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Preface

With the rapid development of Internet-based technologies and the increasing 
 reliance of society on these technologies, providing security and assurance to infor-
mation systems has become a critical endeavor for practitioners and the various 
stakeholders impacted by information and system insecurities.

In fact, the omnipresence of threats of malicious attacks has raised the impor-
tance of devising new paradigms and solutions in addition to professional skills, 
knowledge, and human resources in the area of information assurance. This book is 
a compilation of peer-reviewed papers from the first International Workshop on 
Information Security, Assurance, and Trust (I-SAT 2016), which introduce novel 
research targeting technical aspects of protecting information security and estab-
lishing trust in the digital space.

The book consists of eight chapters outlined as follows.
Chapter 1 is a brief introduction on the context of emerging security threats and 

a discussion of the need for new security paradigms in tackling these threats.
Chapter 2 presents contemporary and emerging botnet architectures and dis-

cusses best practices in protecting against such threats and how these protection 
schemes could possibly be evaded.

Chapter 3 introduces a new approach for leveraging behavioral biometrics for 
online fraud detection.

Chapter 4 introduces a suite of online tools to automate the complex computa-
tions involved in analyzing hardware Trojan viruses. This represents an important 
step in mastering the complexity involved in  locating malicious modifications in 
integrated circuit design and implementation.

Chapter 5 presents a multimodal biometric system that combines at the feature 
level mouse and eye movement biometrics for user authentication. In this system, 
mouse movement and eye movement data are collected simultaneously and aligned 
based on timestamps.

Chapter 6 takes on the pressing challenge of protecting online exam integrity by 
introducing a multimodal biometric framework involving three modalities, namely, 
mouse dynamics, keystroke dynamics, and face biometrics.

http://dx.doi.org/10.1007/978-3-319-48947-6_1
http://dx.doi.org/10.1007/978-3-319-48947-6_2
http://dx.doi.org/10.1007/978-3-319-48947-6_3
http://dx.doi.org/10.1007/978-3-319-48947-6_4
http://dx.doi.org/10.1007/978-3-319-48947-6_5
http://dx.doi.org/10.1007/978-3-319-48947-6_6
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Chapter 7 tackles lingering limitations in anomaly detection in computing 
 systems (e.g., false alerts, low detection accuracy) by presenting an enhanced 
CUSUM algorithm for network anomaly detection. The new algorithm enables 
modeling various features from different sources and reporting alerts according to 
some decision strategies.

Chapter 8 provides a final summary of the research presented in previous chap-
ters and discusses future trends and challenges in tackling emerging cybersecurity 
threats.

Victoria, BC, Canada Issa Traoré 
Vancouver, BC, Canada Ahmed Awad 
Toronto, ON, Canada Isaac Woungang 
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Chapter 1
Introduction: Emerging Threats Call for New 
Security Paradigms

Issa Traoré, Ahmed Awad, and Isaac Woungang

1.1  Emerging Threats Landscape

Hacking incidents have become so commonplace that no organization seems out of 
reach for hackers. Even the US National Security Agency (NSA) seemed to have 
been the victim of successful hacks, as witnessed by recent public document dumps 
related to sensitive cyber warfare tools and technologies used by this organization. 
No day passes by without news reports on new hacking incidents. While two 
decades ago, most hackers were script kiddies motivated primarily by simple curi-
osity or the need for fame, many hackers, today, are professionals seeking financial 
gains, or conducting political activism, or involved in state-sponsored cyber 
espionage.

Today’s hackers are emboldened by the unprecedented level of sophistication of 
the current hacking utilities. There is an underground software industry which 
develops and licenses malicious software tools and payloads for cybercriminals. 
The organizations involved in this illicit market provide to their customers the same 
services as legitimate software companies (e.g., regular updates), except that those 
customers are criminals.

The pinnacle in the sophistication is the so-called Exploit Kits (EKs), which 
federate in automated platforms most of the emerging hacking threats vectors 
(Eshete et  al. 2015). These kits are professionally developed hacking apparatus, 
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which include sophisticated command and control (C&C) software servers, and fed 
from constantly updated repositories of malware payload and exploit code. EKs are 
marketed in the dark web (underground cyber world) and make heavy use of auto-
mation by making it possible to install malware payload on remote machines and 
controlling infected machines from a remote Web site. Infection happens when 
potential victims visit a compromised site (under control of the criminals) or click 
on links (sent by spam or instant message) to a Web site with the exploit kit installed. 
By fingerprinting the victim’s browser, the kit selects which exploit to use according 
to the country of origin, browser type and version, operating system type and ver-
sion, etc. Successful exploitation is then followed by installing malware code and 
taking control of the victim’s machine. The scariest aspect of this is that it all hap-
pens automatically and transparently in the background without the victim’s knowl-
edge about it. In a few clicks, your machine is infected with the latest malware and 
becomes part of a network of zombies controlled remotely.

EKs represent a unifying framework for the latest cyber security attack vectors 
and tools. Around EKs revolves a nebula of emerging cybersecurity threats, includ-
ing botnets, ransomware, and banking Trojans. Since its appearance a decade ago, 
botnet technology has evolved in sophistication, by adopting more complex com-
mand and control architecture and communication schemes, and less-prone to dis-
ruption domain naming scheme (Zhao et al. 2013).

Early botnets used centralized architecture for transmitting C&C messages. The 
most prevalent communication protocol used in those earlier botnets was the 
Internet Relay Chat (IRC). However, this type of botnet is easy to detect and disrupt 
due to the single point of failure embodied by the IRC server, which manages the 
C&C communications. Once the server is shut down, the botmaster loses control of 
the network of bots.

The next generation of botnets, which started appearing a decade ago, addressed 
the aforementioned weakness by using peer-to-peer (P2P) protocols (e.g., eDonkey) 
for command and control (Zhao et  al. 2013). Due to its distributed and resilient 
control structure, P2P botnet is harder to shut down than an IRC-controlled botnet. 
However, in the last few years, as more knowledge has been acquired about P2P 
botnets, more effective solutions have been proposed to detect them and mitigate 
their impact.

As a result, more recently, there have been a shift in the control of many botnets 
from IRC and P2P channels to Web sites, using HTTP—a common protocol. Due to 
the prevalence of http communications and sites, detecting botnets that use http 
protocols is much harder (Garasia et al. 2012; Venkatesh and Nadarajan 2012; Tyagi 
and Nayeem 2012). Many organizations host Web sites for regular business activi-
ties and as such enable http communications. Hence, it is easy for http-based botnets 
to evade detection by hiding their command and control messages in legitimate http 
traffic.

Based on exploitable vulnerabilities, different kinds of payloads can be installed 
on the victim’s machines, capable of achieving specific goals. One of the most com-
mon and deadliest ones consists of taking remote control of the machine. This 
allows the hacker to spy on the activities of the victim and steal private information 

I. Traoré et al.



3

(e.g., photos, credit information, social security numbers, and emails). Such 
 information can be used to blackmail or embarrass the individuals. For instance, in 
the case of politicians and celebrities, it can be used in a more targeted ways to 
achieve specific outcomes, such as influencing election results or discrediting the 
victim.

This may also be used to install specialized Trojans and spy or interfere with the 
victim’s online banking transactions. Furthermore, taking remote control of the vic-
tim’s machine provides a pathway to enrolling it in a botnet (which is merely a 
network of enslaved machines), and using such botnet to conduct large-scale activi-
ties such as spreading spams or conducting distributed denial of service (DDOS) 
against potential targets. Instead of using directly enslaved machines, some hackers 
specialize in renting them to other scammers through the criminal black market. 
Those scammers can then use the machines to carry out directly the aforementioned 
scams.

Another deadliest type of payloads, which appeared in the last few years, is ran-
somware (Lee et al. 2016). After infecting the victim’s machine, the malware col-
lects basic machine identification information (e.g., Mac address, IP address, user 
account information) and sends those information to the hacker’ C&C server. The 
C&C server generates a pair of public/private key (using algorithms such as RSA), 
stores locally the private key, and sends the public key to the malware client on the 
victim’s machine. The malware uses the public key to encrypt selected files (which 
are in general important data files) and then displays a message for the victim. In 
general the message will inform the victim that his/her files have been encrypted 
and that he/she should pay a ransom to be able to recover those files. The message 
will also contain directions to pay, which most of the time consists of opening a 
bitcoin account and transferring the ransom payment using such currency. Quite 
often, the message will include a payment deadline beyond which the amount will 
increase (e.g., double, triple, and so on). In case, where the ransom is paid, the vic-
tim will receive the private key and can then decrypt and restore the files.

To make it harder to trace them, hackers use privacy-preserving networks such as 
TOR for communications. It is the same line of thought which is behind using bit-
coins for payment. While electronic cash such as bitcoins has been designed origi-
nally to exhibit the same traits as paper cash (i.e., user and transaction anonymity, 
payment and cash untraceability, and cash transferability), those same characteris-
tics are turned on its head by criminals to perform illicit cash transactions online. 
Tracing those transactions is extremely difficult due to the underlying e-coin system 
design.

Malware designers and writers have become better and better at evading detec-
tion by using an arsenal of sophisticated deceptive techniques. For instance, differ-
ent techniques are used to identify the presence of specific brands of antivirus 
software and circumvent them or fight back when virus scan is triggered, for instance 
by launching a denial of service against the victim.

One of the lifeline of most malware is the ability to communicate with the C&C 
server hosted by the hacker. While this is crucial for the malware, it makes it vulner-
able, as antivirus software can monitor and detect such communications. The 
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address of the C&C server used to be hard coded in some of the earlier malware 
payload. However, it became quickly clear that either through reverse-engineering 
of malware code or by monitoring the C&C traffic, it is easy to identify, block, and 
blacklist the C&C address. In the last few years, more sophisticated techniques 
using fast flux DNS technique and domain generation algorithms (DGA) have 
appeared that increase stealthiness.

Fast flux DNS consists of linking a fully qualified domain name with a large 
number (hundreds or thousands) of individual IP addresses and swapping these IP 
addresses around in extremely short time periods (e.g., a few seconds or minutes) 
(Zhao and Traore 2012). Fast flux networks establish a level of indirection, by hav-
ing the front end nodes serving only as redirectors to backend servers which actu-
ally serve requests. When some query is made to a malicious domain, the redirectors 
forward effectively the request to the actual C&C server which then processes it and 
returns the response.

DGA may either build or not on the fast flux network infrastructure. DGA con-
sists of a mechanism used by malware to generate on the fly new domain names that 
would be used to contact the C&C server (Schiavoni et al. 2014). The generation of 
the new domain may be based on a seed and environmental factor such as time/date, 
and location, known only by the C&C server and the malware payload. The mal-
ware payload will generate a bunch of these domains and try to connect to the C&C 
server through trial and error until one of the domains is successful. The C&C server 
operators executing the algorithms and knowing the correct parameters will gener-
ate, register, and activate only one or a few of these domains. Such process is 
repeated on a regular basis, enabling hackers to move the C&C servers around con-
tinuously, making detection extremely harder.

In the emerging threats landscape, one of the serious threat vectors is stolen iden-
tity. Stolen identities are hot commodities in the underground online black market. 
Often now and then, we hear such and such site has been hacked and private users 
information such as social security numbers, addresses, credit card information (and 
so on) have been compromised. Quite often, such hacks go unnoticed for a long period 
of time. The proceeds of these hacks typically end up being sold online in the black 
market. Stolen identity pieces are packaged as what is known as “fullz” and sold for 
pennies to cyber criminals, who can use them to create seemingly legitimate accounts 
and conduct illegally transactions such as online auctions and online banking.

1.2  Next Generation Cybersecurity Systems

In the emerging threat landscape outlined above, we are faced with an arms race, 
where hackers are turning defensive technologies on their heads by coming up with 
smarter and increasingly sophisticated malicious software tools and payloads.

In this context, security researchers and practitioners must develop new security 
paradigms by rethinking conventional protection approaches and architectures. The 
new paradigms should provide more reliable means of defining and enforcing 
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human identification. Since digital identity is central to any actions on computing 
devices, ensuring the integrity and genuineness of such identity is crucial. Due to 
the increasing role of automation in malicious activities, it is also important to 
define reliable signatures and patterns exposing malicious automation agents and 
activities. By the same token, differentiating human-driven activities from robot- 
driven automated actions is essential.

The Information Security, Assurance, and Trust (I-SAT) workshop series has 
been established with these goals in mind. Its primary objective is to bring together 
security practitioners and researchers from government, academia, and industry to 
present and discuss ongoing work and innovative solutions against emerging secu-
rity threats.

A diversity of themes are covered in subsequent chapters. Specifically four dif-
ferent themes are tackled in the proceeding. The first theme is a discussion on botnet 
architecture and evasion techniques against existing botnet protection strategies. 
The second theme relates to the analysis of hardware Trojans. While in the security 
community there is greater awareness of malicious software, malicious hardware is 
still an esoteric topic for most researchers and practitioners. However, the threat of 
malicious hardware is real and represents a great concern in areas such as cyber 
warfare and cyber terrorism.

The third theme revisits some key limitations of existing intrusion detection sys-
tems, which have been persisting, and proposes a different take on how these could 
be addressed.

Finally, the fourth theme covers new approaches and applications of software- 
based biometrics. Software-based biometrics represent a growing field of research 
which seeks to answer critical challenges related to the genuineness of human iden-
tity, and by extension how human behavior can be discriminately accurately from 
automated robot-driven behaviors.

As an indication of the importance of this emerging field, DARPA (US Defense 
Advanced Research Project Agency) has launched in January 2012 a new Research 
and Development program for innovative software-based biometric modalities to be 
used by over two million US military personnel (DARPA Broad Agency 
Announcement 2012).

According to the DARPA announcement, the main rational behind the new pro-
gram is the fact that traditional approach for “validating a user’s identity for authen-
tication on an information system requires humans to do something that is inherently 
difficult: create, remember, and manage long, complex passwords. Moreover, as 
long as the session remains active, typical systems incorporate no mechanisms to 
verify that the user originally authenticated is the user still in control of the key-
board. Thus, unauthorized individuals may improperly obtain extended access to 
information system resources if a password is compromised or if a user does not 
exercise adequate vigilance after initially authenticating at the console.”

The main goal of the new program termed by DARPA as the “Active Authentication 
Program” is “to change the current focus from user proxies (e.g., passwords) when 
validating identity on DoD IT systems to a focus on the individual. Within this pro-
gram, the intention is to focus on the unique factors that make up the individual, also 
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known as their biometrics, without requiring the deployment of additional hardware 
sensors. Research resulting from this BAA (Broad Agency Announcement) will 
support that overall program intent by investigating novel software-based biometric 
modalities that can be used to provide meaningful and continual authentication 
when later integrated into a cybersecurity system.”
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Chapter 2
Botnets Threat Analysis and Detection

Anoop Chowdary Atluri and Vinh Tran

2.1  Introduction

A botnet is a collection of Internet computers that have been set up to execute 
unintended operations. The owners of these machines often are not aware of the 
status of their devices, which is due to a lack of protection on the computers (e.g., 
no antivirus or firewall). When a computer without basic protection is used to 
browse the Internet, the user may click on a number of different links as well as 
download many types of files. If the files are Trojan/malware, they can automati-
cally create a backdoor to communicate to the command center and hide their 
processes from the end user.

This chapter gives a walkthrough of the botnet phenomenon by centering the 
discussion on some famous examples, which are also representative of some of the 
main bot families available.

The chapter starts with a brief historical review and a discussion of botnets archi-
tectures. This is followed by a review of famous botnets examples, a discussion of 
techniques used by botnet to evade detection, and finally, a review of protection 
techniques and strategies.

2.2  Evolution of Botnets: History and Topologies

Botnet evolution started with Sub7 (a trojan) and Pretty Park (a worm) in 1999; both 
introduced the concept of a victim machine connecting to an IRC channel to listen 
for malicious commands (Ferguson 2015a, b). Then it comes to the Global Threat 
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Bot (Gtbot) in 2000; this botnet is based on the mIRC client which makes it possible 
to run custom script depending on the IRC commands. One of the most famous 
Gtbot attacks is to scan for host infected with Sub7 and update it to Gtbot.

In 2002, two new botnets were introduced, called SDBot and Agobot. SDBot 
was a single binary file, written in C++. The corresponding code was commercial-
ized, and as a result, many new botnets were born inspired from it. Agobot, on the 
other hand, was considered a more advanced botnet, which suggested the principle 
of modular, staged attacks as payloads. Agobot infection comprises of three stages: 
first stage consists of installing a backdoor, then trying to disable the host antivirus, 
and lastly blocking access to websites of known security vendors.

In 2003, Spybot was created, as a transformation of SDBot. This new botnet 
introduced some new functionality such as keylogging, data mining, and SPIM 
(instant messaging spam). Rbot was also surfaced in the same year. This bot 
introduced the SOCKS proxy and included DDOS feature and information steal-
ing tools. Moreover, the bot was also the first one to use compression and encryp-
tion to avoid detection. The year 2004 saw the rise of Bagle and Bobax, the first 
spam botnets. In 2006, ZeuS or Zbot was introduced and is still now one of the 
world most famous botnets. The year 2007 saw the birth of Storm, Cutwail, and 
Srizbi botnets.

The history of botnets closely correlates with the evolution of botnets topologies 
and architectures. Botnets are implemented using different topologies, including the 
following four main architectures (Ollman 2009):

• Star: This hierarchy (see Fig. 2.1) allows the bot to communicate directly with its 
master. This approach helps the simplest one; it facilitates bot management and 
makes sure the communication between both the parties are fast and accurate. 
However, it suffers from single point of failure and system administrators can 
easily block the connection to the master.

• Multi-server: This topology (see Fig. 2.2) is a more advanced form of the Star 
architecture. It tackles the problem of single point of failure and also makes sure 
that the bots can reach its closest geographical master (assuming the C&C serv-
ers are set up in multiple countries). Nevertheless, this hierarchy requires more 
effort to set up and plan from the master.

