value of sequence Xn.

Since the output of our detection system is a set of attacking probabilities, which
are associated with the current network flow data through features. The attacking
probability measures the anomalous degree of network flow data. The higher the
value of the attacking probability, the more anomalous the corresponding network
flow. The network administrator can set two thresholds for the attacking probability
in order to discriminate network attacking behaviours from suspicious behaviours
or distinct suspicious behaviours from normal network behaviours. In this research,
we set the threshold for suspicious behaviour as 0.3 and the threshold value for
attacking behaviours as 0.9. Thus, the intrusion decision strategy in our detection
model is illustrated as follows:

• If the attacking probability is in the range of [0.0, 0.3], then network behaviour
is normal.

• If the attacking probability is in the range of (0.3, 0.9), then network behaviour
is suspicious.

• If the attacking probability is in the range of [0.9, 1.0], then network behaviour
is intrusive.

This detection strategy is not fixed and in practice; the network administrator can
adjust the threshold levels in order to gain an adaptive detection capability.

7.4 Performance Evaluation

We evaluate our system with the six features and 9-day DARPA testing data on
week 4 and week 5, in which 201 attacks belonging to 58 attack types (40 new) are
used for evaluation (DARPA 1999). During week 4, the inside traffic for day 2
(Tuesday) is missed. During week 5, the total 22 h traffic data is available, and there
is no downtime of the network. For the detector using the enhanced CUSUM algo-
rithm, Tables 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7 illustrate its detection results for features
F1 to F6 over 9 days of evaluation.

W. Lu and L. Xue

89

Table 7.2 Detection performance of feature F1 over a 9-day evaluation

Features,
days

Total
instances

Attacking
instances

Normal
instances

Total
alarms

Correctly
detected alarms False

DR
(%)

FPR
(%)

F1-W4D1 1320 178 1142 0 0 0 0.0 0.0
F1-W4D3 1320 104 1216 0 0 0 0.0 0.0
F1-W4D4 1320 84 1236 0 0 0 0.0 0.0
F1-W4D5 1320 143 1177 45 7 38 4.9 84.44
F1-W5D1 1320 150 1170 0 0 0 0.0 0.0
F1-W5D2 1320 199 1121 0 0 0 0.0 0.0
F1-W5D3 1320 152 1168 0 0 0 0.0 0.0
F1-W5D4 1320 119 1201 0 0 0 0.0 0.0
F4-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.3 Detection performance of feature F2 over a 9-day evaluation

Features,
days

Total
instances

Attacking
instances

Normal
instances

Total
alarms

Correctly
detected alarms False

DR
(%) FPR (%)

F2-W4D1 1320 178 1142 0 0 0 0.0 0.0
F2-W4D3 1320 104 1216 0 0 0 0.0 0.0
F2-W4D4 1320 84 1236 0 0 0 0.0 0.0
F2-W4D5 1320 143 1177 145 51 94 35.67 64.83
F2-W5D1 1320 150 1170 26 0 26 0.0 100.0
F2-W5D2 1320 199 1121 0 0 0 0.0 0.0
F2-W5D3 1320 152 1168 0 0 0 0.0 0.0
F2-W5D4 1320 119 1201 0 0 0 0.0 0.0
F2-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.4 Detection performance of feature F3 over a 9-day evaluation

Features,
days

Total
instances

Attacking
instances

Normal
instances

Total
alarms

Correctly
detected alarms False

DR
(%) FPR (%)

F3-W4D1 1320 178 1142 13 0 13 0.0 100.0
F3-W4D3 1320 104 1216 0 0 0 0.0 0.0
F3-W4D4 1320 84 1236 0 0 0 0.0 0.0
F3-W4D5 1320 143 1177 230 31 199 21.68 86.52
F3-W5D1 1320 150 1170 0 0 0 0.0 100.0
F3-W5D2 1320 199 1121 0 0 0 0.0 0.0
F3-W5D3 1320 152 1168 0 0 0 0.0 0.0
F3-W5D4 1320 119 1201 26 0 26 0.0 100.0
F3-W5D5 1320 285 1035 0 0 0 0.0 0.0