• Hierarchical: This topology (see Fig. 2.3) allows a bot to act as a supervisor for 
a group of other bots. The supervisor bot can directly connect to the master and 
update instructions/code base. This approach hides the presence of the master 
and makes tracing back to the master more difficult. Also, botmaster can easily 
share/lease/sell a portion of the botnet to other botmaster. Nonetheless, this 
architecture adds a level of latency to the update between bots, because the 
lower-level bot needs to wait for instructions sent from the supervisor bot, mak-
ing real-time attack harder than the previous topology.

• Random (Peer to Peer): The last design (see Fig. 2.4) is called random or peer to 
peer (P2P). This is by far the most advanced topology in botnet. Any bot agent 
can send/forward commands to the next one; these instructions are often designed 
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Fig. 2.1 Star formation

Fig. 2.2 Multi-server formation
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in a way that it can pass on to the next available node in the net. This method 
allows the botmaster to avoid detection/shutdown, as it would take a  considerable 
amount of time to trace the communication between bots. However, the design 
helps researchers to track down the infected hosts easily, since monitoring one 
bot can reveal information about its communication with others.

Fig. 2.3 Hierarchical formation

Fig. 2.4 Peer to peer 
formation

A.C. Atluri and V. Tran
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2.3  Famous Botnets

There are a great number of botnets worldwide; however, most botnets have similar 
functionality and often are variants of some previous botnet. This chapter only 
focuses on ZeuS, Koobface, and Windigo as examples of popular botnets. The rea-
son for picking these is that ZeuS is one of the early botnets that still remains famous 
until now, and it has gone through multiple waves of revolution. As for Koobface, 
this botnet represents a new form of malware that spreads through online social 
network, and using user’s friend list as a means of propagation. Lastly, Windigo 
represents one of the few famous botnets targeting primarily Linux platforms.

2.3.1  ZeuS or Zbot

Overview: ZeuS is a family of credentials-stealing trojans which first surfaced 
around 2007 (Andriesse and Bos 2014). Since then, ZeuS has grown to be one of the 
world’s most famous botnets. Older versions of ZeuS, which relied on IRC 
Command Center, have been studied by scientists and security professionals 
(Falliere and Chien 2009). In 2011, a more advanced version of ZeuS was intro-
duced, called GameoverZeuS. This variant uses P2P with encryption instead of IRC 
channel. The modern Zeus versions with advanced features such as encryption and 
communication pattern not only harden detection process but also prevent the net-
work from being infiltrated by “outsiders.”

Encryption: Early versions of ZeuS use a simple mechanism for encryption, known 
as “visual encryption,” which basically encrypts each byte by XORing with the 
preceding byte (Andriesse et al. 2013). Later versions introduce RC4 encryption. 
“Outsider” bots, which are used by researchers and security personnel, to penetrate 
the network, becomes counterproductive, since the fake bot needs to know under 
what identifier it is known to other bots in the network in order to decrypt the 
message.

Communication pattern: (Andriesse et al. 2013) Zeus maintains a passive and an 
active thread. The passive thread acts like a server, listening for incoming request. 
The sender’s information of any successful handled request is stored in a bot’s peer 
list. On one hand, if the receiving bot already has more than 50 peers in its list, the 
sender bot data will be saved in a queue for future peer list update. However, the 
sender bot will be automatically added if the peer list is 50 or less. On the other 
hand, if the sender identifier is already on the list, all information (such as IP and 
ports) is updated, to keep a fresh connection with its peer.

The active thread runs in a cycle and automatically repeats after a specified 
amount of time. In each iteration, the bot attempts to connect every peer in its list, 
asking for updated version of binary and configuration file. Each peer has five 
chances to reply to the request; if there is no response after five times, the bot will 
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first check if it actually made the request to the recipient by checking for Internet 
connection; then depending on the Internet status, it will drop the unresponsive peer 
and update the list. Moreover, if the bot has less than 25 peers, it will try to connect 
to all its neighbors asking for the neighbor’s peer list. This mechanism assures the 
botnet network always stays fresh and long-period-disconnected bot can recover 
quickly even with a minimal number of peers.

2.3.2  Koobface

Overview: Koobface is one of the first malwares to target online social networks 
(OSN) (Baltazar et  al. 2009; Thomas and Nicol 2010; Sophos Press 2007). The 
botnet first appeared around early 2009 and has caused severe damage to social 
networks users. The koobface malware, unlike others, has its binary split into mul-
tiple modules, each of which has a separate functionality that handles different type 
of OSN. Additionally, instead of spreading through spam email, the malware uses 
OSN messaging service to propagate. This is a very effective way to escalate the 
infection, as people often have no doubt about their friend’s messages (Fortinet 
White Paper 2013). Once clicked on the link in the message, user will be redirected 
to a fake page, created by social engineering toolkit (usually fake YouTube page). 
Here, users will be asked to install a fake plugin in order to view the content. The 
fake plugin is the koobface downloader, which will attempt to find out the OSN the 
user is using and then download the necessary components accordingly. As of 2009, 
the malware was able to identify a significant amount of various OSN such as 
Facebook, Twitter, MySpace, Friendster, Hi5, Netlog, Bebo, and so on.

Features: This botnet not only breaks captcha by forcing other infected machine’s 
user to solve it but also creates fake OSN accounts in order to befriend with poten-
tial victims. Research has shown that a normal user has 41 % probability to accept a 
friend request from strangers on Facebook (Irani et al. 2011); this is why KoobFace 
has become so successful and led the way for a new form of malware that spread 
through OSN.

2.3.3  Windigo

Overview: The botnet has a long history (Bilodeau et al. 2015), starting from 2011; 
it comprises of a few different malwares which take care of different tasks. Most of 
the modules (e.g., Linux/Ebury, Linux/Cdorked, Linux/Onimiki), however, are spe-
cialized in compromising linux servers (e.g., web, dns servers). There are also two 
other malwares (Win32/Boaxxe.G and Win32/Glubteta.M) targeting Windows 
computers’ end users. Like any other modern botnet, Windigo also carries out a 
number of tasks ranging from sending spams, drive-by downloads, advertisement 
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fraud, and credentials stealing; however, one important point to notice is the main 
victims are Linux servers, which mean they have more resources, bandwidth, and 
also have more potential to reach end users via web servers. The main Linux com-
ponents are summarized in the following.

Linux/Ebury (Bilodeau et al. 2015): main functions are creating backdoor shell and 
credentials stealing. One of the outstanding attributes of this malware is its ability 
to run in a very stealthy way, because maintaining an SSH backdoor shell is a dif-
ficult task. In order to do this, the creator has applied many different techniques, and 
some of them are as follows:

• Utilize linux pipes as much as possible
• Leave no information in log files
• Alter OpenSSH binaries code at runtime instead of modifying the current files on 

disk
• Use a centralized backdoor in a library

Linux/Cdorked (Bilodeau et  al. 2015): It is used to redirect traffic from infected 
servers to malicious sites; some of the most common web servers (apache, nginx) 
have been infected with variants of this malware. In order to deploy this malware, 
the botnet uses previously installed Linux/Ebury to download a complete source 
code of the web server; it also gets another patch from an infected server. Then the 
patch is applied on to the new source code and a new binary is compiled, after that, 
the original web server binary is replaced by the new malicious binary. When mak-
ing a redirection, the malware tries to guess if the current user is a system admin by 
checking a number of url keywords and cookies; this mechanism allows the mal-
ware to act under the radar and thus avoid detection.

Linux/Onimiki: It is a domain name service component which acts together with 
Linux/Cdorked. Whenever a redirection is made from a Cdorked infected 
machine, Onimiki will try to resolve the domain name in the url. It is also noted 
that Onimiki uses BIND name server and this offers a number of advantages, 
such as the following:

• It is stateless and requires no configuration when Onimiki is installed, thus allow-
ing the malware to act alone without any further interaction with the operators.

• It allows fast rotation of subdomains and legitimate domains.
• Its reputation of the legitimate domains helps Onimiki avoid blacklisting.

Table 2.1 summarizes the main features of the three botnets examples considered 
above.

2.4  Botnet Detection Evasion Techniques

Botnet uses many different methods to avoid detection; some popular techniques 
are as follows:
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• Domain generation algorithm (DGA or Domain Flux): According to Khattak 
et al. (2014), DGA is an approach to dynamically generate the C&C address. The 
botmaster builds a specific mechanism to randomly create the server address and 
sets up the DNS record to point the address to the C&C. An example using this 
technique is ZeuSGameover malware (Andriesse et al. 2013); the algorithm is 
triggered when all peers are unresponsive or the bot fails to update for more than 
a week.

• IP flux (Shin and Gu 2010): this technique is similar to DGA, but instead of 
associating multiple domains with one IP, it attempts to alter DNS records to 
have various IP addresses linked to one domain. The method is aided with the 
help of Dynamic DNS. IP flux has two different types:

 – Single FLUX: the idea is to have intermediaries between the bot clients and 
bot master, providing a layer of anonymity for the bot master. These middle 
layer machines are often called “proxy bots,” which are also infected machines 
chosen by the master.

 – Double flux: is an advanced version of single flux, which abstracts the domain 
name and IP address of the proxy bots. When bot agents try to connect to 
proxy bots, they will be redirected to name servers controlled by the master. 
These name servers will handle the domain name matching and generating, 
and make sure that name and IP pairs change frequently so the connection 
will not be blacklisted or blocked.

• Binary obfuscation (Shin and Gu 2010): the bot client uses various techniques to 
defeat host-based security application, one of which is polymorphism. It is an 
attempt to reconstruct the bot into different forms but still maintain the same 

Table 2.1 Comparison of Zeus, Koobface, and Windigo

Zeus/Zbot Koobface Windigo

Infection 
vectors

Infection vectors vary 
widely; some main 
mechanism are spam, 
drive-by download

Mainly through online 
social network

Spread through linux 
servers

Features A DIY bot that is 
features-rich, easy to use. 
Underground criminals 
can easily purchase a 
copy of Zeus and build a 
version of this malware. 
Maintaining a 
sophisticated P2P network 
which makes taking down 
operation harder

Can detect multiple 
online social network 
and has various 
components that can 
act differently 
depending on the 
detected online social 
network. Break captcha 
by forcing users to 
solve it

Although this botnet 
mainly targets linux 
servers, it has the 
ability to take control 
of the windows 
machines which 
established connection 
to the infected linux 
servers

Availability 
and 
distribution

Freely available with 
purchasability makes 
Zeus the most popular 
botnet

Not available for 
purchase

Not available for 
purchase
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functionality, by using encryption or packing. Some advanced packers can build 
a completely different binary for every packed request. Despite success in hiding 
its identity, the bot binary can still be detected while executing due to memory- 
based detection approach. To work around this problem, the bot agent uses 
another practice called metamorphism, which gives the bot the ability to be 
rebuilt into different, but semantically equivalent code.

• Security suppression: When infecting a weak machine, the malware attempts to 
disable all or several security services on the host. For example, (Bilodeau et al. 
2015) the malware Conficker will attempt to disable some security service in 
Windows when infected; it also sets up a blacklist which prevents users to access 
certain security site.

• Anti-analysis: Certain botnets have the ability to scan the environment which 
they are running on, and depending on the results, they can disable/change 
their behaviors to appear harmless or mislead the researchers. This technique 
was quite popular in the early days of botnet, but after the explosion of virtual 
technology, this method is being forgotten as criminals also want to target vir-
tual users.

Table 2.2 summarizes the evasion techniques outlined above.

2.5  Botnet Detection Methodologies

Botnet Detection techniques can be grouped in various categories. Figure 2.5 depicts 
those different categories, which include both active and passive techniques 
(Plohmann et al. 2015; SANS Institute InfoSec Reading Room 2015).

Table 2.2 Botnet detection evasion techniques summary

Domain 
generation 
algorithm

A mechanism which allows bot agents to connect with master through a 
variety of different domain names. The bot master takes care of generating 
the domain name and sets up the servers; the agents will have a list of 
names to try connecting to

Single flux Bot master chooses some infected machines to become proxy bots or fake 
master. This technique helps the master to become harder to track down 
and thus stay alive longer

Double flux An advanced version of single flux, which takes the connection to another 
level by adding the complexity of domain name generation

Binary 
obfuscation

To defeat the host-based defense, bot agents can be built into different 
binary form, but still maintaining the functionality. This technique is 
carried out often by encryption and packing

Security 
suppression

Certain types of botnets have the ability to disable local security service 
and also block users from finding a security solution

Anti-analysis Some early day botnets have the ability to change its behaviors based on 
the environment it’s running on
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2.5.1  Passive Techniques

Passive measurement techniques are a group of few methodologies where data is 
gathered through monitoring and observation alone. Using passive measurement 
techniques, we can track activities without interfering the production network or 
making changes in any kind of evidence. There will always be a limited amount of 
data which can be collected from passive methods and this data can be used for 
analysis (Plohmann et al. 2015).

2.5.1.1  Packet Inspection

The most common methodology under passive botnet detection system is Packet 
Inspection of local network data. The main objective of this technique is to ensure 
various parameters of packets are matched like protocol field, identification, flags, 
and content with huge database of predefined abnormal and suspicious behavior 
which allows identifying bots by analysis of data only.

For instance, there might be a data packet consisting of shell script code which is 
being used to inject malware in network and that particular malware is communicating 

Botnet Detection
Methodologies

Passive

Packet Inspection Analysis of flow Sinkholing
DNS Cache
Snooping

Infilteration
Tracking of Fast-

Flux Network
Analysis of spam

records

Honeypots

Software feedback

DNS Based
Approaches

Analysis of
(application) log

files

Evaluation of anti-
virus

Active

Fig. 2.5 Botnet detection methodologies tree
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with the public address which can host the data. The predefined patterns are also 
referred to as detection signatures.

The main characteristic of packet inspection approach is that it can be incorpo-
rated in typical Intrusion Detection Systems (IDS) where attacks are identified 
based on predefined signature database. The inspection service runs in two deploy-
ment modes, which include as a single appliance for entire network that is known as 
network-based detection system (NIDS), and Host-Based Network Detection service 
(HIPS) where every node of the network runs a separate instance of the detector.

Intrusion detection system is primarily used to just detect the malicious activities 
and they are reported to network administrator, and network administrators are 
responsible to take action on infected areas.

Some commonly identified drawbacks of intrusion detection or prevention tech-
niques include the fact that when the network traffic flow is very high it is difficult 
to perform complete inspection of the packets. If we make use of techniques like 
packet sampling or packet filtering prior to analysis, chances of missing malicious 
packets are too high.

Furthermore, intrusion detection systems are known for their high false alarm 
rates, which is a serious limiting factor.

2.5.1.2  Analysis of Flow Records

Analysis of flow records can be considered as a technique for tracing network traffic 
at a nonrepresentational level. In the packet inspection approach, the packet is 
described to some level of details; each and every packet should be inspected in an 
aggregated form. In the flow record approach, when a data stream is considered for 
analysis it goes under a process where several parameters are matched. These 
parameters include addresses of the source and destination, port numbers and the 
protocol which is used in the packets, how many packets are transmitted, and size 
and duration of the session.

Net flow can be considered as one of prominent examples for the analysis of flow 
record format. Like with packet inspection, the main aim of flow record analysis is 
to differentiate and identify the traffic patterns by creating a scheme to detect mali-
cious traffic.

2.5.1.3  DNS-Based Approaches

A connection should be initiated and established with infected hosts or command-
ing server by considering botnet infrastructure whenever hosts have been infected 
by a botnet. This can usually be achieved by integrating a communication protocol 
with the malware. This can be done in two ways as follows.

An IP address can be integrated into the bot, which will be executable upon dis-
tribution, but the IP address should be fixed. A predefined domain name should be 
used, which will be contacted if the host system is compromised. To avoid downtime 
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by providing redundancy, multiple IP addresses can be associated or mapped with a 
single domain name. On demand, these IP addresses can be changed to dynamic 
whereby they are not configured for static use (Plohmann et al. 2015).

2.5.1.4  Analysis of Spam Records

Spam emails are irrelevant messages sent to a large number of users. Spam repre-
sents a common drive of botnets. The analysis of spam records provides a method 
of identifying and anticipating botnet infection attempts. Unlike DNS-based 
approaches, which target primarily the C&C phase, spam analysis aims at detecting 
botnets at the infection phase, and this technique will eventually detect botnets that 
essentially do spamming. Spam analysis involves identifying regular emails com-
munications and distinguishing illegitimate message contents.

Distinguished patterns of spam mails are produced by the bot eventually forming 
the foundation or base for botnet detection. The content of message offers a good 
initiation point for matching and characterization of messages related to the email 
protocol header and content.

The correct placement of spam traps will be helpful summation to this schema. 
Usually spam traps are mailing addresses with no prolific functionality other than to 
accept unrecognized and unwanted mails and can be distinguished as a distinct vari-
ety of honey tokens or honeypots.

2.5.1.5  Analysis of (Application) Log Files

It is common practice for devices and applications to maintain records of events 
related to different operational aspects in the form of log files.

Log files analysis is a secondary approach of botnet detection system. The basic 
analysis is done using network devices log files, which come as a basic match 
method from entire network devices; this analysis can be done in parallel over entire 
range of network devices.

2.5.1.6  Honeypots

Figure 2.6 depicts a network architecture with two honeypots (A and B). A honey-
pot is a dedicated machine with a purpose of exposure to outside (i.e., Internet) with 
a focused goal to attract attackers and learn attacking methods or even to get com-
promised by malicious activities. In this setup, the network is always secured in the 
backend and only honeypots are kept visible by exposing them to the outer world. 
Honeypots help administrator to understand the attackers’ techniques against the net-
work and develop and deploy adequate security policies and mechanisms for 
protection.
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There are different types of honeypots including the following:

• Client and server honeypots
• Low interaction honeypots

The main motive for using honeypots in botnet analysis is the opportunity to col-
lect different data about the practices and strategies used by inventors of malware 
and hackers. In general, two types of data can be collected by honeypots:

• Types of attack vectors in OS and software used for attacks, as well as the real 
exploit code which links to them.

• Actions done on an exploited workstation. These can be noted, while malware 
loaded on to the workstation can be conserved for further analysis.

2.5.1.7  Evaluation of Antivirus

This approach simply consists of relying on existing antivirus software capability. 
Different antivirus products have different signature databases, with some overlap-
ping signature set. New generation of antivirus systems not only pushes updates 

Fig. 2.6 Honeypot network
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regularly to their clients, but they also learn from new instances of viruses occurring 
at specific endpoints, by pulling information from the clients. So it is a two-way 
communication stream.

2.5.1.8  Software Feedback

Software installed in the user work stations and data flow in network are analyzed 
and automated feedbacks of software reported to vendors. In this scenario of net-
work each host machine acts as a sensor and the entire network is converted into a 
big sensor network (Plohmann et al. 2015).

2.5.2  Active Techniques

The group of active methods contains methods that involve communication with the 
information sources being observed. While these allow deeper probing and analysis, 
their application may leave traces that impact consequences or include events that 
can be observed by the concerned. This can cause counter-reactions, such as a 
DDoS attack or trigger other attempts at evading detection.

2.5.2.1  Sinkholing

This is a process of mitigating botnets by cutting off the source and breaking of 
communication between bots and C&C server.

As shown in Figs. 2.7 and 2.8, sinkholing consists of redirecting requests from 
the bot to the sinkhole (typically a server under control of the good guy) rather than 
letting such communications go through to the C&C server.

If one or more domains with fixed IP addresses are used by the malware, then 
discovering and blacklisting them will quarantine the specific malware examples 
that rely on them, making those useless. By using the direct IP addresses, there is no 
need of the DNS queries and the botnet can be terminated by deregistering the 
domain name (Plohmann et al. 2015).

This approach could help discover more malicious activities beyond the initial 
detection. For example, if a domain is identified as malicious, it is known that all 
incoming queries for this entry are given out by infected hosts with high probability.

2.5.2.2  DNS Cache Snooping

As shown in Fig. 2.9, DNS Cache Snooping approach leverages the caching prop-
erty implemented and used by several DNS servers. If a DNS server is asked for a 
domain for which it has no entry defined, it will issue a query towards the respon-
sible authoritative name server on behalf of the querying client and store the resul-
tant data record later in a local cache. Caching is mainly used to increase the 
performance of a name server and reduce its traffic load.
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Fig. 2.7 Sinkhole attack

Fig. 2.8 Sinkhole redirection
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Cache snooping approach consists of analyzing the caches to identify illegitimate 
or unexpected DNS queries, which potentially could point to botnet presence.

2.5.2.3  Infiltration

Infiltration techniques can be divided into software- and hardware-based techniques. 
Software-based infiltration technique can be used to monitor the traffic and bots 
executable to achieve control of bots in network whereas hardware-based infiltra-
tion allows to access command and control server and also to wiretap the communi-
cation between the nodes.

This usually requires the reverse engineering of the botnet infrastructure. This infil-
tration is a precise analysis which is useful for identification of potential weakness of 
infrastructure. The extracted knowledge is always very useful to achieve a command-
ing position in fighting back against botnet infection (Plohmann et al. 2015).

2.5.2.4  Tracking of Fast-Flux Network

Fast-flux networks consist of linking a single or few domain names with a large pool of 
IP addresses controlled by the botmaster, as illustrated by Fig. 2.10. Botnets use fast-
flux networks to introduce secrecy of their actions and grow the consistency of their 
network and command configuration. This increases the stealth of the botnet, making 
detection of the C&C server much harder. Fast-Flux networks use promptly altering 
DNS records, indicating at a large number of hosts, and substitute as supplementary 

Fig. 2.9 DNS cache snooping
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proxy layer to hide the actual content delivery systems. The proxy nodes are usually 
compromised workstations of the botnet itself (Plohmann et al. 2015).

Typically, the IP address assigned by the botmaster DNS Server is valid for only 
a few minutes that is indicated by the Time to Live (TTL) value.

The detection approach used in this case consists of monitoring and identifying 
the DNS server with low TTL values. Correlating such information with other 
parameters could expose the presence of botnet activity.

2.6  Defense Against Botnet Using Network Security Devices

Traditional network security appliances and devices (i.e., IDS, firewall, antivirus) play 
an important role in defending against botnet. Although taken in isolation these devices 
may not be enough, but they are essential components in any protection strategy. 
However, appropriate configuration must be performed for these devices to be effective 
in the fight against botnets.

Fig. 2.10 Fast-flux network attack
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2.6.1  Intrusion Prevention and Detection Systems

Intrusion Detection Services are performed on three different platforms: some 
instances filter intrusions on each individual node of network with help of applica-
tions which are called host-based intrusion prevention systems, whereas some 
other scenarios consist of a central device acting as an intrusion prevention system 
and a single device serving the entire network needs. In very high-risk infrastruc-
ture a combination of Network and Host Intrusion prevention is used to detect 
Botnets including when encrypted data is involved, as Network-Based Intrusion 
Prevention cannot detect Botnet in Encrypted traffic (Andriesse and Bos 2014; 
Ollman 2009).

2.6.2  Network Firewalls

Most of the network firewalls enabled with Botnet traffic filtering provide reputation- 
based control in network based on ratings of IP address or domain name. This inte-
grates with an external central repository of database of known malicious devices 
and domains, and dynamically stops the attacks originating from these sources. For 
unknown attack sources, the firewall always checks for traffic flowing to/from com-
munication potential botnet C&C server reports/logs such occurrences.

Network firewalls filter traffic with the following components (Stawowski 2015).

2.6.2.1  Dynamic and Administrator Blacklist Data

Filtering is done using a central database of malicious domains and IP addresses 
from central repository. This database is maintained by different vendors like cisco, 
Websense, and IronPort (Cisco White Paper 2015).

2.6.2.2  Traffic Classification and Reporting

For classification of Botnet Traffic, the active filter associates the source and desti-
nation addresses of user data besides the IP addresses that have been revealed for 
the several lists and logs and accounts the administrator and dynamic database 
(Cisco White Paper 2015).

2.6.2.3  Domain Name System Snooping

To ensure the binding of IP addresses to domains that are listed in central reposi-
tory of database, the Network Firewall uses DNS Snooping in combination with 
DNS Inspection. The Firewall matches DNS Snooping lookup with DNS replies. 
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Firewall builds a reverse cache, which compares the IP address in user replies to 
actual known legitimate domain; if the domain matches then it is considered as 
clean traffic else it is flagged as bot traffic (Paquet 2015).

2.7  Security Measures Against Botnets

2.7.1  Network Design

Network sesign must be done is such a way that intruders and malware are not able 
to exploit existing susceptibilities. Defense in depth strategy in network against 
Botnet helps to mitigate even zero day attacks on network and helps to streamline 
security operations.

This involves making use of layered security systems on each segment to ensure 
security against bots (Boyles CCNA Security Study Guide) (Fig. 2.11).

Fig. 2.11 Security measures chart
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2.7.1.1  Advance Threat Protection

Advanced threat protection systems must be used to mitigate layers 3 and 4 traffic 
and block all unintended traffic and allow only traffic initiated for trusted network 
and enable data control on edge of network (Cisco White Paper 2015).

2.7.1.2  Intrusion Prevention and Detection System

It enables the capability of deep packet inspection and anomaly detection by analyz-
ing data from layer 4 up to layer 7 of network and correlated the events to protect 
network against botnets. Intrusion prevention is the most important component of 
network filtering. Thus it is always good to deploy both host and also network-based 
appliances, as while network-based detection fails to mitigate encrypted attacks, it 
enables synchronizing with a central repository of malicious patterns of intrusions 
and protects network against it [25, 26].

2.7.1.3  Email Security Systems

Email being most important component of work flow it’s very important to allow 
mails and also filter threats associated with botnet infection using email filtering 
engines.

2.7.1.4  Forensic Analysis

Forensic-enabled devices allow correlating the security events in network and trace 
the origin of attack. This allows administrators to act efficiently on bots and protect 
other network users against them (SANS Institute InfoSec Reading Room 2015).

2.7.1.5  Security Event Monitoring

Event monitoring allows keeping track of all events in network and gives a compre-
hensive report of threats against network and also enables the transparency in network 
monitoring (Stawowski 2015).

2.7.2  Application Usage

Botnet can be prevented by monitoring and establishing normal patterns of usage 
for applications on individual nodes. The following application natures can be used 
to mitigate botnet against host.
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2.7.2.1  HIPS (Host-Based Intrusion Prevention System)

Host-based intrusion prevention systems are application model of network-based 
IPS services to prevent network attacks on host (Scarfone and Mell 2007).

2.7.2.2  End Point Security

End point security applications monitor and protect the host against known viruses 
and malware and also observe and identify malicious activities in the behavior of 
the host computer; once if any abnormal activity is observed in the computing pro-
cess, the application itself stops the suspected processes (Scarfone and Mell 2007).

2.7.2.3  Application Firewall

Application firewall can be used to block unwanted ports especially common ports of 
botnet attack such as ports 25 and 21 which are generally used by bots to transfer data.

2.8  Conclusion

In this chapter, we presented Zeus, Koobface, and Windigo as some of the most 
impactful botnets. There are many other different ones which have their own tar-
gets (such as desktop end users or mobile devices), and also use diverse avoidance 
techniques. The chapter also summarizes the passive and active countermeasures 
against botnets as well as some defensive mechanisms which can be implemented 
on the network.
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Chapter 3
Collective Framework for Fraud Detection 
Using Behavioral Biometrics

Ahmed Awad

3.1  Background

Fraud detection is an important topic that has been well addressed in literature 
before. Enhancements include building intelligent fraud prevention and detection 
models that are applicable to specific industries such as banking, insurance, govern-
ment and law enforcement agencies, and more. Sophisticated models were built on 
top of analytical techniques to achieve such goal.

To the best of our knowledge, most of the biometric fraud detection researches in 
current literature focus on identifying the fraudulent activities by a set of predefined 
rules. These standards are registered during the enrollment phase, which users sign 
up for their biometric information.

Frank et al. proposed a set of 30 behavioral touch features extracted from raw 
touchscreen logs. The touch input is collected through user’s normal activity on 
their phone, such as basic navigation maneuvers (up down, left right scrolling). 
Based on these data, the team introduced a classification framework, which is effi-
cient at detecting user identity during the enrollment phase (which the system 
learns about the user’s behaviors and gather the special features from the touch 
data) and is capable of accepting or rejecting the user based on his/her interactions 
with the device (Frank et al. 2013). This method is, however, not effective to act as 
a stand- alone authentication mechanism for long-term authentication, since the 
false positive rate is within 0–4 % which is unacceptable in certain scenarios. 
Nevertheless, the work proves that touch dynamic authentication is achievable and, 
with other complementary data such as context information, would greatly increase 
the effectiveness of the framework (Frank et al. 2013).
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Bo et al. (2014) proposed SilentSense, an authentication framework which iden-
tifies users silently and transparently, by collecting user touch behavior biometric 
and micro-movement of the device caused by user’s interaction. SilentSense faces a 
number of different challenges, such as user behavior modeling (the model should 
contain multiple features from both user’s action and device’s reaction), identifica-
tion strategy (it is important to distinguish between guest users and owners from a 
limited set of behavior information), and balance among accuracy, delay, and energy 
(real-time observation function can quickly exhaust the device battery) (Bo et al. 
2014). The researchers carried out a series of test on an Android phone, where 
SilentSense runs as a background service capturing the information about current 
app and touch events, and the test outcome shows that the application works best 
under two-class SVM (support vector machine) classifier with increasing amount of 
guest information (Bo et al. 2014).

Deshmukh and Patil (2014) came up with an iris recognition framework for 
credit card fraud detection, based on the natural open eyes. Their technique is to, 
firstly, create a preprocessed image of the iris and then detect all iris feature points 
by direction information, length information, width information of texture, neigh-
boring gray information, and relativity in the effective iris area. After that, encode 
all the feature points and identify different patterns based on the iris code. And 
finally, use auto-accommodated pattern to sort the iris patterns and deliver the rec-
ognition result. The experimental result showed that the correct recognition rate is 
99.687 %, false acceptance rate is 0.313051 %, and false rejection rate is 0.293945 % 
(Deshmukh and Patil 2014).

Gaurav et al. (2012) proposed a smart card fraud prevention scheme using a com-
bination between fingerprint and password. The system incorporates password- 
based authentication with fingerprint identity, generated by fingerprint capture 
procedure. The suggested mechanism has three phases: registration, log-in, and 
authentication phases. In registration phase, user will sign up with the system his/
her username, password, and fingerprint identity; the system will process fingerprint 
data into a digital certificate format and then transform it into a mathematical repre-
sentation. In the second phase (log-in), user will send a request to the system, with 
all his/her registered information. And finally, in authentication phase, the server 
will calculate all the provided data and either accept or reject the user.

It is important to note that the above approaches fail to mention the biometric 
data variance between session and what necessary actions to handle them. These 
biometric differences or previous user activities should be taken into account for 
updating user’s profile/history, as attacker could capture the valid past session and 
use it to compromise the system.

3.2  Fraud Detection Framework

The main purpose of a fraud detection system is to be able to detect fraudulent 
activities as soon as they occur. Report them and respond to such incidents 
accordingly.
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A typical host-based fraud detection system consists of an agent application 
(could be a script) that runs on the user’s machine. The agent collects all relevant 
information that could help in identifying the user’s computing environment such 
as the hard drive ID, the OS version, the machine’s local IP, and so on. It could 
also target identifying the user himself through the collection of behavioral bio-
metric data.

After establishing a session with the business service, the agent will send the data 
to the server integrated within the server request. The web server will forward the 
fraud detection data to a dedicated fraud detection server component which will 
process this data and other data collected locally from the server and correlate it to 
previously collected data to detect frauds.

As indicated in Fig. 3.1, the data collected from the user’s machine falls into one 
of the following categories:

• Geo-location
• Machine identifiers
• Network status identifiers
• Operating system status (includes user authentication context)
• Behavioral biometrics (keystroke dynamics, mouse dynamics, and command 

line lexicon)

Data collected from various factors are combined into a device-user signature 
token which is updated as the user uses the machine and processed and passed to the 
server for the purpose of fraud detection. Previous tokens are stored on the servers 
for future uses.

The server establishes the trust based on the provided token. It trusts that this 
authenticated user is whom he/she claims to be and that this user is connecting from 
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a known machine by comparing the different factors included in the token to the 
previously collected ones. One of the weaknesses of this model is that the data col-
lected for fraud are limited only to the period of activity that is related to the user’s 
session. Previous machine status and user activities are not sent to the server and are 
not included in the fraud detection analysis. Such model is vulnerable to spoofing, 
replaying, and man-in-the-middle attacks.

A malicious code or a rogue application installed on the user’s machine can per-
form malicious activities before the user’s session in preparation of an attack on the 
user’s account. Such activities should be taken in consideration.

In order to overcome such weaknesses, a persistent passive agent could be 
installed to monitor all of the activities on the computer. The agent could pass a 
summary of the activities to the server when the user connects to it to establish a 
new session. This model faces several implementation challenges. First, it is diffi-
cult to assure that this agent is up all the time; the attacker could bypass some of the 
agent’s monitoring functionalities forcing the agent to collect false information. 
Second, this model raises privacy concerns due to the fact that the agent is monitor-
ing the activities at periods of time that are not related to the user’s activities on the 
server. Information such as a different user with a specific biometric profile who 
was using the system during a specific period of time will be made available to the 
server. In such case, user’s consent is mandatory.

The Past Activities Aware (PAA) model could be implemented using a proxy server 
(Fig. 3.2). In this architecture, the fraud detection component is integrated in a proxy 
server that is used to access various web servers through an internal network or over 
the Internet. In this case, the user will be made aware that his web activities will go 
through this server and a consent form will be displayed. The proxy server is config-
ured to inject a script in all of the web pages that pass through it. The script runs on 
the user’s machines and collects all machine-user signature data and passes it back to 
the proxy server. The proxy server intercepts these data items while processing other 
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web requests and passes them to the fraud detection module. The data will be stripped 
from the web request before forwarding it to the web server.

The fraud detection server will communicate fraud reporting events to the web 
server in cases of fraud being detected. Such events will be intercepted by a report-
ing system and required responses will be taken.

3.3  Behavioral Identity Verification

As shown in the above section, behavioral biometrics represent an important input 
to the detection system. The data can be used to passively verify the user’s identity 
and establish the expected trust. Mouse and keystroke dynamics are considered as 
two good candidates for such purpose.

Mouse dynamics correspond to the actions generated by the mouse input device 
for a specific user while interacting with a graphical user interface. Touch dynamics 
is a different version of mouse dynamics when captured over a mobile device 
(Ahmed and Traore 2007, 2011).

Keystroke dynamics recognition systems measure the dwell time and flight time 
for keyboard actions (Dowland et al. 2002). The raw data collected for keystroke 
includes the time a key is depressed and the time the key is released. Based on the 
data, the duration of keystroke (i.e., length of time a key is depressed) and the 
latency between consecutive keystrokes are calculated and used to construct a set of 
monographs and digraphs producing a pattern identifying the user.

Figure 3.3 shows the architecture of the detection system. Two neural networks 
are involved in this design. The first one is designed to process the digraph data 
represented by the fly time from a specific key location to another key location. At 
training phase, the network is trained with the session data. This process takes place 
for each user, where the two neural networks are trained with the user’s data. The 
second network is designed to process the pressure sensor data which is represented 
as monographs of dwell time for a specific key location. The network is also tuned 
with the user’s session data at the enrollment phase.

The inputs to both networks are the key locations and the output is fly/dwell time. 
Inputs and outputs of the neural networks are normalized based on their minimums 
and maximums to enhance the training process.