7 An Enhanced CUSUM Algorithm for Anomaly Detection

90

Table 7.5 Detection performance of feature F4 over a 9-day evaluation

Features,
days

Total
instances

Attacking
instances

Normal
instances

Total
alarms

Correctly
detected alarms False

DR
(%)

FPR
(%)

F4-W4D1 1320 178 1142 31 9 22 5.06 70.97
F4-W4D3 1320 104 1216 0 0 0 0.0 0.0
F4-W4D4 1320 84 1236 0 0 0 0.0 0.0
F4-W4D5 1320 143 1177 22 3 19 2.1 86.36
F4-W5D1 1320 150 1170 0 0 0 0.0 0.0
F4-W5D2 1320 199 1121 1 0 1 0.0 100.0
F4-W5D3 1320 152 1168 18 7 11 4.6 61.11
F4-W5D4 1320 119 1201 0 0 0 0.0 0.0
F4-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.6 Detection performance of feature F5 over a 9-day evaluation

Features,
days

Total
instances

Attacking
instances

Normal
instances

Total
alarms

Correctly
detected alarms False

DR
(%)

FPR
(%)

F5-W4D1 1320 178 1142 0 0 0 0.0 0.0
F5-W4D3 1320 104 1216 0 0 0 0.0 0.0
F5-W4D4 1320 84 1236 0 0 0 0.0 0.0
F5-W4D5 1320 143 1177 220 48 172 33.57 78.18
F5-W5D1 1320 150 1170 0 0 0 0.0 0.0
F5-W5D2 1320 199 1121 0 0 0 0.0 0.0
F5-W5D3 1320 152 1168 0 0 0 0.0 0.0
F5-W5D4 1320 119 1201 0 0 0 0.0 0.0
F5-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.7 Detection performance of feature F6 over a 9-day evaluation

Features,
days

Total
instances

Attacking
instances

Normal
instances

Total
alarms

Correctly
detected alarms False

DR
(%)

FPR
(%)

F6-W4D1 1320 178 1142 52 0 52 0.0 100.0
F6-W4D3 1320 104 1216 0 0 0 0.0 0.0
F6-W4D4 1320 84 1236 59 1 58 1.19 98.3
F6-W4D5 1320 143 1177 258 35 223 24.48 86.43
F6-W5D1 1320 150 1170 215 50 165 33.33 76.74
F6-W5D2 1320 199 1121 81 12 69 6.03 85.19
F6-W5D3 1320 152 1168 32 18 14 11.84 43.75
F6-W5D4 1320 119 1201 109 8 101 6.72 92.66
F6-W5D5 1320 285 1035 70 24 46 8.42 65.71

W. Lu and L. Xue

91

7.5 Conclusions

We propose in this chapter an enhanced CUSUM-based network anomaly detection
system. In order to characterize the behaviour of the network flows, we present a
six-dimensional feature vector, and the empirical observation results with the 1999
DARPA intrusion detection dataset show that the proposed features have the poten-
tial to distinguish the anomalous activities from normal network behaviours. A traf-
fic analysis for the 1999 DARPA intrusion detection dataset is conducted using the
proposed network anomaly detection system. Based on the achieved evaluation
results, we conclude that even though the number of correct alerts reported by the
detection system is not very large, the detection system has the potential to reduce
the number of false alerts largely.

7.6 Appendix

Fig. 7.5 Number of TCP packets per flow per minute 1 day with normal and attacking traffic

w5d1 - average total number of TCP packets per flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 T

C
P

 p
ac

ke
ts

 p
er

 fl
ow

 o
ve

r
1

m
in

ut
e 600

500

400

300

200

100

0
0 200 400 600 800

index of timestamp
1000 1200 1400

7 An Enhanced CUSUM Algorithm for Anomaly Detection

92

Fig. 7.6 Number of UDP packets per flow per minute 1 day with normal and attacking traffic

w5d1 - average total number of UDP packets per flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 U