During the testing phase, both networks are fed with the data collected from the 
current sessions. Outputs from both networks are compared to the actual fly/dwell 
time collected in the session. The output from the network represents how this 
 output should be if the current session is actually performed by the user whose data 
were used to train both networks (the legitimate user).

The deviation from the expected behavior is calculated for both networks and 
passed to a fusion component that is used to arbitrate between both inputs to make 
a final decision about the user’s identity. This decision is represented by the confi-
dence ratio (CR) whose value indicates how confident the system is that the session 
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data belong to the legitimate system user. The higher this value the more confident 
the system is about such finding.

As shown in Fig. 3.3, a threshold value (thr) is used to tune the fusion compo-
nent. The value is varied to achieve the best tuning results for each user in the sys-
tem. The weights of the trained networks and the optimal threshold value are stored 
for each user as its own biometric signature calculated by this detection unit.

3.4  Experimental Evaluation

3.4.1  Evaluation Metrics and Procedures

In order to evaluate the accuracy of the PAA Fraud Analysis Model, we calculate the 
following:

• False acceptance rate (FAR), which measures the likelihood that an imposter 
may be erroneously accepted by the system

• False rejection rate (FRR), which measures the likelihood that a genuine user 
may be rejected by the system

Data collected in Ahmed and Traore (2014) is used in this experiment. We empir-
ically configured the test data to simulate attacks on users’ machines using other 
users’ data. The data is engineered so that 2 % of the data are attacks. The confi-
dence ratio (CR) is calculated for each session, and session length is also recorded. 
Sessions are classified into the following categories:

 1. Legitimate user’s session (high CR)
 2. A real attack

-Fly time Digraph
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Fusion
Component
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from
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Fig. 3.3 Calculation of a trusted user signature
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 3. A false positive (a legitimate session incorrectly classified as an attack, low CR) 
(Fig. 3.4)

The test is repeated for both of the normal Past Activities Unaware (PAU) model 
and the new Past Activities Aware (PAA) model.

3.4.2  Results

Figure 3.5 shows the ROC curves obtained for both of the PAU and PAA models. 
For the PAU model, the ERR point occurs at 2.46 % for FAR and 4.64 % for 
FRR. The PAA model introduces a significant performance increase with the EER 
is at 0.1 % and 0.1 % for FAR and FRR, respectively.

3.5  Conclusion

Behavioral biometrics such as mouse and keystroke dynamics are established tech-
nologies that have several benefits over physiological biometrics. They can be used 
unobtrusively in both static and dynamic authentication modes without requiring 
special hardware sensors. Utilizing such biometrics in fraud detection helps in clos-
ing the gap associated with proving the relation between the nature of the user’s 
activities and his/her real identity. In this chapter, we proposed a new framework for 
fraud detection that takes the biometric factors in consideration. The framework 
makes fraud detection decisions based on data collected from past periods of activi-
ties. Such technique enhances the accuracy when compared to typical past unaware 
detection techniques.

Legitimate
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Detected
Attack
SessionLow CR classified as

a False Positive

High CR
High CR

Low CR

Time

CR

Fig. 3.4 Three categories of sessions included in the test
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Chapter 4
The Hardware Trojan System: An Online 
Suite of Tools for Hardware Trojan Analysis

Nicholas Houghton, Samer Moein, Fayez Gebali, and T. Aaron Gulliver

4.1  Introduction

The field of hardware security is relatively new and has begun to develop a level of 
sophistication that requires more structure. The variety of techniques employed 
across the spectrum of integrated circuit (IC) designs results in a diversity of struc-
tures, behavior, and insertion points for hardware trojans. Thus, most detection 
methods have been designed to detect specific trojans. To date, no method capable 
of detecting even some of the known trojans has been developed.

Several hardware trojan taxonomies have been proposed (Wolff et al. 2008; Rad 
et al. 2008; Karri et al. 2010; Wang et al. 2008). In Wolff et al. (2008), trojans were 
organized based solely on their activation mechanisms. A taxonomy based on the 
location, activation, and action of a trojan was presented in Rad et al. (2008) and 
Karri et al. (2010). However, these approaches do not consider the manufacturing 
process. Another taxonomy was proposed in Wang et al. (2008) which employs five 
categories: insertion, abstraction, activation, effect, and location. While this is more 
extensive than previous approaches, it fails to account for the physical characteris-
tics of a trojan. Thus, a comprehensive taxonomy was proposed in Moein et  al. 
(2015a) which considers all attributes a hardware trojan may possess.

The trojan attributes provide information such as how it entered the host circuit, 
its effect, and where in the design it is located (Moein et al. 2015a). They can also 
be used to determine which detection methods are effective against a trojan (Moein 
et al. 2015b). In this chapter, two effective trojan analysis techniques are described. 
However, both require laborious computations which are prone to error when 
performed by hand. To aid in the universal acceptance of these techniques, an online 
suite of tools was developed. The Hardware Trojan System (HTS) automates the 
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necessary computations, provides centralized documentation and reference materials, 
and maintains a database to store user data. In the future, this database can be used 
as a resource for developers and attackers to search existing Trojans and detection 
methods.

The contributions of this chapter are as follows:

 1. A technique for describing hardware trojans based on their attributes is 
presented.

 2. A means of evaluating the effectiveness of both trojans and detection methods is 
devised.

 3. An online system which automates the analysis techniques is described.
 4. A database to store known hardware trojans and detection methods is 

developed.

The remainder of this chapter is organized as follows: Sect. 4.2 describes the analysis 
techniques. Section 4.3 presents the applications developed to automate these tech-
niques, and the online system is described. Section  4.4 demonstrates the use and 
effectiveness of the system through a case study, and finally Sect. 4.5 provides some 
concluding remarks.

4.2  Hardware Trojan Analysis Techniques

The Hardware Trojan System (HTS) analyzes trojans based on the comprehensive 
hardware trojan taxonomy proposed in Moein et al. (2015a). This taxonomy is com-
prised of 33 attributes organized into eight categories as shown in Fig. 4.1. These 
categories can be arranged into the following four levels as indicated in Fig. 4.2:

 1. The insertion (chip life cycle) level/category comprises the attributes pertaining 
to the IC production stages.

 2. The abstraction level/category corresponds to where in the IC abstraction the 
trojan is introduced.

 3. The properties level comprises the behavior and physical characteristics of the 
trojan.

 4. The location level/category corresponds to the location of the trojan in the IC.

The properties level consists of the following categories:

• The effect describes the disruption or effect a trojan has on the system.
• The logic type is the circuit logic that triggers the trojan, either combinational or 

sequential.
• The functionality differentiates between trojans which are functional or 

parametric.
• The activation differentiates between trojans which are always on or triggered.
• The layout is based on the physical characteristics of the trojan.
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4.2.1  Trojan Classification

In order to develop a classification of hardware trojans, the relationships between 
the attributes were examined in Moein et al. (2015a) using a 33 × 33 matrix R which 
can be expressed as
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Fig. 4.1 The 33 attributes of the hardware Trojan taxonomy in Moein et al. (2015a)

Fig. 4.2 The hardware Trojan levels (Moein et al. 2015a)
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The entries on the diagonal represent submatrices which describe how the attributes 
in each layer are interrelated. For example, submatrix R2 describes the relationships 
in the abstraction layer and is given by

 

The submatrices not on the diagonal describe the relationships between layers. 
For example, submatrix R23 describes how the abstraction attributes relate to the 
property attributes and is given by

 

An entry r(i, j) in R is a binary value where a 1 indicates that attribute i can lead 
to attribute j and is 0 otherwise. For example, r(7,15) = 1 indicates that a trojan in 
the register transfer logic (RTL) (attribute 7) can cause a denial of service attack 
(attribute 15).

A hardware trojan must be observed to determine its attributes and these are used 
to form R. Then a systematic process of scanning the rows and columns can be used 
to gain insight into the characteristics of the trojan. This process is described in 
detail in Moein et al. (2015a). The observed attributes can be used to determine the 
possible locations of a trojan within the design and in which manufacturing phases 
it can be inserted. Conversely, the phase a trojan was inserted can be used to deter-
mine which abstraction levels are vulnerable, the trojan properties, and what 
 locations can be compromised. To easily understand the characteristics of a trojan, 
a directed graph is generated from R. Attributes are represented by nodes and their 
relationships by edges.

Consider a trojan that has the following attributes:

• Causes denial of service (DoD) (attribute 15)
• Composed of combinational logic (attribute 17)

N. Houghton et al.
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• Functional (attribute 18)
• Externally triggered (attribute 22)

A visual examination of R leads to the graph drawn in Fig. 4.3. If it is determined 
that it is not possible to insert the trojan in the design phase (attribute 2), then attri-
bute 2 can be removed from the graph. Without a direct connection to attribute 1, 
attributes 3, 4, and 5 must also be removed. Further, without attribute 2 the trojan 
can only be inserted in the specification phase (attribute 1).

4.2.2  Trojan Evaluation

Due to the complexity of IC designs, hardware trojans are typically unique. As a 
consequence, detection methods developed thus far have been developed to detect 
specific trojans. The diversity in both trojans and detection methods makes it diffi-
cult to evaluate, compare, and organize them. A means of evaluating hardware tro-
jans and detection methods based on the eight attribute categories was proposed in 
Moein et al. (2015b). A trojan or detection method will possess some combination 
of attributes from each of the eight categories, and each combination is assigned two 
numerical values. The value I is used to identify the combination, while the value C 
is used to denote the severity (for a trojan) or coverage (for a detection method) of 
the combination. Tables of I and C values for the eight categories were presented in 
Moein (2015). For example, the logic type category describes the circuit logic 
which activates the trojan. Table 4.1 shows the possible attribute combinations for 
this category and the corresponding values of IL and CL.

The I and C values from the category tables are arranged into identification and 
severity/coverage vectors, respectively. For a trojan, the vectors are denoted as IT 
and CT, and for a detection method, they are denoted as ID and CD. Thus, an identi-
fication vector is

 I I I I I I I I I= R A E L F C P O  

Fig. 4.3 The directed 
graph corresponding to a 
trojan
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where IR, IA, IE, IL, IF, IC, IP, IO are the {insertion, abstraction, effect, logic type, func-
tionality, activation, physical layout, location} category identification values, 
respectively, and a severity/coverage vector is

 C C C C C C C C C= R A E L F C P O  

where CRCACECLCFCCCPCO are the {insertion, abstraction, effect, logic type, function-
ality, activation, physical layout, location} category strength values, respectively.

Table 4.2 provides a comparison of two hardware trojans. Trojan A has a lower 
severity than Trojan B in the insertion category, denoted by CR. This indicates that 
Trojan B can be inserted in more stages of the manufacturing process than Trojan 
A. Table 4.3 gives a comparison between two detection methods. The method in 
Potkonjak et al. (2009) has a higher coverage in the effect category (CE) than the 
method in Narasimhan et al. (2013), indicating that it can detect more trojans based 
on their effects.

4.3  The Hardware Trojan System

The Hardware Trojan System (HTS) is a dynamic website built to implement hardware 
security applications. In particular, applications have been developed to automate 
the techniques described in Sect. 4.2.

Table 4.1 Logic type 
category values

Attributes IL CL

Sequential (16) 2 2
Combinational (17) 1 1
Both (16 and 17) 3 3

Table 4.2 Identification and severity vectors for two hardware trojans

Technique Parameters (IP) Severity (CP)
IR IA IE IL IF IC IP IO CR CA CE CL CF CC CP CO

Trojan A (Moein 
et al. 2015a)

2 6 2 1 2 1 7 7 2 6 4 1 2 1 5 2

Trojan B (Moein 
et al. 2015a)

3 3 1 2 1 2 8 1 3 3 2 2 1 3 6 1

Table 4.3 Identification and coverage vectors for two hardware trojan detection methods

Technique Parameters (IP) Coverage (CP)
IR IA IE IL IF IC IP IO CR CA CE CL CF CC CP CO

Potkonjak 
et al. (2009)

3 3 B 1 2 4 7 V 3 3 7 1 2 3 5 5

Narasimhan 
et al. (2013)

3 3 1 2 1 4 7 V 3 3 2 3 1 3 5 5
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4.3.1  The Classification Tool

To investigate a trojan, users select attributes via an easy-to-use user interface (UI). 
Once the attributes are chosen, the tool performs the necessary analysis using matrix 
R and displays the resulting directed graph. Suppose an attacker decides to insert 
the trojan described in Sect. 4.2.1. The tool provides the directed graph shown in 
Fig. 4.4 from the selected attributes, which eliminate the need for manual analysis 
of the matrix. Note that Fig. 4.4 is the same as Fig. 4.3 which was constructed by 
hand. This verifies the results obtained using the classification tool.

If the design phase (attribute 2) takes place in a secure location, an attacker will 
conclude that it is not possible to insert the trojan in this phase. To determine the 
possible trojans that can be inserted without access to the design phase, attribute 2 
should be removed from Fig.  4.4. The classification tool provides an attribute 
removal feature. When an attribute is removed, the directed graph is recreated based 
on the new matrix R. The result of removing attribute 2 is shown in Fig. 4.5. The 
new graph clearly shows that compromising the design is still possible, but it must 
be done from the specification phase (attribute 1). The possible locations remain the 
same, but the potential effects of the trojan have changed. Without access to the 
design phase (attribute 2), the trojan cannot be composed of combinational logic 
(attribute 17) or be externally triggered (attribute 22). Even though the attributes 
change in functionality (attribute 12) and always on (attribute 20) were not selected, 
the tool determined that these attributes are possible.

The classification tool automatically generates a severity/coverage vector for use 
with the evaluation tool described in Sect. 4.3.2. The identification and severity vectors 
describing the trojan in Fig. 4.4 are shown in Fig. 4.6. The trojan classification data is 
saved in the database along with the identification and severity/coverage vectors.

Fig. 4.4 The directed graph obtained by analyzing a hardware trojan with the classification tool
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4.3.2  The Evaluation Tool

The HTS provides a series of drop-down lists to create a coverage vector for a new 
detection method. This vector is stored in the database along with a description of 
the method. The evaluation tool provides a simple means of searching the database 
for previously saved detection method coverage vectors and trojan severity vectors. 
Once a detection method and a trojan have been selected, a user can use the compare 
button to perform a comparison of the coverage and severity vectors. For example, 
the results of a comparison are shown in the bottom row of Fig. 4.7. A 1 is displayed 
when the detection method has a value greater than or equal to the corresponding 
trojan value and a 0 otherwise. The zeros in Fig.  4.7 indicate that the detection 
method may fail to detect the trojan based on the insertion point (IR) and the logic 
type (IF).

While the evaluation tool can be employed for individual comparisons, its greatest 
potential is with a centralized database. Currently the tool only provides compari-
sons of trojans and detection methods entered by the user. Universal adoption of the 
HTS will provide a centralized database of all known detection methods and trojans. 

Fig. 4.5 The directed graph after attribute 2 is removed

Fig. 4.6 The identification and severity vectors generated by the classification tool for the trojan 
in Fig. 4.4
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This database will allow the evaluation tool to provide extensive comparison results. 
Attackers can use this information to design trojans, and defenders can use it to 
develop security solutions.

4.3.3  The Web Environment

The HTS was designed as a web utility for portability and easy distribution. The 
application server performs all of the computations and generates page markup to 
minimize the burden on client side browsers. It communicates directly with a remote 
database used to store user account information and application data (attributes, 
categories, and matrices). Both the application server and the database are hosted on 
the Microsoft Azure Cloud platform (Microsoft 2010). This improves reliability, 
portability, and flexibility, provides on-demand resources that are automatically 
managed for scalability requirements, and allows for maintenance to take place 
anywhere. Figure 4.8 gives a block diagram of the HTS. The application server and 
database are both hosted on the Azure Cloud (Microsoft 2010). The entity frame-
work provides communication via efficient and secure SQL statements, while Azure 
provides dynamic resource allocation. When the system is not being used, the 
architecture is stored in memory to reduce costs. When a client browser attempts to 
connect to the system, the application server and database are reactivated. Requests 
and responses are passed between the client side browsers and application server via 
JavaScript Object Notation (JSON) strings. This allows for complex object-oriented 
logic to be processed across the network in a simple and efficient manner.

The technologies employed are as follows:

• Azure: The Microsoft Cloud System (Microsoft 2010).
• ASP.NET Web Form: A user interface focused, event-driven model of the .

NET framework. It allows powerful data binding, separation of server-client 

Fig. 4.7 A comparison of coverage and severity vectors
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side activities, a native security structure, and enhanced client performance 
(Microsoft 2002).

• Entity Framework: An object-relational database mapper designed for the .NET 
framework. It provides a library of high-speed SQL statements wrapped in C# 
commands to simplify development and ensure performance (Microsoft 2008).

• D3.js: A JavaScript library for visualizing data with HTML, SVG, and CSS 
(Microsoft 2011).

Figure 4.9 provides an overview of the structure of the HTS website. The home, 
contact, about, and application information pages are accessible to all traffic. The 
application information page contains three sub-pages providing information on 
each of the primary applications. Users are required to create an account and be 
logged in to access the remainder of the website. Email confirmation is used to 
verify user accounts.

4.4  Case Study

Consider the simple hardware trojan described in Liu et al. (2011). This involves an 
IC design which contains an arithmetic unit that performs a mathematical operation. 
The output of this operation is transmitted on the result line in Fig. 4.10.

Suppose an attacker wishes to modify this result when two functional units have 
been activated in a particular order. Inputs a and b receive signals from the two tar-
geted units. If a ≠ b, the counter is incremented, and if a = b, the counter is decre-
mented. When the count reaches 127, the 8-bit counter outputs a value of 1 causing 
the inverse of the arithmetic result to be transmitted. The trojan in Fig. 4.10 possesses 
the attributes listed in Table 4.4.

Fig. 4.8 Block diagram of the Hardware Trojan System (HTS)
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4.4.1  Classification Tool

Suppose a test engineer discovers unusual behavior in a chip under test (CUT). 
After analysis it is discovered that the additional logic shown in Fig. 4.10 has been 
inserted into the design. To better understand the characteristics of this trojan, an 
examination is performed which determines that it possesses the attributes listed in 
Table 4.4. These attributes are selected using the classification tool, and the subsequent 
analysis returns the graph shown in Fig. 4.11.