D
P

 p
ac

ke
ts

 p
er

 fl
ow

 o
ve

r
1

m
in

ut
e 140

120

100

80

60

40

20

0
0 200 400 600 800

index of timestamp
1000 1200 1400

w1d1 - average total number of ICMP packets per flow over 1 minute
16

14

12

10

8

6

4

2

0
0 200 400 600 800

index of timestamp
1000 1200 1400

av
er

ag
e

to
ta

l n
um

be
r

of
 IC

M
P

 p
ac

ke
ts

 p
er

 fl
ow

 o
ve

r
1

m
in

ut
e

Fig. 7.7 Number of ICMP packets per flow per minute 1 day with normal and attacking traffic

W. Lu and L. Xue

93

w3d1 - average total number of bytes per TCP flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 b

yt
es

 p
er

 T
C

P
 fl

ow
 o

ve
r

1
m

in
ut

e

x 103

2.5

2

1.5

1

0.5

0
0 200 400 600 800

index of timestamp
1000 1200 1400

Fig. 7.8 Number of bytes per TCP flow per minute over 1 day with normal traffic only

w3d1 - average total number of bytes per UDP flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 b

yt
es

 p
er

 U
D

P
 fl

ow
 o

ve
r

1
m

in
ut

e 600

500

400

300

200

100

0
0 200 400 600 800

index of timestamp
1000 1200 1400

Fig. 7.9 Number of bytes per UDP flow per minute over 1 day with normal traffic only

7 An Enhanced CUSUM Algorithm for Anomaly Detection

94

w3d1 - average total number of bytes per ICMP flow over 1 minute
1500

1000

500

0
0 200 400 600 800

index of timestamp
1000 1200 1400

av
er

ag
e

to
ta

l n
um

be
r

of
 b

yt
es

 p
er

 IC
M

P
 fl

ow
 o

ve
r

1
m

in
ut

e

Fig. 7.10 Number of bytes per ICMP flow per minute over 1 day with normal traffic only

w4d1 - average total number of bytes per TCP flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 b

yt
es

 p
er

 T
C

P
 fl

ow
 o

ve
r

1
m

in
ut

e

x 104

12

10

8

6

4

2

0
0 200 400 600 800

index of timestamp
1000 1200 1400

Fig. 7.11 Number of bytes per TCP flow per minute 1 day with normal and attacking traffic

W. Lu and L. Xue

95

w4d1 - average total number of bytes per UDP flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 b

yt
es

 p
er

 U
D

P
 fl

ow
 o

ve
r

1
m

in
ut

e 600

500

400

300

200

100

0
0 200 400 600 800

index of timestamp
1000 1200 1400

Fig. 7.12 Number of bytes per UDP flow per minute 1 day with normal and attacking traffic

w4d1 - average total number of bytes per ICMP flow over 1 minute

av
er

ag
e

to
ta

l n
um

be
r

of
 b

yt
es

 p
er

 IC
M

P
 fl

ow
 o

ve
r

1
m

in
ut

e

x 104

10

9

8

7

6

5

4

3

2

1

0
0 200 400 600 800

index of timestamp
1000 1200 1400

Fig. 7.13 Number of bytes per ICMP flow per minute 1 day with normal and attacking traffic

7 An Enhanced CUSUM Algorithm for Anomaly Detection

96

References

DARPA (1999) http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html
Forrest S, Hofmeyr S, Longsta A (1996) A sense of self for unix processes. In: Proceedings of 1996

IEEE symposium on security and privacy, pp 120–128
Frank J (1994) Artificial intelligence and intrusion detection: current and future directions. In:

Proceedings of the 17th national computer security conference, pp 11–21
Hochberg J, Jackson K, Stallings C, McClary JF, DuBois D, Ford J (1993) NADIR: an automated

system for detecting network intrusion and misuse. Comput Secur 12(3):235–248
Lunt T, Jagannathan R, Lee R, Listgarten S, Edwards D, Neumann P, Javitz H, Valdes A (1988)

Ides: the enhanced prototype-a real-time intrusion-detection expert system. Technical report,
Computer Science Laboratory

Smaha SE (1988) Haystack: an intrusion detection system. In: Proceedings of the IEEE 4th aero-
space computer security applications conference, IEEE, Orlando, Florida, December 1988,
pp 37–44