Fig. 4.9 An overview of the website architecture

Fig. 4.10 A sequential counter hardware trojan (Liu et al. 2011)
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Figure 4.11 indicates that the trojan could have been inserted in any stage of the 
IC life cycle. If the test engineer believes that the facility used to fabricate the chip 
can be trusted, then it is very unlikely that the trojan was inserted during fabrication. 
With this assumption, fabrication (attribute 3) can be removed from the graph. 
Using the HTS classification tool attribute removal feature, attribute 3 can be deleted 
which results in the graph shown in Fig. 4.12.

This indicates that if the fabrication stage (attribute 3) is trusted, then the design, 
testing, and assembly stages (attributes 2, 4, and 5) can also be trusted. Thus, if the 
attacker can only access the specification stage (attribute 1) as suggested by 
Fig. 4.12, then only the following properties could have been observed: change in 
functionality (attribute 12), denial of service (attribute 15), functional (attribute 18), 
and always on (attribute 20). It then becomes apparent that the assumption that the 
fabrication phase could be trusted must have been wrong. In order for the trojan to 
possess the observed attributes, the attacker must have had access to the fabrication 
stage (attribute 3).

Table 4.4 The observed 
trojan attributes

Attribute Category

Change in functionality (12) Effect
Sequential logic (16) Logic type
Functional (18) Functionality
Internally triggered (21) Activation
Small (24) Physical layout
Augmented (26) Physical layout
Clustered (27) Physical layout

Fig. 4.11 The directed graph for the sequential counter trojan in Fig. 4.10
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4.4.2  Evaluation Tool

Consider an attacker who wishes to attack a system with the trojan shown in Fig. 4.10. 
The attacker evaluates the trojan and extracts the attributes listed in Table 4.4.

These attributes are then input to the HTS classification tool which returns the 
trojan graph shown in Fig. 4.11. The identification and severity vectors are also gen-
erated as outlined above and given in Fig. 4.13. The classification tool provides a 
save function which stores the graph, identification, and severity vector of the trojan. 
Suppose the attacker is a disgruntled employee at the company designing the IC. 
Being familiar with the manufacturing process, the attacker knows that the test engi-
neers use a trojan detection method based on the path delay (Kumar and Srinivasan 
2014). The tool creates the coverage vector given in Table 4.5.

To decide whether or not the attack is viable, the attacker uses the HTS evaluation 
tool to perform a comparison between the desired trojan and the detection method 
employed. The evaluation tool creates a new method feature and produces the iden-
tification and coverage vectors shown in Fig. 4.14. The trojan severity is selected 
from the database and the comparison performed as shown in Fig. 4.15.

Fig. 4.12 The sequential counter trojan graph after removal of attribute 3

Fig. 4.13 The identification and severity vectors for the sequential counter trojan
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As described in Sect. 4.3.2, the HTS evaluation tool displays a value of 1 in 
categories where the method is capable of detecting the trojan and a 0 otherwise. 
Figure 4.15 indicates that the detection method may fail to detect the trojan with 
regard to its insertion point, abstraction level, logic type, and activation.

4.5  Conclusion

A recently developed comprehensive hardware trojan taxonomy can be used to analyze 
both hardware trojans and detection methods. The complexity of the corresponding 
techniques motivated the development of online software tools to automate them. 
The resulting Hardware Trojan System (HTS) is a powerful and reliable means of 
evaluating and comparing trojans and detection methods. The design of the system 
was discussed, and the use and effectiveness of the tools were demonstrated with a 
case study.

Table 4.5 Identification and coverage vectors for the detection method in Kumar and Srinivasan 
(2014)

Techniques Parameters (IP) Coverage (CP)
IR IA IE IL IF IC IP IO CR CA CE CL CF CC CP CO

Kumar and 
Srinivasan (2014)

4 4 5 1 3 1 8 V 4 4 6 1 3 1 6 5

Fig. 4.14 The identification and coverage vectors for the chosen detection method

Fig. 4.15 A comparison of the sequential counter trojan and the detection method

N. Houghton et al.
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The development of data mining algorithms and an appropriate user interface for 
statistical analysis of the database is left for future work. The implementation of 
these features will provide a quick and efficient means for designers to evaluate the 
state of hardware security. Defenders concerned about a particular vulnerability will 
be able to quickly browse available detection methods for an appropriate solution. 
An attacker who has found a weakness in a system can browse for existing trojans 
that can be used.
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Chapter 5
Combining Mouse and Eye Movement 
Biometrics for User Authentication

Hongwei Lu, Jamison Rose, Yudong Liu, Ahmed Awad, and Leon Hou

5.1  Introduction

Biometric authentication verifies a user based on its inherent, unique characteristics—
who you are. In addition to physiological biometrics, such as the fingerprint, face, 
and iris, behavioral biometrics has proven useful in authenticating a user. As an 
emerging behavioral biometric, mouse dynamics, with their unique patterns of 
mouse movements, aims to address the authentication problem by verifying users 
on the basis of their mouse operating style. There are studies such as a mouse 
dynamics analysis framework that uses mouse gesture dynamics for static authenti-
cation (Sayed et al. 2013), a new form of behavioral biometrics based on mouse 
dynamics using artificial neural networks (Ahmed and Traore 2007), and a mouse 
movement behavioral biometric that involves image feature extraction using genetic 
and evolutionary computations (GECs) (Shelton et al. 2013). Besides these, there 
are studies about using eye movement tracking as behavioral biometrics, for 
instance, a score-level fusion method for eye movement biometrics (George and 
Routray 2015), a decision tree-based personal authentication using eye movement 
tracking (Dhingra et al. 2013), and an information fusion-based biometric identifi-
cation via eye movement scan paths in reading (Holland and Komogortsev 2011). 
All these studies show a promising use of mouse movement tracking (MMT) and 
eye movement tracking (EMT) in behavioral biometrics.

Despite of the promising future, there is still a long way to go for using MMT and 
EMT for behavioral biometrics in practice. Based on a research by Chen et al. (2001), 
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there is an 84–88 % correlation between eye and mouse movement. Furthermore, a 
more recent research shows this correlation depends on the length of experiment time, 
personal browsing habits, and user’s cursor behavior, such as inactive, examining, 
reading, or moving to perform a click (Huang et al. 2012). Based on the understanding 
for these studies, we make an assumption that using both MMT and EMT for behav-
ioral biometrics will have some advantages compared to only using MMT or EMT 
individually. However, to our knowledge no such research has been published.

In this research, we present a behavioral biometrics model for personal authenti-
cation using combined features of MMT and EMT.  The interface we used is 
designed to perform moving and click actions in eight directions for participants. 
Therefore, MMT and EMT will be able to correlate to each other well. The draw-
back of this system is the requirement of the support of special hardware, an eye- 
tracking device. The general idea of the system is to exploit the features from both 
the mouse movement data and the eye movement data and see how well a user veri-
fication system can be trained with those features. With the supervised learning 
setting, we first collect both types of data from a group of participants and process 
the raw data to remove noise and incomplete data points. Features are then extracted 
from the cleaned data, and a set of learning methods are trained with those features 
including a multi-class classification system, a binary classification system, and a 
neural network-based regression model. Experiments show that the neural network- 
based model works the best on the large classification task. In the following, we will 
report the related work and our system in more details.

5.2  Related Work

This research is on the basis of previous researches. Some behavioral features used 
in the work are inspired by some related work.

5.2.1  Previous Research on Mouse Movements

As a pioneer in this field, Ahmed and Traore (2007) presented an experiment using 
mouse movement as behavioral biometrics to identify a user. It achieved a false accep-
tance rate (FAR) value of 2.4649 % and a false rejection rate (FRR) value of 2.4614 %. 
Some new features such as movement speed and movement direction are applied to 
model behavior. This research brings idea on modeling behavior and choosing use-
ful features for experiment related to mouse movement. In Jorgensen and Yu (2011), 
the authors reviewed existing approaches for mouse movement behavioral biomet-
rics and researched the impact of environmental variables on these approaches. The 
researchers believe result of existing approaches is unlikely to be accurate under 
controlled environmental variables and certain common remote access scenarios. 
Therefore finding approaches to lessen impact of environmental variables such as 
combining mouse dynamic with other types of behavioral biometrics will be a likely 

H. Lu et al.



57

direction of a behavioral biometric research. In Zheng et al. (2011), the researchers are 
trying to build a system that is robust and has quick response by using point-to-point 
angle-based metrics of mouse movement to build a user identification system. They 
achieved FAR and FRR values of 1.3 %. It shows that angle is stable and helpful met-
rics in behavior biometrics. In a more recent work, Shelton et al. (2013) introduced a 
new approach that is called genetic and evolutionary feature extraction (GEFE) for 
feature extraction from image of mouse movement, which provides a good idea in 
relating feature extraction to image processing.

5.2.2  Previous Research on Eye Movements

Research by Holland and Komogortsev (2011) described how to utilize a fusion 
algorithm on standard features of eye movement. The standard features include fixa-
tion count, average fixation duration, and average vertical saccade amplitude. This 
fusion algorithm assigns each feature a weight, and then a similarity measure is cal-
culated for user identification. Other features in eye tracking are also helpful for 
behavioral biometrics. For instance, Rigas et al. (2012) used saccadic velocity and 
acceleration as eye movement features and applied a nonparametric statistical test to 
compare the distributions of these features. After that, a k-nearest neighbors classifi-
cation algorithm is applied for identification. It shows how to utilize the velocity and 
acceleration of eye movement as behavioral biometrics. In Holland and Komogortsev 
(2013), researchers investigate the effect of eye-tracking device setting on eye move-
ment biometrics. The result from their experiment suggests that an eye-tracking 
system with spatial accuracy less than 0.5° and at least 250 Hz temporal resolution is 
recommended for biometric purposes. That is, in order to conduct a behavioral 
biometrics experiment using eye-tracking technique, an appropriate hardware and 
software environment is helpful. In a recent research (George and Routray 2015) 
about eye movement behavioral biometric, features are extracted from fixation and 
saccade separately, and then calculated scores for features from each of them using 
two radial basis function (RBF) neural networks. Then a fusion method is applied to 
compute a final score based on the two scores. This research describes how to use 
neural network and fusion method in building a behavioral biometrics system. In our 
experiment, we also used a neural network-based fusion model.

5.3  Experiment Setting and Design

5.3.1  Experiment Setting

The computer we used is a desktop PC with Windows 8 operating system. There are 
two monitors where one is extended on the right of the other one. The resolution of 
both monitors is 1680 pixels by 1050 pixels. The eye-tracking device is SensoMotoric 
Instruments (SMI) iView RED-m with a sample rate of 60 Hz. The mouse is wired 
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USB laser one with a dpi of 1200. The eye tracker is mounted at the bottom of a 
monitor screen horizontally, and the experiment tool will run on this monitor. 
Figure 5.1 shows the setup.

5.3.2  Participants

Experiment data is collected from 40 participants. Sixteen of them are female and 
24 of them are male, and their age ranges from 18 to 58, with an average of 25. Their 
average number of years of using computer is 16. There are seven of them wearing 
glasses or contact lenses when performing the experiment.

5.3.3  Experiment Design

Figure 5.1 shows the user interface that is designed for user data collection. It is full 
screen and has nine buttons on it of which one is located in the center and the other 
eight are evenly distributed around the screen clockwise starting on the center top. 
The eight surrounding buttons indicate eight directions. This design is similar with 
the one used in Ahmed and Traore (2007). The center button is the start button. 
When a participant clicks on it, the program will start recording mouse and eye 
movement. The eight surrounding buttons are ending buttons. Clicking on them will 
notify the program to stop recording. The process that the mouse cursor and eye 
move from the center button to an ending button of a direction is an action. It means 
the participant moves his/her eyes toward one direction.

Every time an action is performed, a mouse data file and an eye data file will 
be generated at the same time. Each line of data in these files will be a time stamp 
followed by x and y coordinates relative to the upper left corner of the screen. All 

Fig. 5.1 Experiment setup and user interface that’s used to collect the data
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these lines together in a file will be a path of the mouse or eye movement toward a 
direction. Below is an example that shows three lines of a data file where the first 
column is a time stamp, and the second and third columns correspond to the x and y 
coordinates at that time stamp, respectively:

24125824134 844.00 470.00
24125824345 846.00 456.00
24125840298 848.00 441.00

5.3.4  Experiment Procedure

When the eye-tracking device is connected to the computer and the experiment 
program is ready, the participant is asked to sit down in front of the monitor and 
eye-tracking device. They may be asked to adjust the sitting position to make sure 
the eye-tracking device can detect his/her eyes properly. Then a five-point calibra-
tion step is performed. Calibration is followed by a validation step to validate the 
eye positions. A valid position is measured by the spatial accuracy that is less than 
0.5 for both x and y coordinates. The next step is to run the interface to collect data 
(see Fig. 5.1). Participants are asked to click buttons in order of 1 to 8, e.g., [start 
button] → [button 1] → [start button] → [button 2] → [start button], and so on. 
Participants are asked to repeat this process ten times. Once a participant finishes 
this part, he/she will be asked to perform the second part of the experiment, which 
is clicking buttons in random order, e.g., [start button] → [2 button] → [start 
button] → [8 button] → [start button] → [2 button], and so on. One hundred actions 
are performed in the order from direction 1 to 8. In both parts, the eye movement 
data and mouse movement data are collected simultaneously.

5.4  Data Processing and Feature Extraction

5.4.1  Data Alignment

Since the eye movement data and mouse movement data are collected via different 
programs, they are generated in different frequency. The eye data is collected in a 
higher frequency. To extract the combined features, these two sets of data have to be 
aligned. There will be eight pairs of data files that need to be aligned given the data 
is collected in eight directions. The alignment algorithm takes a mouse data file and 
the corresponding eye data file as input each time. The alignment is based on each 
time stamp of the eye movement, because in one time period, the eye movement 
data has a higher density. The alignment algorithm uses a threshold, which is a time 
range, to find a corresponding mouse movement data that falls in that time range 
and then appending the mouse movement data to the end of the eye movement data 
as one line in the new aligned data file. This process is done on each pair of the eight 
file pairs and generates files that only contain aligned data.
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5.4.2  Data Cleaning

Due to reasons such as the inaccuracy of eye-tracking device, or in the case of 
blinks, or an accidental wrong operation from a participant when doing experiment, 
incorrect, incomplete, or improperly formatted data would be generated. An example 
of incorrect data is that some coordinate values are negative. An example of incom-
plete data is that a group of data used to indicate an eye or mouse movement path 
only contains few coordinates. The goal of data cleaning is to remove such incor-
rect, incomplete, or improperly formatted data. Our data cleaning process is done in 
three stages.

• Stage 1: Cleaning on raw data

After data collection, remove data files that only contain few coordinates or are 
empty. If a mouse data file is deleted, the corresponding eye data file will also be 
deleted and vice versa.

• Stage 2: Cleaning during data alignment

In the process of data alignment, coordinates that have incorrect values, such as 
negative or empty values, or improperly formatted values are removed. After 
removing these data, some data file may become empty or incomplete, so check 
and remove these incomplete data files.

• Stage 3: Cleaning before feature extraction

For features extraction, some data are redundant and need to be removed. When 
the eye and mouse move from the start point to the end point during the experi-
ment, if either the eye or mouse has arrived at the end point but its coordinates 
are still being recorded after this arrival, these data are redundant and should be 
ignored or removed.
An algorithm is applied to this step. It finds the first point that enters the ending 

range by following the path from the start point. The ending range is a rectangle 
area that is centered by the ending button, whose coordinates are constants. All the 
coordinates recorded after that first entering point will be removed.

After removing redundant data, some aligned data file may become empty or 
incomplete, so check and remove these incomplete data files again.

In some cases, even though a data file contains lots of coordinates, the path based 
on these coordinates is very short. This indicates that these data points cluster in a 
small area, and the movement path is incomplete, so this data file needs to be 
removed.

Another algorithm applied to this step is to first check the moving distance of 
eye and mouse. If any one of them is less than a threshold, remove the data file 
indicating this path. The distance is calculated using the Cartesian distance 
formula.
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5.4.3  Data Visualization

Data visualization is useful for observing what the data looks like, especially in 
the process of data cleaning. It visualizes aligned eye and mouse movement data. 
The tool used for visualization simply connects all coordinates toward one direction 
and displays the paths for eye movement and mouse movement in different color.

Figure  5.2 shows all the movements of eye and mouse from one participant 
where (a) and (b) show the visualization result before and after the data cleaning is done. 

Fig. 5.2 The visualization of eye and mouse movement from one participant (a) before data cleaning 
and (b) after data cleaning
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The blue line indicates eye movement and red line indicates mouse movement. Data 
visualization provides us an easy way to observe the difference of the eye and mouse 
movement paths among different participants. When moving toward one direction, 
the curve of mouse or eye movement path from one participant is different with the 
curve from other participants. For example, when comparing data from two partici-
pants moving the mouse to same direction, one’s curve has a bell shape toward one 
side, another’s curve has a bell shape toward the opposite side. Another difference 
is the combination of eye movement path and mouse movement path. For instance, 
some participant’s eye and mouse movement paths are very close or have some 
overlap, but some of those paths from other participants are obviously apart. In 
addition, the delay of eye and mouse paths is different among participants. The start 
points of the eye and mouse movement paths are different. So there is a delay 
between them. It happens because when the start button is clicked, eyes may move 
faster than mouse cursor or vice versa.

5.4.4  Feature Extraction

Features are selected to characterize eye and mouse movement. In our experiment, 
eight features are defined. Each data point can be represented in these eight features. 
Considering the eye gaze and mouse cursor move from the start point to an end 
point as one action toward a direction, and one data point is generated from one 
action, these eight features are eye speed, mouse speed, ratio of eye speed and 
mouse speed, eye angle, mouse angle, deviation of eye angle and mouse angle, 
delay time, and direction.