Fig. 7.14 Behaviour of number of packets in a time interval ∆ during an attack

Fig. 7.15 Behaviour of sequence Zn during an attack

W. Lu and L. Xue

http://www.ll.mit.edu/IST/ideval/data/1999/1999_data_index.html

97© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6_8

Chapter 8
Conclusion: Future Trends and Challenges

Issa Traoré, Ahmed Awad, and Isaac Woungang

One of the trends observed in the emerging threat landscape is the spread of the
threats from conventional networks to specialized platforms, including cloud,
mobile, Internet of things (IoT), and critical infrastructure networks such as the
electrical and utility grids, power and nuclear plants.

Today’s workforce is highly mobile, and business activities are no longer limited to
the confines of the office or the company-issued desktop. Employees are generating and
storing important corporate or institutional data on personal devices, which increases
dramatically the level of vulnerability of organizations. Although the increase in
worker mobility is good for morale and productivity, it can potentially have a negative
impact on the organization systems and data security. In this context mobile devices
such as smartphones and tablets are even more vulnerable because of their relatively
open environment compared to traditional computing devices (Clarke et al. 2002;
Damopoulos et al. 2013). While numerous protection schemes are available on these
devices, many users view these protections as hindrances and tend to disable or bypass
them (Furnell et al. 2008). In this context, the main challenges for researchers lie in
devising new approaches to balance adequately security requirements with the expec-
tations from users to be able to perform primary mobile device functions (e.g., com-
munication) in an unrestricted way.

I. Traoré (*)
Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada
e-mail: itraore@ece.uvic.ca

A. Awad
New York Institute of Technology, Victoria, BC, Canada
e-mail: Ahmed.Awad@nyit.edu

I. Woungang
Department of Computer Science, Ryerson University, Toronto, ON, Canada
e-mail: iwoungan@scs.ryerson.ca

mailto:itraore@ece.uvic.ca
mailto:Ahmed.Awad@nyit.edu
mailto:iwoungan@scs.ryerson.ca

98

Efforts are underway to migrate the traditional electric power grid using the
smart of information and communication technologies (ICT), resulting in the so-
called smart grid. While this improves effectiveness of service delivery and cost
efficiency, it exposes the smart grid network to several security concerns, some
reminiscent of issues already known for conventional computer network (e.g.,
DDOS attacks), but others are very specific to smart grid environments, technolo-
gies, and protocols (Wang and Lu 2013).

Recently, we have noticed a growing interest in the IoT, which is a new comput-
ing and design paradigm addressing the proliferation of devices directly connected
to the Internet. The focus so far has been on addressing challenges arising from the
heterogeneity and ubiquity of these paradigms. However, the provision, operation,
and usage of IoT involves serious privacy and security concerns which will increase
in complexity as the user base increases and hackers start having better grasp of the
underlying technologies (Heer et al. 2011).

Simply reusing and adapting existing protection technologies and strategies
for these specialized platforms is not enough to alleviate the underlying security
concerns and vulnerabilities. New defensive approaches and models must be
developed which take into account the specific attributes and characteristics of
these platforms.

Many of these specialized platforms rely on relatively closed networks. Hence,
most of them are closely held and controlled by the providers. While this limits the
amount of information available publicly and that can be leveraged to launch an
attack, it relies on the false assumption of security by obscurity. The lack of infor-
mation is compounded in the difficulty for researchers to access or create realistic
datasets for security study related to these platforms.

The consequence of such reliance on security by obscurity is that determined and
clever hackers can devise and execute quietly sophisticated attack methods against
these platforms for an extended period of time without being caught.

For instance, for some time it was believed that cloud computing networks were
immune to the threat of botnet, since these networks are tightly controlled by cloud
hosting companies.

However, it has been shown in the last few years that the potential for botnet
spreading over cloud networks is even much greater than in conventional networks
(Graham et al. 2015). For instance, it was reported in 2009 that hackers compromised
a site on Amazon EC2 and use it to deploy and operate the C&C server for the Zeus
banking botnet. In 2014, researchers have shown how easy it is to establish and oper-
ate a cloud botnet using a collection of machines from free trials and freemium
accounts offered by cloud hosting companies to incentivize new customers.