Eye speed. It is used to measure how fast eyes move when eye gaze moves from start 
point to end point. It is an average speed that is calculated by dividing the distance 
eye moves by the time this movement takes. In each action, the distance and the 
time begin from the start point and stop when the eye moves into the rectangle area 
of end point as described previously. The distance and the time period are calculated 
by getting the difference between the end position and start position of the eye gaze. 
Getting start position of eye gaze is straightforward. It is where the eye is when the 
start button is pressed. Finding end position is more complicated. It is the first eye 
gaze point that enters the area of end point, as described before. And eye movement 
data recorded after this point will be ignored. The reason why the end position of 
eye gaze is calculated this way is that starting and ending each action is controlled 
by the mouse. Since mouse cursor usually moves slower than eye gaze, at the time 
the eye gaze arrives at an end point the action hasn’t been stopped. When the mouse 
cursor arrives at the end point, eye gaze has been waiting in the ending area for some 
time. Therefore, this time period shouldn’t be taken into account for calculating eye 
movement speed.

Mouse speed. Mouse speed is calculated in the similar way as eye speed. That is to 
divide the distance that the mouse moves by the time this movement takes. The start 
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position is obtained by getting the mouse cursor position when a start button is 
clicked. The end position is obtained by getting the mouse cursor position when an 
end button is clicked. The speed will be calculated by the following equation:

 
speed

Distance

endTime startTime
=

-  
(5.1)

where end time is time stamp of end point and start time is time stamp of start 
point.

Ratio of eye speed and mouse speed. It is obtained by dividing the eye speed by the 
mouse speed.

Eye angle. The angle is defined as the acute angle between the vertical line and the 
line from start position to end position of eye movement. In order to get this angle, 
first thing we need to do is to find the start position and end position of eye move-
ment, which have been found for the feature of eye speed. After that, arctangent 
function is used to get the angle. Arctangent function needs an input which is the 
division of the horizontal distance and the vertical distance between end position 
and start position of eye movement. The equation is shown below:
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(5.2)

where θ is the angle, tan−1 is the arctangent function, (x0, y0) is the start point, (x1, y1) 
is the end point, and π is approximately as 3.14159.

Mouse angle. Mouse angle is calculated in the similar way as eye angle as shown 
in Eq. 5.2, except here the start position and the end position of mouse movement 
are used.

Deviation of eye angle and mouse angle. After getting eye angle and mouse angle, 
this feature is simply calculated by getting the difference of eye angle and mouse 
angle, which is given by:

 Deviation = -q q1 2  (5.3)

where θ1 is the eye angle and θ2 is the mouse angle.

Delay time. The delay time describes after the start button is clicked, how much later 
the mouse starts to move compared to the eye. It’s defined as the difference of eye 
movement start time and mouse movement start time in milliseconds.

Direction. Direction is a property of an eye or mouse action. It is indicated by a 
number from 1 to 8. Direction 1 is up, direction 3 is right, direction 5 is down, direc-
tion 7 is left, direction 2 is between direction 1 and direction 3, direction 4 is between 
direction 3 and direction 5, direction 6 is between direction 5 and direction 7, and 
direction 8 is between direction 7 and direction 1.
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5.5  Proposed Approaches

The features obtained from feature extraction are divided into two sets: one is used 
for training the model, and the other is used for evaluating the model. Three models 
including simple multi-class classification model, binary classification model, and 
regression model using fusion method are applied to implement the personal authen-
tication system. Learning algorithms used in these models are from Accord.NET 
Framework (http://accord-framework.net/). The latter two models are based on neu-
ral networks. In these two models, each user has an individual neural network that 
would answer whether data belongs to them or not. Each neural network uses a 
bipolar sigmoid function for its activation function, the Nguyen-Widrow algorithm 
Nguyen, D., & Widrow, B. (1990) for network initialization and the Levenberg-
Marquardt algorithm for training. The training data is normalized by centering it on 
0 and scaling it to fit in between −1 and 1 for each of the data values in the input 
vectors. The testing data is then normalized by using the same way of centering and 
scaling.

5.5.1  Simple Multi-class Classification Model

In this model, the training data from different participants are labeled with different 
numbers to model the task as a multi-class classification task. Decision tree, Naive 
Bayes, and resilient backpropagation are applied for training this model. Each learning 
algorithm takes as input the feature vectors of eight features as described in Sect. 5.4.4. 
The output is a number that identifies a user. Besides, the model is tuned by adjusting 
parameters for those learning algorithms using a small development set.

5.5.2  Binary Classification Model

This model is the first generation of assigning neural networks to each user. In this 
model, the training algorithm is Levenberg-Marquardt neural network. Each user/
class is assigned a neural network and the network is trained for binary classifica-
tion. Each Levenberg-Marquardt neural network uses bipolar sigmoid function as 
the activation function, which means the output values are between −1 and 1. The 
model is trained by feeding it with unlabeled feature data and target data and adjust-
ing parameters such as number of neurons, number of hidden layers, and threshold 
for bipolar sigmoid function to improve the performance.

This binary classification model uses the same feature vectors as the simple 
multi-class classification model. It is trained using an input layer of eight nodes 
which are features from feature vectors, a single hidden layer using a variable number 
of nodes and a single output layer that outputs a value close to 1 when the user should 
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be valid and a value close to −1 when the user should be invalid. To distinguish 
between users, a threshold between −1 and 1 is chosen to determine what should 
and should not be accepted. Each user’s network is trained using the entire training 
data set allowing for positive and negative examples to be provided.

5.5.3  Regression Model Using Fusion

This model is an improvement of the previous binary classification model. It is the 
second generation of assigning neural network to each user. It uses Levenberg- 
Marquardt neural network as learning algorithm and trains the neural network with 
three features: eye speed, mouse speed, and direction. It focuses on only positive train-
ing examples. To do this, each user was assigned two neural networks as shown in 
Fig. 5.3a. The first one takes the user’s mouse speed and direction of movement and 
outputs the user’s eye speed. The second one takes their eye speed and direction of 
movement and outputs the speed of the user’s mouse. There are two types of input for 
each network: 9-dimensional and 12-dimensional vectors. For the nine- dimensional 
vector, it has the first value being the speed, the nth value was a one where n is the 
direction the action is in, and all other values are zero. The 12- dimensional has three 
more input features, mouse angle, eye angle, and delay time, than nine-dimensional 
vector. These networks are tested by running an input through the network and then 
checking the amount of error the network has. If this error is below a threshold then 
it will accept a user. The threshold is first chosen globally for all networks, but this 
approach did not provide acceptable results, so we create a threshold for each user 
which provides much better results. The results of the two networks are combined in 
two ways. We test whether having both networks agree or only requiring one net-
work for acceptance is better. These two ways are two of fusion methods. The other 
two methods focus on only testing one network for a user.

Another feature implemented in this model is batching the input vectors into ses-
sions. A session is initially composed of a sample action from each of the eight 
directions and has a size of eight, but sessions containing two samples and four 
samples from each direction are also tested. To evaluate the sessions, the errors of 
each sample in the session are averaged and then the average is checked against the 
threshold. In our experiment, we collect data of ten sessions from each participant, 
and each session has eight actions (one from each direction), so the total session size 
should be 80 for each class. However, some actions are incorrect or incomplete (as 
mentioned in Sect. 5.4.2), so this causes some sessions become incomplete due to 
missing one or more actions. For instance, for session size 32, there are only 15 
classes with four samples from each direction.

Our data set contains data collected from 40 participants. This means there are 40 
classes totally. In simple multi-class classification model and binary classification 
model, we train and test it with all the 40 classes. In regression model using fusion, 
for session size 8 and 16, all 40 classes are tested, but for session size 32, since the 
complete sessions are insufficient, it is only able to test 15 classes.

5 Combining Mouse and Eye Movement Biometrics for User Authentication



66

5.6  Result and Discussion

The performance from the simple multi-class classification model is getting poor as 
there are more classes. The best performance is from a three-class classification model 
(see Table 5.1). Table 5.1 shows a test with three different learning algorithms using 

Fig. 5.3 Regression model with fusion. (a) Training: two neural nets per user. (b) Testing: fusion 
model
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80 % data for training and 20 % data for testing from a data set containing about 
3200 data points. When there are more classes, such as 40, the precision and recall 
drop down to less than 1 %. Because of this, we start to explore other approaches 
such as binary classification.

However, the binary classification model does not perform well either. For 
40-class classification, we train it with 40 % of data and test it with 60 % of data 
from data set. This model achieves very high false acceptance rate (FAR) and false 
rejection rate (FRR) values. We believe that this is because the amount of negative 
examples is so much higher than positive examples that they overpower the positive 
ones.

The regression model using fusion is an improved model on the basis of binary 
classification model and achieves a much better performance. The result of evalua-
tion for this model is displayed in Table 5.2. In this model, the fusion strategy refers 
to four types of input and output combination.

• Eye → mouse: only tests output from the network that maps eye to mouse speed.
• Mouse → eye: only tests output from the network that maps mouse to eye speed.
• Both &&: uses both networks and only accepts an input if both networks are 

accepted.
• Both ||: uses both networks and accepts an input if either network is accepted.

Table 5.2 shows the result of a test for 15 classes using 40 % of data for training and 
60 % of data for testing from the data set, and the leftmost column labeled “layers 
structure” shows the structure of the neural network. For example, 9-10-1 is a network 
that takes in nine values and has a hidden layer of ten nodes and outputs a single value. 
The networks that have nine inputs use direction and speed solely. The networks with 
12 inputs use the angle and delay time as well. There are four tests for each configura-
tion. The criteria of choosing thresholds for these tests is choosing ones that minimize 

Table 5.1 Result of three-class classification

Learning method Class Accuracy F-Score Precision Recall

Rprop 0 0.88 0.67 0.71 0.63
1 0.92 0.71 0.67 0.75
2 1 1 1 1
AVG 0.94 0.83 0.84 0.83

Naïve Bayes 0 1 1 1 1
1 1 0.94 0.89 1
2 0.96 0.93 1 0.88
AVG 0.99 0.96 0.96 0.96

Decision tree 0 1 1 1 1
1 1 0.94 0.89 1
2 0.96 0.93 1 0.88
AVG 0.99 0.96 0.96 0.96

Rprop resilient backpropagation
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equal error rate (EER) or maximize F-Score. The result indicates that the performance 
is best when we use neural network with four layers, 12 inputs, 24 neurons in second 
and third layers, and single output. The FAR achieves 8.2 % and the FRR achieves 
6.7 %. There are ten different layer structures for neural network that are tested in total, 
and the result shows that the layer structure of neural network does not have too much 
impact on performance. Comparing to only use of eye → mouse or mouse → eye, using 
both && and both || greatly reduce the value of FAR and have higher F-Score. In addi-
tion, session size has major impact on the performance.

Table  5.3 shows a best performance for each of the specified session size. 
Sessions with three different sizes are tested. As the results show, training the model 
with a session size 32 doubled the F-Score when training it with session size 8. The 
greatest session size in our tests is 32, and it produces best performance. Therefore, 
it makes sense to test a session size greater than 32. Due to the insufficiency of 
complete sessions, it is not able to perform a test with session size greater than 32. 
We expect to collect more data with complete sessions and test greater session size 
in future work.

Figure 5.4 shows the ROC curves for one of the 15 users. There are two curves. 
The mouse threshold curve shows the ROC when the eye threshold is held constant 
at its best value. Similarly the eye threshold ROC shows the curve when the mouse 
threshold is held constant at its best value. The curve appears jagged because the 
number of sessions tested at 32 samples per session was low causing the ROC curve 
to change in steps rather than smoothly.

5.7  Conclusion and Future Research Direction

The idea of applying combined MMT and EMT in behavioral biometrics is a new 
exploration in this area. Our experiment shows promising results of using the regres-
sion model using fusion on the combined data of MMT and EMT. We conclude that 
the eye-tracking biometrics, by combining with the mouse biometrics, are a viable 
method of authenticating a small population of user (n ≤ 15).

In the future, we plan to continue the study in three directions. Firstly, we would 
like to conduct a research where the goal is to compare the performance of 
combined MMT and EMT in behavioral biometrics with only using MMT or EMT. 
The current fusion model uses the features from both MMT and EMT, which makes 
it difficult to adapt it to the MMT-only or the EMT-only setting directly.

Table 5.3 Comparison of best performance of regression model in different session size

Session size Layers structure F-Score Precision Recall FAR FRR

8 12-100-1 0.388 0.464 0.494 0.057 0.506
16 12-50-1 0.637 0.713 0.698 0.042 0.302
32 9-10-1 0.745 0.707 0.933 0.086 0.067

Layer structure: structure of layers in neural network
It shows a best performance for each of the specified session size
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Secondly, we plan to collect more data of higher quality through a better designed 
data collecting user interface where a quality checking layer is added. This way we 
believe a higher quality set of data can be collected, and therefore the data cleaning 
component will have less impact on the amount of data we end up having. In addition, 
some new features need to be developed. For example, a feature that captures the 
curve of the path of eye and mouse movement would be a choice.
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Fig. 5.4 ROC curve of eye and mouse thresholds for one of the 15 users
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Finally, we would like to refine the current model in order to achieve a better 
performance. Splitting the threshold to be unique for each user makes much better 
results in the regression model using fusion, so it makes sense to build a new model 
that assigns a threshold for each direction a user has. In this new model, a neural 
network is trained for each of the eight directions a user does an action in. Once 
these neural networks are trained, a new fusion network will be created that takes as 
input the values that represented errors. The errors will be created by running all of 
the training data through the trained directional networks. The input for the fusion 
network is then an error in each direction the user does an action in for both map-
ping eye speed to mouse speed and mouse speed to eye speed. The output of the 
fusion network will be then a number between −1 and 1 representing the confidence 
that a user should be accepted. For testing, more data will be collected in order to 
test with a greater session size, and the evaluation will be based on the average 
confidence value rather than the average error.
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Chapter 6
Ensuring Online Exam Integrity Through 
Continuous Biometric Authentication

Issa Traoré, Youssef Nakkabi, Sherif Saad, Bassam Sayed,  
Julibio D. Ardigo, and Paulo Magella de Faria Quinan

6.1  Introduction

The last decade has witnessed a growing interest in the area of continuous authentication, 
with several publications being produced by the research community and diverse 
products being released by the industry. Continuous authentication consists of veri-
fying repeatedly the identity of a user throughout computing or online session, with 
the purpose of preventing identity fraud (Traore and Ahmed 2012).

Identity fraud can broadly be categorized in three classes: identity theft, identity 
sharing, and identity denial. Identity theft occurs when the identity of an unsuspected 
user is hijacked by a fraudster and used to conduct malicious activity pretending to 
be the legitimate user. Vehicles for conducting such attacks include phishing, social 
engineering, and password cracking.

Denial of identity occurs when an authorized individual conducts illegal actions 
and repudiates such actions when caught. Typically, this would consist of a mali-
cious insider who repudiates malicious actions associated with their identity.

Identity sharing, also referred to as identity gift, occurs when an authorized indi-
vidual willingly share their credentials with other users, in violation of established 
policies and regulations. Illegal password sharing can happen, for instance, in the 
financial industry to circumvent two-man rules, or for paid subscription services such 
as Netflix.
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A prominent area where illegal credential sharing occurs is online education. With 
current learning management systems (LMS), students can easily cheat in tests by 
giving their passwords to others who can take the tests on their behalf. While some 
Exam Management Systems (EMS) support strong authentication technologies using 
biometrics, such authentication occurs only statically at login time, this still opens up 
the door to the possibility for impersonation to occur after the initial login phase.

We propose to address this threat using continuous authentication using a multi-
modal biometric framework. The proposed multimodal framework combines three 
complementary biometric technologies: face, mouse dynamics, and keystroke 
dynamics. All three modalities are collected and processed transparently during the 
exam without requiring any predefined actions from the test taker.

The proposed framework has been implemented as one the core modules of a 
new comprehensive exam monitoring platform called ExamShield that has been 
released recently by Plurilock Security Solutions Inc.

The rest of the chapter is structured as follows. In Sect. 6.2, we discuss and 
summarize related work. In Sect.  6.3, we present the general architecture of the 
multimodal biometric framework and its integration in the ExamShield platform. In 
Sect.  6.4, we discuss the challenges involved in developing our continuous face 
biometric authentication scheme and give an overview of the approach taken to 
overcome these challenges. In Sect. 6.5, we make some concluding remarks.

6.2  Related Works

The protection of the integrity of online exams through continuous using biometric 
technologies is an emerging area of research with relatively few papers (Ahmed and 
Traore 2011). Furthermore most of the publications, actually, use static biometric 
authentication.

An example of such line of work has been authored by Ramu and Arivoli by 
proposing a two-layered approach to address the problem of online exam takers’ 
authentication (Ramu and Arivoli 2013). The two-layered approach combines key-
stroke biometric authentication and knowledge-based authentication. Although a 
biometric technology is used, exam participants are authenticated only statically at 
login time. As mentioned before, this is not enough to prevent cheating from occur-
ring during the course of the exam.

A departure from the above line of work is the approach proposed by Flior and 
Kowalski who introduced a proof-of-concept implementation of an online exam 
security system based on continuous keystroke biometric authentication (Flior and 
Kowalski 2010). In the proposed system, enrolment requires 500 characters col-
lected in a restricted setting (e.g., no backspace or delete is allowed). Furthermore 
enrolment is performed using fixed text (i.e., predefined text). Similarly, during the 
exam, verification occurs when 50 keystrokes with no deletion or significant pauses 
are generated. While the relatively small amount of samples required for enrolment 
and verification can be considered as a benefit of the system, the restricted nature of 
these processes will be a significant limitation in real-world deployment. It is not 
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very realistic to expect an exam to be performed without typos occurring on a regular 
basis. Furthermore no evaluation of the proposed work has been provided.

Monaco et al. investigated the use of keystroke dynamics and stylometry for con-
tinuous authentication of students during online exams (Monaco et  al. 2013). 
Stylometric analysis consists of determining the authorship of a piece of text or docu-
ment based on the writing style. Like keystroke dynamics, stylometry can be captured 
transparently using standard keyboard devices. In the proposed work, different studies 
were conducted using keystroke dynamic and stylometry separately and then by com-
bining both modalities. The combination of both modalities happens at the feature 
extraction level by concatenating the separate feature vectors into a combined key-
stroke-stylometry feature vector, which is then submitted to a common classification 
system. An advantage of this approach over the abovementioned approaches (from the 
literature) is the use of free text detection, which is crucial to effectively carry continu-
ous authentication. An important limitation, however, is the reliance on a closed-world 
assumption for authentication. The system relies on a closed population of students 
serving as basis to train all authorized users. Such assumption is flawed as students 
cheating in online exams do not necessarily do so with the involvement of other fellow 
students known to the system. Online cheating may involve sharing credentials with 
outside individuals totally unknown to the local authentication system.

Fayyoumi and Zarrad developed a prototype for an authentication engine for 
online exam using continuous face biometric recognition (Fayyoumi and Zarrad 
2014). The proposed approach was evaluated by obtaining experts’ feedback. 
Specifically feedbacks were obtained from eight e-learning instructors and 32 stu-
dents, through a survey using a five-point Likert scale. The proposed examination 
system includes a question bank which assists instructors in generating randomly 
different tests for the test takers. Enrolment is performed by capturing and storing 
images of the user. During the exam, the system tracks the face movement and com-
pares them to the original samples captured during enrolment. A warning is gener-
ated in case of suspicion of cheating. A key limitation with the proposed approach 
is how cheating is characterized. The system relies on facial movement to decide 
wherever there is cheating or not, which potentially can be a source of large number 
of false alarms. Furthermore, no evaluation of the performance of the biometric 
system was conducted. The evaluation was limited as mentioned to the perception 
of the survey participants mostly on qualitative aspects of the system.

Our proposed framework combines keystroke, mouse, and face biometrics for 
continuous authentication and does not rely on a closed-world assumption for iden-
tity verification. This is made possible by relying only on positive training during 
enrolment for each of the modalities.

6.3  Online Exam Security: The ExamShield Platform

In this section, we present the ExamShield platform and introduce the general architecture 
of the underlying multimodal biometric framework.
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6.3.1  The ExamShield Platform

ExamShield is a virtual exam center that integrates seamlessly multiple hetero-
geneous services (multi-biometric authentication, video streaming and record-
ing, exam creation, storage, delivery, and marking). The exam center has been 
developed as a web portal that can be deployed on the cloud or on premise at the 
academic institution.

The high-level architecture of ExamShield, depicted in Fig. 6.1, includes the fol-
lowing major services:

 1. Exam Management Service provides essential exam management features such 
as question randomization for different test takers, management of navigation 
between exam sections, and exam policy enforcement (e.g., exam duration, number 
of attempt, break time, etc.).

 2. Exam Environment Monitoring Service conducts video/audio monitoring of the 
test taker and surrounding environment using ordinary camera and microphone.

 3. Continuous Authentication Service continuously validates the identity of the 
test taker throughout the exam using a multimodal biometric platform. The plat-
form provides for the first time in an integrated way the following three comple-
mentary biometric modalities: mouse dynamics, keystroke dynamics, and facial 
scans.

Additionally, there is an administrative module which supports technical system 
administration tasks (e.g., account setup) as well as institutional exam management 
tasks (e.g., exam scheduling, creating and managing class list and instructors, etc.).

Initially, students are registered to the system by their institutions. Students 
access their accounts and enroll biometrically once, prior to taking any exam.

Instructors use the system to create and schedule exams. During the exams, 
instructors access the proctoring panel, where video feeds of the exam participants 
are displayed. Students are continuously authenticated in the background, and 
alarms are generated and notified to the instructor through the proctoring panel in 
real time. Follow-up actions can be taken accordingly by the instructor.

Online Test Centre Web Portal

Continuous
Authentication

Service

Exam
Environment
Monitoring

Exam
Management

Service

Fig. 6.1 ExamShield 
high-level architecture
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6.3.2  Multimodal Biometric Framework

ExamShield relies on a multimodal biometric framework, through which test takers 
are continuously authenticated the throughout the exam session from the beginning 
to the end. The framework involves a combination of several biometric technologies 
which can be collected and processed transparently in the background without 
active participation or cooperation of the user.

The multimodal framework integrates three different biometric technologies: mouse 
dynamic biometric, keystroke dynamic biometric, and face biometric. Mouse and key-
stroke biometrics are already to be appropriate for continuous as because samples can be 
collected passively using standard computing devices (e.g., mouse and keyboard) 
throughout a session without any knowledge of the user. The proposed scheme uses and 
implements free text analysis and free mouse action analysis models whose theoretical 
and experimental underpinnings are described in details in Ahmed and Traore (2007, 
2014). Interested readers are referred to these publications for details.

Face biometric scans can be collected using standard video cameras, which are 
currently being shipped with a growing number of computing systems. Facial scans 
are necessary complement for mouse and keystroke dynamics in order to cover the 
different monitoring scenarios underlying online exam process. More specifically, 
while mouse and keyboard may play an active role in written exams, they may be of 
limited use in exam situations where limited keyboard or mouse interactions are 
involved, in which cases, facial data could be used to authenticate the user.

However, face biometric has been studied extensively for static biometric authen-
tication; its uses in continuous authentication raise some new challenges since the 
authentication system has limited control over what the user is doing, which means 
that there is limited control over the types of samples the application will receive. 
Hence, it is difficult to capture and analyze effectively biometric samples unobtru-
sively in a noncooperative environment. Therefore with face biometrics, the recog-
nition must be performed accurately even if images are shifted, or involve different 
lighting or background, or if the person tilts their head slightly left or right or up or 
down or angled. This kind of variance between the conditions at enrollment and 
those at verification times impacts accuracy. Hence, new algorithms must be devel-
oped to address the above challenges and ensure effective biometric recognition 
during online exams. We revisit these issues later in the next section and give an 
overview of our proposed approach.

6.4  Continuous Face Biometric Authentication

6.4.1  Approach Overview

We designed and developed our continuous face biometric authentication algorithm 
using local binary pattern and chi-square distance. The model uses only positive train-
ing to learn the user’s facial features and store the extracted patterns in XML files. 
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We designed a set of heuristics to improve the accuracy of the system and minimize 
the false rejection rate.

A major technical challenge in implementing our continuous real-time face 
recognition over the web was related to the capture and sending of the webcam 
frames from the user browser to the face recognition server. Existing approaches 
consist of using communication schemes such as WebSocket to send the captured 
frames to the face recognition server. However, these do not work for continuous 
face recognition in a production environment. This is because capturing and sending 
frames over WebSocket in a continuous setting consume browser resources (e.g., 
CPU, memory) and result in terminating the WebSocket connection (as in Chrome), 
or slow down the connection and lose the advantages of real-time authentication (as 
in Firefox), or even crash the browser and require the user to restart his browser.

The above problem was reported by different developers who were trying to 
record video stream or send large images or files using WebSocket. Most of the 
suggested solutions focus on decreasing the video frame rate and connection time. 
However, this is not possible in our application because the recorded frames are 
used both for face recognition and user authentication. In addition, an online exam 
can take up to 4 h and in some cases more than that. To solve this problem and get 
beyond the current limitations, we took the following steps:

• Use WebP image encoding and avoid using PNG and JPEG image encoding 
(some browsers do not support WebP).

• Adjust the frame rate and image resolution based on the browser support for a 
particular image encoding.

• Send binary image not base64.
• Implement a fault-tolerant technique to detect WebSocket connection drop by 

the browser.

While the matching performances of the above scheme are excellent, its success 
depends on facial feature being tracked effectively. The OpenCV library is the refer-
ence framework for computer vision and face implementations. However, tracking 
a face in video stream is not an out-of-the-box feature in the OpenCV library. This 
is because there is no single face-tracking algorithm that can serve different 
 applications. For example, a face-tracking algorithm in video game console is not 
appropriate for other applications. To address the specific challenges of continuous 
face biometric authentication, we implemented initially two new techniques to sup-
port face tracking. The first technique consists of a motion detection algorithm that 
calculates the difference between two consecutive video frames and, based on a 
predefined threshold, decides if a motion exists in the video stream or not. The second 
technique relies on using existing OpenCV face detection algorithms, and then after 
the initial detection, it performs a template matching to detect the face template in 
the new video frames.

These two techniques yielded acceptable performance in laboratory and offline 
testing environments. However, they did not yield the same performance in online 
testing with live subjects performing real-world tasks. This is mainly because of 
the restrictions we have on the video stream. These include the video resolution, 
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which can be extremely low due to the diversity of exam participants (e.g., low-end 
Internet connectivity in some countries, heterogeneous platforms); the frame rate per 
second; and the fact that the system is running in uncontrolled environment, which is 
a typical characteristic of continuous authentication.

Likewise the existing tracking algorithms publicized through OpenCV do not 
scale/perform well in real-world environment confronted with the need for the flex-
ibility inherent to continuous authentication. Through thorough search, we could 
not find in the literature any tracking algorithm that addresses our exam environ-
ment constraints (e.g., 5  fps and 320 × 240 resolution, webcam, and uncontrolled 
lighting). To address these limitations, we had to make changes to the way the rec-
ognition algorithm works and to work with available face frame and do not require 
a specific number of frame to take the decision. With our new algorithm, even a 
single frame with one face can be used for recognition, while previously at least 300 
frames were required.

6.4.2  Evaluation and Observation

To evaluate the performance of our continuous face recognition system, we divided 
the evaluation process into three main phases. The first and the second phases 
focused on evaluating the recognition accuracy, while the third phase focused on 
evaluating the system in the production environment. In the first phase, we evaluated 
the detection accuracy of our face recognition algorithm with respect to positive 
training and novelty detection. To evaluate the detection accuracy when using only 
positive training, we used existing benchmark facial recognition datasets that are 
commonly used for evaluating static face recognition algorithms. We used the 
following three datasets: the AT&T Face Database, the Yale Face Database, and the 
extended Yale Face Database B. Our face recognition system yielded an accuracy 
between 91.32 and 94.71 %. These results are very encouraging considering that the 
algorithm uses only positive training. Most existing face biometric depends on both 
negative and positive training.

In the second phase of our evaluation, we recorded video streams from 11 sub-
jects. Each subject has to visit our face recognition web application. The video 
streams were captured using WebRTC and transmitted to our server using web sock-
ets. The server is implemented in python; we used Twisted and Autobahn as our 
network framework. All the video and image processing are handled by the OpenCV 
library. About five or six video streams for each subject were recorded. Each video 
stream is 10–15 min length. These video streams were recorded using a webcam. 
We used the first 3 min of video data for training. So only 3 min of the 50 min of 
each subject was used for building the subject face signature. Finally, we merged all 
the recorded video streams into one big video file and used this file to evaluate our 
continuous face recognition algorithm. The accuracy of the system in this experi-
ment was 100 %. The system was able to always distinguish the legitimate subject 
from the imposter subject. While in static authentication our best result was 94.71 %, 
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in continuous authentication our result was 100 %. Such difference in accuracy is mainly 
due to the fact that our algorithm was designed for continuous authentication. So it 
was able to take advantages of the huge amount of data (300 face samples per minute) 
it has for training and verification in comparison to the limited number of face 
samples (e.g., 20 face samples) used in static authentication.

The last phase of our evaluation focused on evaluating the system in the production 
environment. The face recognition server was deployed on the cloud. One instance 
was deployed on amazon cloud on the west coast, and another instance was deployed 
on a private cloud hosted by Plurilock Security Solution Inc., in Victoria, BC, 
Canada. In collaboration with different institutions, students from Canada and 
Brazil connected to the ExamShield server to perform live exams over several ses-
sions. The students were invited instructed to create their facial signatures prior to 
taking online exams. The face recognition system was able to record the exam ses-
sions for all the students, perform face recognition and verification in real time, and 
generate alarms in real time to notify exam proctors. Alarms were generated when 
a student was taking an exam on behalf of another student, when the student leaves 
his chair during the exam, or when several students were working on the same exam 
together. During the production evaluation, most of the reported problems were 
related to technical problems such as memory leak, connection drop, etc. All these 
pure technical issues were handled and fixed. The most interesting issues that were 
reported during the production testing and affected the face recognition functional-
ities were related to the environmental/external conditions that appear in the exam 
session. For instance, a major change in the lighting conditions, such as turning the 
light off during the exam or changing the location of the desk lamp, can badly affect 
the recognition accuracy. These observations show the need for a real-time adaptation 
technique to mitigate the effects of the extreme external factors in the exam environ-
ment. This will be one of the main focuses of our future work.

6.5  Conclusion

Continuous authentication is an emerging technology which is proving to be 
appropriate in handling a variety of security threats. Concrete applications range 
from forensic analysis, detection of insider threat and session hijacking, and vari-
ous forms of illegal identity sharing. Cheating in online exams falls in the latter 
category.

This chapter introduces a multimodal biometric framework combining for 
continuous authentication of online test takers. The framework represents a core 
module of the ExamShield platform, which is a new online exam monitoring system. 
In addition to continuous authentication, the ExamShield platform provides live 
video streaming and recording of exam environments and essential exam manage-
ment services. The different biometric modalities have been evaluated separately 
using offline datasets. The biometric framework is currently being used in produc-
tion in the ExamShield platform yielding very encouraging results.
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It is important to highlight that while the biometric framework involves multiple 
biometric technologies which are complementary, each of the modality is processed 
separately, and the outputs are presented through separate authentication events 
displayed using a common dashboard. Likewise, the framework may not techni-
cally be considered as full multimodal scheme, as there is no fusion of the outcome 
of the separate modalities.

In our future work, we plan to address such gap by developing a fusion scheme 
that will combine the three biometric modalities involved in the framework 
(i.e., mouse, keystroke, and face) and generate a combined and unique score for 
overall decision-making.

The effectiveness of a multimodal scheme depends on the appropriateness of the 
underlying fusion technique used to combine the outcome of the separate modali-
ties. Traditional fusion techniques rely on the availability at the time of the fusion of 
the separate information being fused. More specifically, the outputs of the separate 
biometric modalities must be synchronized.

However, synchronizing such a process is not appropriate for continuous authentica-
tion as this will delay some of the modalities, which leads to longer verification time.

Our goal is to develop an asynchronous fusion model based on the sequential sam-
pling theory that will allow making a trade-off between accuracy and authentication 
delay, which is needed in continuous authentication (Ahmed and Traore 2011).
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Chapter 7
An Enhanced CUSUM Algorithm  
for Anomaly Detection

Wei Lu and Ling Xue

7.1  Introduction

Intrusion detection has been studied for decades, and traditionally, intrusion detection 
techniques include two categories: misuse (signature-based) detection and anomaly 
detection. Misuse detection is based on the assumption that most attacks leave a set of 
signatures in the stream of network traffic, and thus attacks are detectable if these 
signatures can be identified by analysing the network traffic behaviours. However, the 
biggest limitation of misuse detection is its inability to detect new attacks.

To address the weakness of misuse detection, the concept of anomaly detection 
was formalized, and most anomaly detection techniques attempt to establish normal 
activity profiles by computing various metrics, and an intrusion is detected when the 
actual system behaviour deviates from the normal profiles. The early network 
anomaly detection systems are self-learning, that is, they automatically form an 
opinion of what the subject’s normal behaviour is. Self-learning techniques com-
bine the early statistical model-based anomaly detection approaches (Hochberg 
et al. 1993; Lunt et al. 1988; Smaha 1988), the AI-based approaches (Frank 1994) 
and the biological model-based approaches (Forrest et al. 1996). In this chapter, we 
proposed an enhanced cumulative sum (CUSUM) algorithm considering its ability 
in point change detection. As illustrated in Fig. 7.1, the general architecture of our 
detection scheme consists of two major components, namely, feature analysis and 
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enhanced CUSUM-based anomaly detection and decision. During feature analysis, 
we define and generate six features to characterize the network traffic behaviours, in 
which we expect the more the number of features, the more accurately the entire 
network will be characterized. This is very different from the features used by cur-
rent network anomaly detection systems because most of them use limited number 
of packet-based features (i.e., number of packets over a time interval) or existing 
features from public intrusion detection dataset (i.e., 41 features from KDD 1999 
CUP intrusion detection dataset) as the information sources. These proposed fea-
tures are then input to the enhanced CUSUM-based anomaly detection and decision 
box, in which the final intrusion decision is given through a fuzzy attack probability 
output by the detection system.

Although the anomaly detection algorithm in this work is not new, the idea of using 
detection performance for weighting each feature in the anomaly detection in order to 
achieve higher detection performance is original. The other contribution of this chap-
ter is we propose six network flow-based features which can characterize the network 
behaviours as completely as possible. The rest of the chapter is organized as follows. 
Section 7.2 presents the new flow-based features and explains the reasons to select 
them. In Sect. 7.3, we present the enhanced CUSUM algorithm and describe our prob-
abilistic decision engine for anomalies and intrusions. Section 7.4 presents the net-
work anomalies analysis for the 1999 DARPA intrusion detection evaluation dataset 
by using our detection system. Section 7.5 makes some concluding remarks.

7.2  Feature Analysis

The major goal of feature analysis is to select and extract significant network features 
that have potentials to discriminate anomalous behaviours from normal network 
activities. In order to define our feature vector space, we select three basic metrics 
to measure the entire network behaviours. In the following, we describe each metric 
in detail and explain the motivation to choose them.