In the threat context outlined above and throughout this book, while future security
challenges lie in specialized platforms, cooperation with the providers to gain more
access and generate realistic datasets will be crucial to obtain any successful results in
fighting against and anticipating emerging and future cybersecurity threats.

The goal of the I-SAT workshop series is to create and foster a space for research-
ers and practitioners to present and confront ideas that will represent a leap forward
and proactive perspective of emerging and new cybersecurity threats.

I. Traoré et al.

99

References

Clarke NL, Furnell SM, Reynolds PL (2002) Biometric authentication for mobile devices. In:
Proceedings of the 3rd Australian Information warfare and security conference, 28–29
November 2002, pp 61–69

Damopoulos D, Kambourakis G, Gritzalis S (2013) From keyloggers to touchloggers: take the
rough with the smooth. Comput Secur 32:102–114

Furnell S, Clarke N, Karatzouni S (2008) Beyond the PIN: enhancing user authentication for
mobile devices. Comput Fraud Secur 2008(8):12–17

Graham M, Winckles A, Sanchez E (2015) Botnet detection within cloud service provider networks
using flow protocols. In: 13th IEEE international conference on industrial informatics.
Cambridge University

Heer T, Garcia-Morchon O, Hummen R, Keoh SL, Kumar SS, Wehrle K (2011) Security challenges
in the IP-based internet of things. Int J Wireless Pers Commun 61(3):527–542

Wang W, Lu Z (2013) Cyber security in the smart grid: survey and challenges. Comput Netw
57:1344–1371

 8 Conclusion: Future Trends and Challenges

101© Springer International Publishing AG 2017
I. Traoré et al. (eds.), Information Security Practices,
DOI 10.1007/978-3-319-48947-6

A
Accord.NET Framework, 64
Active Authentication Program, 5
Active techniques

DNS cache snooping, 20, 22
fast-flux networks, 22, 23
infiltration, 22
sinkholing, 20

Agobot, 8
Anomaly detection, 84

architecture, 84
enhanced CUSUM metrics, 87, 88
feature analysis, 84, 85
flow-based features, 87
ICMP packets, 86, 92, 95
performance evaluation, 88
performance of feature, 89, 90
TCP packets, 85
TDP packets, 91, 93, 94
UDP packets, 86, 92, 95

Anti-analysis, 15
Antivirus evaluation, 20
Application firewall, 27
ASP.NET Web Form, 47
AT&T Face Database, 79
Authentication system, 60, 62–66, 68, 69

data alignment, 59
data cleaning, 60

before feature extraction, 60
during data alignment, 60
raw data, 60

data visualization, 61, 62
experiment design, 58
experiment procedure, 59
experiment setting, 57

experiment setup and user interface, 58
eye and mouse movement, 61
feature extraction, 62

delay time, 63
deviation of eye and mouse angle, 63
direction, 63
eye angle, 63
eye speed, 62
mouse angle, 63
mouse speed, 62
ratio of eye and mouse speed, 63

participants, 58
proposed approaches, 64

binary classification model, 64, 65
regression model using fusion, 65, 66,

68, 69
simple multi-class classification

model, 64
ROC curves, 69, 70

AverageFlowByteCount, 85
AverageFlowPacketCount, 84
Azure, 47

B
Binary classification model, 64, 65
Binary obfuscation, 14
Biometric authentication, 55
Biometric fraud detection, 29
Biometrics, 6
Biometric technologies, 74, 77
Bitcoins, 3
Botnets, 8–10, 16–20, 22–27

detection evasion techniques, 13–15
detection methodologies, 15

Index

102

Botnets (cont.)
active techniques, 20, 22, 23
passive techniques, 16–20
tree, 16

evolution, 7, 8
hierarchical formation, 8, 10
multi-server formation, 8, 9
peer to peer formation, 8, 10
star formation, 8, 9

infection, 18, 22, 26
Koobface, 12
security measures

application usage, 26, 27
network design, 25, 26

using network security devices, 23
intrusion prevention and detection

systems, 24
network firewalls, 24, 25

Windigo, 12, 13
ZeuS or Zbot, 11, 12

Broad Agency Announcement (BAA), 6

C
Cache snooping approach, 22
Caching, 20
Cartesian distance formula, 60
C&C server, 4
Chip under test (CUT), 49
Client and server honeypots, 19
Cloud hosting companies, 98
Command and control (C&C) software, 2
Conficker malware, 15
Confidence ratio (CR), 33, 34
Continuous authentication, 73–77, 79–81
Continuous face biometric authentication

approach overview, 77–79
evaluation and observation, 79, 80

Continuous face biometric recognition, 75
Cumulative sum (CUSUM) algorithm, 83,

87, 88
Cybersecurity systems, 4–6, 98

D
DARPA, 5

intrusion detection, 84, 91
network traffic data, 85

Delay time, 63
Denial of identity, 73
Distributed denial of service (DDOS)

attacks, 3, 98
D3.js, 48
DNS-based approaches, 17

DNS cache snooping, 20, 22
DNS technique, 4
Domain flux, 14
Domain generation algorithm (DGA), 4, 14
Double flux, 14

E
eDonkey, 2
Email security systems, 26
Emerging threats, 97, 98

landscape, 1–4
End point security, 27
Enhanced cumulative sum (CUSUM)

algorithm, 83, 87, 88
Entity framework, 48
Equal error rate (EER), 69
Exam Environment Monitoring Service, 76
Exam Management Systems (EMS), 74
ExamShield platform, 74–76, 80
Exploit Kits (EKs), 1
Extended Yale Face Database B, 79
Eye angle, 63
Eye movements

previous research on, 57
visualization, 61

Eye movement tracking (EMT), 55,
56, 69

Eye speed, 62
Eye-tracking device, 60

F
Face biometric, 77
False acceptance rate (FAR), 34, 56, 67
False rejection rate (FRR), 34, 56, 67
Fast flux DNS, 4
Fast-flux networks, 22, 23
Five-point Likert scale, 75
Flow records analysis, 17
Forensic analysis, 26
Fraud detection, 34, 35

background, 29, 30
behavioral identity verification, 33, 34
client/server, 31
experimental evaluation

metrics and procedures, 34, 35
results, 35

framework, 30, 31, 33
proxy server-based, 32
receiver operating characteristic (ROC)

curve, 36
trusted user signature, 34

Fusion strategy, 67

Index

103

G
Genetic and evolutionary computations

(GECs), 55

H
Hardware security, 39, 44, 53
Hardware trojans, 50, 51

attributes, 50
and detection method, 52
identification and coverage vectors, 44,

47, 52
identification and severity vectors, 44,

46, 47
levels, 41
sequential counter, 49, 51

directed graph, 50
identification and severity vectors, 51

taxonomy, 41
Hardware Trojan System (HTS), 39, 40,

42–44, 48, 49, 51, 52
analysis techniques

abstraction, 40
activation, 40
classification, 40, 42, 43
effect, 40
evaluation, 43, 44
functionality, 40
insertion, 40
layout, 40
location, 40
logic type, 40
properties, 40

case study, 48
classification tool, 49
evaluation tool, 51, 52

classification tool, 45
evaluation tool, 46, 47
web environment, 47, 48

Honeypots, 18, 19
Host-based fraud detection system, 31
Host-Based Intrusion Prevention System

(HIPS), 27
Host-Based Network Detection service

(HIPS), 17
HTTP, 2

I
Identification vector, 43
Identity fraud, 73
Identity gift, 73
Identity sharing, 73

Infiltration technique, 22
Information and communication technologies

(ICT), 98
The Information Security, Assurance, and

Trust (I-SAT) workshop, 5
Integrated circuit (IC), 39
Internet of things (IoT), 97, 98
Internet Relay Chat (IRC), 2
Intrusion detection system/services (IDS), 17,

24, 83, 84, 91
Intrusion prevention and detection system, 26
IP flux, 14
I-SAT workshop series, 98