AverageFlowPacketCount is the first metric we chose, and it is the average 
number of packets in a flow over a time interval. The rationale behind is most 
attacks happen with an increased packet count. For example, DoS attacks often 
generate a large number of packets in a short time in order to consume the available 
resources quickly.

packets
flows

Feature
Analysis

Enhanced
CUSUM

Intrusion
Decision

intrusion
or normal

attacking
probability

network flow
based features

Fig. 7.1 General architecture of the detection framework

W. Lu and L. Xue



85

AverageFlowByteCount is the second metric we use, and it is the average number 
of bytes in a flow over a time interval. By using this metric, we can identify whether 
the network traffic consists of large size of packet or not. The rationale behind is 
because some DoS attacks tend to use maximum packet size to consume resources 
or to congest data paths, e.g., the ping of death (pod) attack (Figs. 7.2, 7.3 and 7.4).

Based on the above two metrics, we define a set of features to describe entire 
traffic behaviours on networks. Let us denote by F the feature space of network 
flows, a six-dimensional feature vector f ∈ F can be represented as fi i

{ } = ¼1 2 6, , ,
, where 

the meaning of each feature is explained in Table 7.1. As illustrated in Figs. 7.2 to 7.3, 
observations with the 1999 DARPA network traffic data using the features showed 
that network traffic can be characterized and discriminated through these features. 
Figures 7.2, 7.3 and 7.4 illustrate the normal network behaviours characterized by 
the first metric over one day. Similarly, Figs. 7.5, 7.6 and 7.7 illustrate the network 
behaviours including attacking activities over 1 day. Refer to Figs. 7.5, 7.6, 7.7, 7.8, 
7.9, 7.10, 7.11, 7.12, and 7.13 in the Appendix.

Comparing Figs. 7.2, 7.3 and 7.4 and 7.5, 7.6 and 7.7 show that the feature 
“average total number of packets per flow over 1 min” has the potential to identify 
neptune (SYN flood) and carshiis attacks. Also as illustrated in Figs. 7.8, 7.9 and 
7.10 and Figs. 7.11, 7.12 and 7.13, we see that feature “average total number of 
bytes per flow over 1 min” has the potential to identify attacks smurf and pod, to 
name a few. Overall, the empirical observations with the 1999 DARPA network 
traffic show that all the six features have the potential to distinguish anomalous 
behaviours from normal network behaviours.
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Fig. 7.2 Number of TCP packets per flow per minute over 1 day with normal traffic only
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w1d1 - average total number of UDP packets per flow over 1 minute
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Fig. 7.3 Number of UDP packets per flow per minute over 1 day with normal traffic only
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Fig. 7.4 Number of ICMP packets per flow per minute over 1 day with normal traffic only
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7.3  Enhanced CUSUM Metrics

The CUSUM algorithm is an approach to detect a change of the mean value of a 
stochastic process, and it is based on the fact that if a change occurs, the probability 
distribution of the random sequence will also change. Basically, CUSUM works on 
a parametric model of the stochastic process to be analysed. However, obtaining a 
stochastic model for the Internet traffic is difficult, and also the model usually 
depends on specific network conditions. Therefore, we apply a non-parametric ver-
sion of the CUSUM algorithm as an alternative approach in this research work.

Before presenting the non-parametric CUSUM algorithm, we define some nota-
tions here. Suppose we want to analyse a random sequence consisting of the number 
of packets over a time interval ∆, and for simplicity, we define the random sequence 
{Xn} representing the number of packets over ∆. As illustrated in Fig. 7.14, the 
pattern for sequence {Xn} will be observed when there is a flooding DoS attack on 
networks. The dashed dot line refers to the mean value of sequence {Xn}, and during 
a flooding DoS attack, there is a step change of the mean value of {Xn} from a to 
a + h at time point m. The parameter h is defined as the minimum increase of the 
mean value of {Xn} during an attack.

A basic assumption for the non-parametric CUSUM algorithm is that the mean 
value of the random sequence is negative during normal conditions and becomes 
positive when a change occurs. Consequently, a transformation of {Xn} into a new 
sequence {Zn} is necessary, which is given by Zn = Xn − β, where β is a constant. As 
illustrated in Fig. 7.15, the parameter β is set according to network normal condi-
tions, and it guarantees that the major part of values of the sequence Zn is negative 
during normal conditions and becomes positive when a change occurs.

In practice, a recursive non-parametric CUSUM algorithm is used to detect 
anomalies online by using a new sequence {Yn}:
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0
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where
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,

,
 

where β is set in a fashion that the values of Xn − β keep slightly negative during nor-
mal operations. As a result, increases in the metric are expected to be detected, once 
the values are bigger than β. A long time period of values larger than β will lead 
further increasing of the CUSUM function until a possible alarm level is reached.

Table 7.1 List of the six flow-based features

Notation of features Description

f1 Average number of TCP packets per flow over 1 min
f2 Average number of UDP packets per flow over 1 min
f3 Average number of ICMP packets per flow over 1 min
f4 Average number of bytes per TCP flow over 1 min
f5 Average number of bytes per UDP flow over 1 min
f6 Average number of bytes per ICMP flow over 1 min

7 An Enhanced CUSUM Algorithm for Anomaly Detection



88

A large value of Yn is a strong indication of an attack. Based on this, we define an 
attacking probability pf

i
 generated by feature fi. It measures the anomalous degree 

of current networks by feature fi, where i = 1, 2, … , 6. The higher the value of pf
i
, 

the more anomalous the current network. Notation p is the attacking probability and 
we have

 
p p W i m
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where we have pf
i
 to measure the anomalous degree of initial sequence Xn:
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. ,1 0 otherwise  

where α is an adjusting parameter, which is used to amplify the value of β and is set 
as such constant 1, 2, etc. and Yn is the CUSUM value of sequence Xn.

Since the output of our detection system is a set of attacking probabilities, which 
are associated with the current network flow data through features. The attacking 
probability measures the anomalous degree of network flow data. The higher the 
value of the attacking probability, the more anomalous the corresponding network 
flow. The network administrator can set two thresholds for the attacking probability 
in order to discriminate network attacking behaviours from suspicious behaviours 
or distinct suspicious behaviours from normal network behaviours. In this research, 
we set the threshold for suspicious behaviour as 0.3 and the threshold value for 
attacking behaviours as 0.9. Thus, the intrusion decision strategy in our detection 
model is illustrated as follows:

• If the attacking probability is in the range of [0.0, 0.3], then network behaviour 
is normal.

• If the attacking probability is in the range of (0.3, 0.9), then network behaviour 
is suspicious.

• If the attacking probability is in the range of [0.9, 1.0], then network behaviour 
is intrusive.

This detection strategy is not fixed and in practice; the network administrator can 
adjust the threshold levels in order to gain an adaptive detection capability.

7.4  Performance Evaluation

We evaluate our system with the six features and 9-day DARPA testing data on 
week 4 and week 5, in which 201 attacks belonging to 58 attack types (40 new) are 
used for evaluation (DARPA 1999). During week 4, the inside traffic for day 2 
(Tuesday) is missed. During week 5, the total 22 h traffic data is available, and there 
is no downtime of the network. For the detector using the enhanced CUSUM algo-
rithm, Tables 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7 illustrate its detection results for features 
F1 to F6 over 9 days of evaluation.
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Table 7.2 Detection performance of feature F1 over a 9-day evaluation

Features, 
days

Total 
instances

Attacking 
instances

Normal 
instances

Total 
alarms

Correctly 
detected alarms False

DR 
(%)

FPR 
(%)

F1-W4D1 1320 178 1142 0 0 0 0.0 0.0
F1-W4D3 1320 104 1216 0 0 0 0.0 0.0
F1-W4D4 1320 84 1236 0 0 0 0.0 0.0
F1-W4D5 1320 143 1177 45 7 38 4.9 84.44
F1-W5D1 1320 150 1170 0 0 0 0.0 0.0
F1-W5D2 1320 199 1121 0 0 0 0.0 0.0
F1-W5D3 1320 152 1168 0 0 0 0.0 0.0
F1-W5D4 1320 119 1201 0 0 0 0.0 0.0
F4-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.3 Detection performance of feature F2 over a 9-day evaluation

Features, 
days

Total 
instances

Attacking 
instances

Normal 
instances

Total 
alarms

Correctly 
detected alarms False

DR 
(%) FPR (%)

F2-W4D1 1320 178 1142 0 0 0 0.0 0.0
F2-W4D3 1320 104 1216 0 0 0 0.0 0.0
F2-W4D4 1320 84 1236 0 0 0 0.0 0.0
F2-W4D5 1320 143 1177 145 51 94 35.67 64.83
F2-W5D1 1320 150 1170 26 0 26 0.0 100.0
F2-W5D2 1320 199 1121 0 0 0 0.0 0.0
F2-W5D3 1320 152 1168 0 0 0 0.0 0.0
F2-W5D4 1320 119 1201 0 0 0 0.0 0.0
F2-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.4 Detection performance of feature F3 over a 9-day evaluation

Features, 
days

Total 
instances

Attacking 
instances

Normal 
instances

Total 
alarms

Correctly 
detected alarms False

DR 
(%) FPR (%)

F3-W4D1 1320 178 1142 13 0 13 0.0 100.0
F3-W4D3 1320 104 1216 0 0 0 0.0 0.0
F3-W4D4 1320 84 1236 0 0 0 0.0 0.0
F3-W4D5 1320 143 1177 230 31 199 21.68 86.52
F3-W5D1 1320 150 1170 0 0 0 0.0 100.0
F3-W5D2 1320 199 1121 0 0 0 0.0 0.0
F3-W5D3 1320 152 1168 0 0 0 0.0 0.0
F3-W5D4 1320 119 1201 26 0 26 0.0 100.0
F3-W5D5 1320 285 1035 0 0 0 0.0 0.0
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Table 7.5 Detection performance of feature F4 over a 9-day evaluation

Features, 
days

Total 
instances

Attacking 
instances

Normal 
instances

Total 
alarms

Correctly 
detected alarms False

DR 
(%)

FPR 
(%)

F4-W4D1 1320 178 1142 31 9 22 5.06 70.97
F4-W4D3 1320 104 1216 0 0 0 0.0 0.0
F4-W4D4 1320 84 1236 0 0 0 0.0 0.0
F4-W4D5 1320 143 1177 22 3 19 2.1 86.36
F4-W5D1 1320 150 1170 0 0 0 0.0 0.0
F4-W5D2 1320 199 1121 1 0 1 0.0 100.0
F4-W5D3 1320 152 1168 18 7 11 4.6 61.11
F4-W5D4 1320 119 1201 0 0 0 0.0 0.0
F4-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.6 Detection performance of feature F5 over a 9-day evaluation

Features, 
days

Total 
instances

Attacking 
instances

Normal 
instances

Total 
alarms

Correctly 
detected alarms False

DR 
(%)

FPR 
(%)

F5-W4D1 1320 178 1142 0 0 0 0.0 0.0
F5-W4D3 1320 104 1216 0 0 0 0.0 0.0
F5-W4D4 1320 84 1236 0 0 0 0.0 0.0
F5-W4D5 1320 143 1177 220 48 172 33.57 78.18
F5-W5D1 1320 150 1170 0 0 0 0.0 0.0
F5-W5D2 1320 199 1121 0 0 0 0.0 0.0
F5-W5D3 1320 152 1168 0 0 0 0.0 0.0
F5-W5D4 1320 119 1201 0 0 0 0.0 0.0
F5-W5D5 1320 285 1035 0 0 0 0.0 0.0

Table 7.7 Detection performance of feature F6 over a 9-day evaluation

Features, 
days

Total 
instances

Attacking 
instances

Normal 
instances

Total 
alarms

Correctly 
detected alarms False

DR 
(%)

FPR 
(%)

F6-W4D1 1320 178 1142 52 0 52 0.0 100.0
F6-W4D3 1320 104 1216 0 0 0 0.0 0.0
F6-W4D4 1320 84 1236 59 1 58 1.19 98.3
F6-W4D5 1320 143 1177 258 35 223 24.48 86.43
F6-W5D1 1320 150 1170 215 50 165 33.33 76.74
F6-W5D2 1320 199 1121 81 12 69 6.03 85.19
F6-W5D3 1320 152 1168 32 18 14 11.84 43.75
F6-W5D4 1320 119 1201 109 8 101 6.72 92.66
F6-W5D5 1320 285 1035 70 24 46 8.42 65.71
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7.5  Conclusions

We propose in this chapter an enhanced CUSUM-based network anomaly detection 
system. In order to characterize the behaviour of the network flows, we present a 
six-dimensional feature vector, and the empirical observation results with the 1999 
DARPA intrusion detection dataset show that the proposed features have the poten-
tial to distinguish the anomalous activities from normal network behaviours. A traf-
fic analysis for the 1999 DARPA intrusion detection dataset is conducted using the 
proposed network anomaly detection system. Based on the achieved evaluation 
results, we conclude that even though the number of correct alerts reported by the 
detection system is not very large, the detection system has the potential to reduce 
the number of false alerts largely.

7.6  Appendix

Fig. 7.5 Number of TCP packets per flow per minute 1 day with normal and attacking traffic 

w5d1 - average total number of TCP packets per flow over 1 minute
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Fig. 7.6 Number of UDP packets per flow per minute 1 day with normal and attacking traffic 

w5d1 - average total number of UDP packets per flow over 1 minute
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Fig. 7.7 Number of ICMP packets per flow per minute 1 day with normal and attacking traffic

W. Lu and L. Xue



93

w3d1 - average total number of bytes per TCP flow over 1 minute
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Fig. 7.8 Number of bytes per TCP flow per minute over 1 day with normal traffic only

w3d1 - average total number of bytes per UDP flow over 1 minute
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Fig. 7.9 Number of bytes per UDP flow per minute over 1 day with normal traffic only
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w3d1 - average total number of bytes per ICMP flow over 1 minute
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Fig. 7.10 Number of bytes per ICMP flow per minute over 1 day with normal traffic only

w4d1 - average total number of bytes per TCP flow over 1 minute
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Fig. 7.11 Number of bytes per TCP flow per minute 1 day with normal and attacking traffic
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w4d1 - average total number of bytes per UDP flow over 1 minute
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Fig. 7.12 Number of bytes per UDP flow per minute 1 day with normal and attacking traffic

w4d1 - average total number of bytes per ICMP flow over 1 minute
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Fig. 7.13 Number of bytes per ICMP flow per minute 1 day with normal and attacking traffic
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Chapter 8
Conclusion: Future Trends and Challenges

Issa Traoré, Ahmed Awad, and Isaac Woungang

One of the trends observed in the emerging threat landscape is the spread of the 
threats from conventional networks to specialized platforms, including cloud, 
mobile, Internet of things (IoT), and critical infrastructure networks such as the 
electrical and utility grids, power and nuclear plants.

Today’s workforce is highly mobile, and business activities are no longer limited to 
the confines of the office or the company-issued desktop. Employees are generating and 
storing important corporate or institutional data on personal devices, which increases 
dramatically the level of vulnerability of organizations. Although the increase in 
worker mobility is good for morale and productivity, it can potentially have a negative 
impact on the organization systems and data security. In this context mobile devices 
such as smartphones and tablets are even more vulnerable because of their relatively 
open environment compared to traditional computing devices (Clarke et  al. 2002; 
Damopoulos et al. 2013). While numerous protection schemes are available on these 
devices, many users view these protections as hindrances and tend to disable or bypass 
them (Furnell et al. 2008). In this context, the main challenges for researchers lie in 
devising new approaches to balance adequately security requirements with the expec-
tations from users to be able to perform primary mobile device functions (e.g., com-
munication) in an unrestricted way.
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Efforts are underway to migrate the traditional electric power grid using the 
smart of information and communication technologies (ICT), resulting in the so- 
called smart grid. While this improves effectiveness of service delivery and cost 
efficiency, it exposes the smart grid network to several security concerns, some 
reminiscent of issues already known for conventional computer network (e.g., 
DDOS attacks), but others are very specific to smart grid environments, technolo-
gies, and protocols (Wang and Lu 2013).

Recently, we have noticed a growing interest in the IoT, which is a new comput-
ing and design paradigm addressing the proliferation of devices directly connected 
to the Internet. The focus so far has been on addressing challenges arising from the 
heterogeneity and ubiquity of these paradigms. However, the provision, operation, 
and usage of IoT involves serious privacy and security concerns which will increase 
in complexity as the user base increases and hackers start having better grasp of the 
underlying technologies (Heer et al. 2011).

Simply reusing and adapting existing protection technologies and strategies 
for these specialized platforms is not enough to alleviate the underlying security 
concerns and vulnerabilities. New defensive approaches and models must be 
developed which take into account the specific attributes and characteristics of 
these platforms.

Many of these specialized platforms rely on relatively closed networks. Hence, 
most of them are closely held and controlled by the providers. While this limits the 
amount of information available publicly and that can be leveraged to launch an 
attack, it relies on the false assumption of security by obscurity. The lack of infor-
mation is compounded in the difficulty for researchers to access or create realistic 
datasets for security study related to these platforms.

The consequence of such reliance on security by obscurity is that determined and 
clever hackers can devise and execute quietly sophisticated attack methods against 
these platforms for an extended period of time without being caught.

For instance, for some time it was believed that cloud computing networks were 
immune to the threat of botnet, since these networks are tightly controlled by cloud 
hosting companies.

However, it has been shown in the last few years that the potential for botnet 
spreading over cloud networks is even much greater than in conventional networks 
(Graham et al. 2015). For instance, it was reported in 2009 that hackers compromised 
a site on Amazon EC2 and use it to deploy and operate the C&C server for the Zeus 
banking botnet. In 2014, researchers have shown how easy it is to establish and oper-
ate a cloud botnet using a collection of machines from free trials and freemium 
accounts offered by cloud hosting companies to incentivize new customers.

In the threat context outlined above and throughout this book, while future security 
challenges lie in specialized platforms, cooperation with the providers to gain more 
access and generate realistic datasets will be crucial to obtain any successful results in 
fighting against and anticipating emerging and future cybersecurity threats.

The goal of the I-SAT workshop series is to create and foster a space for research-
ers and practitioners to present and confront ideas that will represent a leap forward 
and proactive perspective of emerging and new cybersecurity threats.
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