J
JavaScript Object Notation (JSON), 47

K
Keystroke dynamics, 31, 33, 35
Koobface, 12, 14, 27

L
Learning management systems (LMS), 74
Levenberg-Marquardt algorithm, 64, 65
Linux/Cdorked, 13
Linux/Ebury, 13
Linux/Onimiki, 13
Log files analysis, 18
Logic type category, 43, 44
Low interaction honeypots, 19

M
Malicious code, 32
Malware designers, 3
Malwares, 12
Microsoft Azure Cloud platform, 47
Misuse (signature-based) detection, 83
Mouse angle, 63

deviation of eye angle and, 63
Mouse dynamics, 31, 33
Mouse dynamics biometrics, 55, 56
Mouse movements

previous research on, 56, 57
visualization, 61

Mouse movement tracking (MMT), 55,
56, 69

Mouse speed, 62
ratio of eye speed and, 63

Multimodal biometric framework, 77

Index

104

N
Netflix, 73
Network anomaly detection, 83, 84, 91
Network-based detection system (NIDS), 17
Network firewalls

domain name system snooping, 24
dynamic and administrator blacklist

data, 24
traffic classification and reporting, 24

Network security, 98
Network security devices, 23

intrusion prevention and detection
systems, 24

network firewalls, 24, 25
Neural network, 55–57, 64, 65, 67–69, 71
Next generation cybersecurity systems, 4–6

O
Online exam security, 74

ExamShield platform, 75, 76
multimodal biometric framework, 77

Online exams integrity, 74
Online social networks (OSN), 12
Online system, 40
OpenCV library, 78, 79

P
Packet inspection, 16, 17
Passive techniques, 16

antivirus evaluation, 20
DNS-based approaches, 17
flow records analysis, 17
honeypots, 18, 19
log files analysis, 18
packet inspection, 16, 17
software feedback, 20
spam records analysis, 18

Past Activities Aware (PAA) model, 32, 36
Past Activities Unaware (PAU) model, 35
Peer-to-peer (P2P) protocols, 2
Ping of death (pod) attack, 85
Plurilock Security Solutions Inc., 74, 80
Proxy bots, 14
Proxy server-based fraud detection, 32

R
Radial basis function (RBF), 57
Random or peer to peer (P2P) topology, 8
Ransomware, 3
RC4 encryption, 11
Register transfer logic (RTL), 42
Regression model using fusion, 65, 66,

68, 69

S
SDBot, 8
Security event monitoring, 26
Security measures chart, 25
Security suppression, 15
SensoMotoric Instruments (SMI), 57
Signature-based detection, 83
SilentSense, 30
Simple multi-class classification model, 64, 66
Single FLUX, 14
Sinkhole attack, 21
Sinkhole redirection, 21
Sinkholing, 20
Software-based biometrics, 5
Software feedback, 20
Spam records analysis, 18
Spybot, 8
Stylometric analysis, 75
Submatrix, 42
Synchronizing, 81

T
Three-class classification model, 66, 67
Time to Live (TTL) value, 23
TOR networks, 3
Trojan/malware, 5, 7

U
US Defense Advanced Research Project

Agency. See DARPA
User interface (UI), 45
US National Security Agency (NSA), 1

V
Visual encryption, 11

W
WebP image encoding, 78
WebRTC, 79
Website architecture, 49
WebSocket, 78
Windigo, 12–14, 27

Y
Yale Face Database, 79

Z
Zeus banking botnet, 98
ZeuSGameover malware, 14
ZeuS or Zbot, 11, 12, 14, 27

Index

	Preface
	Contents
	Chapter 1: Introduction: Emerging Threats Call for New Security Paradigms
	1.1 Emerging Threats Landscape
	1.2 Next Generation Cybersecurity Systems
	References

	Chapter 2: Botnets Threat Analysis and Detection
	2.1 Introduction
	2.2 Evolution of Botnets: History and Topologies
	2.3 Famous Botnets
	2.3.1 ZeuS or Zbot
	2.3.2 Koobface
	2.3.3 Windigo

	2.4 Botnet Detection Evasion Techniques
	2.5 Botnet Detection Methodologies
	2.5.1 Passive Techniques
	2.5.1.1 Packet Inspection
	2.5.1.2 Analysis of Flow Records
	2.5.1.3 DNS-Based Approaches
	2.5.1.4 Analysis of Spam Records
	2.5.1.5 Analysis of (Application) Log Files
	2.5.1.6 Honeypots
	2.5.1.7 Evaluation of Antivirus
	2.5.1.8 Software Feedback

	2.5.2 Active Techniques
	2.5.2.1 Sinkholing
	2.5.2.2 DNS Cache Snooping
	2.5.2.3 Infiltration
	2.5.2.4 Tracking of Fast-Flux Network

	2.6 Defense Against Botnet Using Network Security Devices
	2.6.1 Intrusion Prevention and Detection Systems
	2.6.2 Network Firewalls
	2.6.2.1 Dynamic and Administrator Blacklist Data
	2.6.2.2 Traffic Classification and Reporting
	2.6.2.3 Domain Name System Snooping

	2.7 Security Measures Against Botnets
	2.7.1 Network Design
	2.7.1.1 Advance Threat Protection
	2.7.1.2 Intrusion Prevention and Detection System
	2.7.1.3 Email Security Systems
	2.7.1.4 Forensic Analysis
	2.7.1.5 Security Event Monitoring

	2.7.2 Application Usage
	2.7.2.1 HIPS (Host-Based Intrusion Prevention System)
	2.7.2.2 End Point Security
	2.7.2.3 Application Firewall

	2.8 Conclusion
	References

	Chapter 3: Collective Framework for Fraud Detection Using Behavioral Biometrics
	3.1 Background
	3.2 Fraud Detection Framework
	3.3 Behavioral Identity Verification
	3.4 Experimental Evaluation
	3.4.1 Evaluation Metrics and Procedures
	3.4.2 Results

	3.5 Conclusion
	References

	Chapter 4: The Hardware Trojan System: An Online Suite of Tools for Hardware Trojan Analysis
	4.1 Introduction
	4.2 Hardware Trojan Analysis Techniques
	4.2.1 Trojan Classification
	4.2.2 Trojan Evaluation

	4.3 The Hardware Trojan System
	4.3.1 The Classification Tool
	4.3.2 The Evaluation Tool
	4.3.3 The Web Environment

	4.4 Case Study
	4.4.1 Classification Tool
	4.4.2 Evaluation Tool

	4.5 Conclusion
	References

	Chapter 5: Combining Mouse and Eye Movement Biometrics for User Authentication
	5.1 Introduction
	5.2 Related Work
	5.2.1 Previous Research on Mouse Movements
	5.2.2 Previous Research on Eye Movements

	5.3 Experiment Setting and Design
	5.3.1 Experiment Setting
	5.3.2 Participants
	5.3.3 Experiment Design
	5.3.4 Experiment Procedure

	5.4 Data Processing and Feature Extraction
	5.4.1 Data Alignment
	5.4.2 Data Cleaning
	5.4.3 Data Visualization
	5.4.4 Feature Extraction

	5.5 Proposed Approaches
	5.5.1 Simple Multi-class Classification Model
	5.5.2 Binary Classification Model
	5.5.3 Regression Model Using Fusion

	5.6 Result and Discussion
	5.7 Conclusion and Future Research Direction
	References

	Chapter 6: Ensuring Online Exam Integrity Through Continuous Biometric Authentication
	6.1 Introduction
	6.2 Related Works
	6.3 Online Exam Security: The ExamShield Platform
	6.3.1 The ExamShield Platform
	6.3.2 Multimodal Biometric Framework

	6.4 Continuous Face Biometric Authentication
	6.4.1 Approach Overview
	6.4.2 Evaluation and Observation

	6.5 Conclusion
	References

	Chapter 7: An Enhanced CUSUM Algorithm for Anomaly Detection
	7.1 Introduction
	7.2 Feature Analysis
	7.3 Enhanced CUSUM Metrics
	7.4 Performance Evaluation
	7.5 Conclusions
	7.6 Appendix
	References

	Chapter 8: Conclusion: Future Trends and Challenges
	References

	Index

